
Citation: Dai, Y.; Sun, C. Adaptive

Beamforming with Hydrophone

Arrays Based on Oblique Projection

in the Presence of the Steering Vector

Mismatch. J. Mar. Sci. Eng. 2023, 11,

876. https://doi.org/10.3390/

jmse11040876

Academic Editors: Sergey Pereselkov,

Matthias Ehrhardt and Pavel Petrov

Received: 27 March 2023

Revised: 13 April 2023

Accepted: 18 April 2023

Published: 20 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Article

Adaptive Beamforming with Hydrophone Arrays Based on
Oblique Projection in the Presence of the Steering
Vector Mismatch
Yan Dai 1,2 and Chao Sun 1,2,*

1 School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China;
dy1036987828@mail.nwpu.edu.cn

2 Shaanxi Key Laboratory of Underwater Information Technology, Xi’an 710072, China
* Correspondence: csun@nwpu.edu.cn

Abstract: In sonar systems, the performance of adaptive beamformers severely degrades when
mismatches occur between the actual and presumed steering vectors of the desired signal, mainly due
to hydrophone position errors, amplitude-phase errors, and the scattered effect of arrays. Similarly,
an inadequate number of “training” samples can lead to performance degradations similar to those
caused by mismatches. In this paper, an adaptive beamforming algorithm based on oblique projection
(OP-ABF) mismatch compensation is proposed to remove the degradation caused by the arbitrary-
type steering vector mismatch of the desired signal. The proposed algorithm is motivated by the
fact that the weight vector of adaptive beamforming can be represented as a linear combination of
the optimal one and the oblique projection (OP) vector, which is generated by the steering vector
mismatch and does not exist without this. Our algorithm was developed by constructing the oblique
projection mismatch compensation vector (OPMCV) to provide the minimum variance distortionless
response (MVDR) beamformer. Then, the algorithm could be implemented by the solution of the
OP matrix with the formulation of the covariance matrix loading (CML). The simulation results of a
uniform linear array (ULA) and a half-cylindrical conformal array (HCCA) show that the OP-ABF
can optimize the original weight vector as much as possible without sacrificing the output signal-to-
interference-plus-noise ratio (SINR) under different conditions. Experimental results for the HCCA
also confirm the effectiveness of this algorithm.

Keywords: steering vector mismatch; adaptive beamforming; oblique projection; conformal array

1. Introduction

Array signal processing is widely used in modern sonar systems, and adaptive
beamforming is one of the important techniques [1–3]. It has obvious advantages over
other methods in improving the detection performance of sonar in complex ocean envi-
ronments [4,5]. Among many adaptive beamfomers, the minimum variance distortion-
less response (MVDR) beamformer [6] can theoretically maximize the output signal-to-
interference-plus-noise ratio (SINR), provided that there is no desired signal in the received
data or the characteristics of the desired signal are precisely known.

As we know, however, the performance of adaptive beamformers is sensitive to array
and model imperfections. The desired signal is always present in the received data in many
scenarios, such as passive sonar detection and underwater communication. Further, there
are many reasons causing the steering vector (SV) mismatch of the desired signal, such
as the sensor position errors [7], the amplitude-phase errors [8], and the scattered effect
generated by the rigid baffle where hydrophones are mounted [9]. Interestingly, the in-
fluence of the snapshot deficiency [10] can be also somehow mathematically considered
as the SV mismatch. The SV mismatch degrades the performance of the MVDR beam-
former, especially when the received data contain the desired signal component [11,12],
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even though the mismatch is slight between the actual and presumed steering vectors of
the desired signal. In sonar systems, therefore, the SV mismatch poses a serious challenge
to the adaptive beamforming performance. Several approaches are known to provide an
improved performance against the SV mismatch. The diagonal loading (DL) technique [13]
is one of the most widely used methods to solve this problem. Although only one parameter
is required to be calculated in the DL beamformers [14,15], they sacrifice the output SINR,
and do not remove the SV mismatch in essence.

To overcome shortcomings of the DL beamformers, the interference-plus-noise covari-
ance matrix (INCM) reconstruction is proposed [16]. The INCM can reduce the influence
of the SV mismatch of the desired signal on the adaptive beamforming performance,
and further improve the output SINR of adaptive beamformers compared with the DL
beamformers. At present, a variety of INCM algorithms have been developed, which
mainly include sparse reconstruction methods [17,18] based on the spatial sparsity of sig-
nals, subspace methods [19,20] according to characteristics of the eigen-subspace of the
sample covariance matrix, and convex optimization methods [21,22]. A high computational
cost is required in the INCM for high-resolution spatial spectrum estimation, which is
sensitive to environmental parameters and cannot be implemented well in the ocean. Since
the desired signal and interferences lie in the same eigen-subspace, the INCM leads to
the coherence of the desired signal and interferences, which degrades the performance
of adaptive beamformers. Therefore, it is crucial to the performance of the INCM algo-
rithms whether the desired signal and interferences can be perfectly separated from the
eigen-subspace of the covariance matrix of the received data. These drawbacks make them
difficult to promote in underwater acoustic signal processing.

In addition to the shortcomings mentioned above, in sonar, a major reason for the poor
performance of the adaptive beamformers is the fact that the mismatch, the desired signal,
and interferences are not orthogonal in the signal subspace. This means that eliminating the
mismatch comes at the cost of reducing the interference suppression, while maintaining the
interference suppression can retain a part of the mismatch component in the received signal,
which is also the reason why adaptive beamformers based on orthogonal projection or eigen-
decomposition [23–26] are restricted. It is difficult to remove the SV mismatch thoroughly
in such cases. Therefore, in underwater signal processing, developing an algorithm of
adaptive beamforming that can cope with the SV mismatch caused by arbitrary-type errors
and is convenient for implementation on hydrophone arrays on the premise of the high
performance of the adaptive beamforming is a challenging issue.

As a general representation of the orthogonal projection, the oblique projection (OP)
only requires subspaces that are mutually disjoint from each other. That is, bases spanning
different subspaces are not orthogonal but uncorrelated [27]. This characteristic makes it
possible to only eliminate the SV mismatch of the desired signal in the signal subspace.
The OP operator is first used to remove the intersymbol interference [28] in communications,
and then is widely used in mainlobe interference suppression [29,30]. In recent years,
algorithms of array response control based on the OP have been developed [31–33]. Based
on the above discussion, the OP can play an important role and provide us with a way to
improve the performance of adaptive beamforming.

In this paper, we apply the OP to sonar signal processing and propose an adaptive
beamforming algorithm based on oblique projection (OP-ABF), aiming at eliminating the SV
mismatch in the received data to improve the output SINR. More specifically, the mismatch
term in the initial weight vector can be expressed as the OP vector in a determined but
unknown subspace. In order to eliminate the mismatch term, the original problem is
converted to the covariance matrix loading (CML) problem, which can be regarded as a
generalization of the conventional DL [34]. The OP matrix and undetermined parameters
are solved by taking advantage of eigen-decomposition of the covariance matrix of the
received data. The optimized weight vector is finally derived, in which the mismatch
term has been compensated by the vector called the OP mismatch compensation vector
(OPMCV). The advantages of the proposed OP-ABF algorithm are not only that it can
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perfectly remove the arbitrary-type SV mismatch, but also that it is implemented by only
using the received data without any other prior information such as the upper bound of
the error norm or the high resolution spatial spectrum. Another valuable point is that the
proposed OP-ABF has no restriction on the array geometry, which is practically applicable
to arrays of different underwater platforms.

The rest of the paper is organized as follows. In Section 2, the signal model, and some
necessary concepts regarding the adaptive beamforming are introduced, respectively.
The proposed OP-ABF is presented and we provide an approach that can resolve the
undetermined parameters in Section 3. The interpretation and necessary analysis of the
proposed OP-ABF are given in Section 4. Representative results are presented in Section 5
and conclusions are drawn in Section 6.

2. Problem Formulation

Let us denote matrices and vectors as bold upper-case and lower-case letters, respec-
tively. In particular, I is used to stand for the identity matrix. R and C denote the sets of real
and complex numbers, respectively. R(·) andN (·) are the column space and the null space
of the input matrix, respectively. R⊥(·) is the orthogonal complementary space of R(·).
P(·) is the eigenvector corresponding to the maximum eigenvalue of the input matrix.

2.1. Signal Model

Consider an array with an arbitrary configuration composed of identical M omni-
directional hydrophones. Suppose there are D far-field narrowband uncorrelated signals
impinging on the array, one of which is the desired signal while the other D − 1 are
interferences. The signals received by the array can be written [12] as

y(t) = aasvs0(t) +
D−1

∑
d=1

adsd(t) + n(t) (1)

where

t: arbitrary sampling time.
y(t) ∈ CM×1: the received data sampled by the array.
aasv: the actual SV of the desired signal.
ad: the SV of the dth interference.
s0(t): the wavefront of the desired signal.
sd(t): the wavefront of the dth interference.
n(t): the zero mean Gaussian white noise, representing additive noise in the environment
received by the array.

Assuming that the desired signal, interferences, and noise are uncorrelated with each
other, noise on each hydrophone is also uncorrelated. The covariance matrix of y(t) is
given as

Ry = E
[
y(t)yH(t)

]
= Rs + Rint+n

= σ2
s aasvaH

asv +

(
D−1

∑
d=1

σ2
d adaH

d + σ2
n I

) (2)

where

E[·]: the statistical expectation.
Rs = σ2

s aasvaH
asv: the covariance matrix of the desired signal.

Rint+n = ∑D−1
d=1 σ2

d adaH
d + σ2

n I: the covariance matrix of interference-plus-noise.
σ2

n I: the covariance matrix of the Gaussian white noise.
σ2

s : the power of the desired signal.
σ2

d : the power of the dth interference.
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σ2
n: the power of noise.

In practice, the covariance matrix of y(t) is estimated by a finite number of samples.
The sample covariance matrix of y(t) is written as

R̂ =
1
L

L

∑
t=1

y(t)yH(t) (3)

where

L: the sample size.
(·)H : the conjugate-transpose operator.

The output of the beamformer is the weighted summation of the received data [35], i.e.,

p = wHy(t) (4)

where w denotes the weight vector of the beamformer. Then, the power of the beamformer
output is given [12,35] as

σ2
p = E(pp∗)

= wH Ryw

= wH Rsw + wH Rint+nw

(5)

where the superscript (·)∗ is the conjugate operator.
According to the signal model given in (1) and the covariance matrix given in (2),

the input signal-to-noise ratio (SNR) of the beamformer is defined as

SNRin = σ2
s /σ2

n (6)

Therefore, the output signal-to-interference-plus-noise ratio (SINR) of the beamformer
is given as

SINRout =
wH Rsw

wH Rint+nw
=

σ2
s

σ2
n
·
∣∣wHa0

∣∣2
wHρint+nw

(7)

where

ρint+n: the normalized interference-plus-noise covariance matrix of Rint+n with respect to
the power of noise.
a0: the presumed SV of the desired signal.

Ideally, the presumed SV and the actual one can point in the same direction as the
desired signal, i.e., aasv = a0, and the normalized SINRout of the beamformer regarding
SNRin is written from (6) and (7) as

G =
SINRout

SNRin
=

∣∣wHa0
∣∣2

wHρint+nw
(8)

where G is defined as spatial processing gain (SPG) in this paper because there are inter-
ferences in signal model (1). The SPG is the normalized SINRout with respect to σ2

n for the
presence of interferences [35].

In practice, the actual SV of the desired signal is unknown and inevitably deviates
from the presumed one, i.e., aasv 6= a0. We make the following assumptions regarding the
presumed SV a0 and the actual one aasv of the desired signal.

1: aasv is different from a0, i.e., aasv = a0 + δ, where δ denotes the SV mismatch caused
by arbitrary-type errors mentioned in the Introduction.

2: a0 represents the presumed SV of the desired signal, but it cannot be used directly
since it is polluted by δ in the received data.
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3: aasv is the actual SV of the desired signal, in the direction of which we hope the
SINRout of adaptive beamformers will be maximized although it contains the mismatch
vector δ.

We can now state the problem as follows: given the received data y(t), eliminate the
SV mismatch of the desired signal and achieve the maximum SINRout.

2.2. Adaptive Beamforming

The optimal beamformer in adaptive beamformers in terms of maximizing the SINRout
is derived from the MVDR beamformer [6], and its weight vector and SINRout are expressed,
respectively, as

wMVDR = αρ−1
int+na0 (9)

SINRout,MVDR =
σ2

s
σ2

n
·

∣∣wH
MVDRa0

∣∣2
wH

MVDRρint+nwMVDR
=
(

σ2
s /σ2

n

)
· aH

0 ρ−1
int+na0 (10)

where α =
(

aH
0 ρ−1

int+na0

)−1
is a normalization factor that guarantees the distortionless

response constraint in the direction of a0 and does not affect its SINRout.
In sonar, ρint+n in (9) cannot be obtained and is replaced by the sample covariance

matrix given in (3). Thus the generalized version of adaptive beamformers known as the
sample matrix inversion (SMI) beamformer is derived, and its weight vector and SINRout
are expressed, respectively, as

wSMI = βR̂−1a0 (11)

and

SINRout,SMI =
σ2

s
σ2

n
·

∣∣wH
SMIa0

∣∣2
wH

SMIρint+nwSMI
=
(

σ2
s /σ2

n

)
·

∣∣∣aH
0 R̂−1aasv

∣∣∣2
aH

0 R̂−1
ρint+nR̂−1a0

(12)

where β =
(

aH
0 R̂−1a0

)−1
plays the same role as α. Equations (11) and (9) are equivalent

on the premise that the desired signal component in R̂ is exactly known.
In passive sonar systems, the desired signal component is always present in the

received data. Once the SV mismatch is introduced into the estimation of R̂, the perfor-
mance of the SMI beamformer dramatically degrades no matter how slight the mismatch
is. In order to solve this problem, a popular kind of algorithms are the diagonal loading
(DL) methods, which are referred here as the loading sample matrix inversion (LSMI)
beamformer [12] and given here:

wLSMI = η
(

R̂ + γI
)−1a0 (13)

where η is a normalization factor and γ is defined as γ = σ2
n · 10LNR/10, where LNR is called

the load-to-white-noise ratio.
The LSMI beamformer alleviates the performance degradation caused by the SV

mismatch to some extent. However, the LSMI beamformer cannot completely eliminate
the SV mismatch of the desired signal in the received data. In recent years, adaptive
beamformers based on the interference-plus-noise covariance matrix (INCM) reconstruction
provide an improved performance against the SV mismatch [18,20–22]. The INCM provides
“the desired signal-free” “training” data as accurately as possible at the expense of sufficient
prior information and computational complexity.
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3. The Proposed Algorithm Based on OP
3.1. The OP-ABF Algorithm

Using the matrix inversion lemma [27], R̂−1 in (11) can be written as

R̂−1
= σ−2

n

[
I −

ρ−1
int+naasvaH

asv
(
σ2

s /σ2
n
)

1 + (σ2
s /σ2

n)aH
asvρ−1

int+naasv

]
ρ−1

int+n

= σ−2
n

[
I −

(
σ2

s /σ2
n
)
aH

asvρ−1
int+naasv

1 + (σ2
s /σ2

n)aH
asvρ−1

int+naasv
·

ρ−1
int+naasvaH

asv

aH
asvρ−1

int+naasv

]
ρ−1

int+n

= σ−2
n

[
I − µ0 · EH

]
ρ−1

int+n

(14)

where

µ0 =

(
σ2

s /σ2
n
)
aH

asvρ−1
int+naasv

1 + (σ2
s /σ2

n)aH
asvρ−1

int+naasv
(15)

is a real number whose magnitude is proportional to the SNRin and is in the range 0 ≤ µ0 < 1.

EH =
ρ−1

int+naasvaH
asv

aH
asvρ−1

int+naasv
(16)

is an idempotent and non-Hermitian matrix, i.e., EH =
(
EH)2

and EH 6= E. A matrix that
satisfies these mathematical properties is called an oblique projection (OP) matrix. For EH

in (16), it is the OP matrix projecting onto R
(

ρ−1
int+naasv

)
along the direction parallel to

R⊥(aasv), soR
(
EH) is equal toR

(
ρ−1

int+naasv

)
, andN

(
EH) containsR⊥(aasv). A detailed

interpretation of the OP is given by [27], which can be found in the Appendix A.
Substituting (14) into (11) and wSMI results in:

wSMI = β/σ2
n ·
[

I − µ0 · EH
]
ρ−1

int+na0

= β/σ2
n · ρ−1

int+na0 − β/σ2
n · µ0EHρ−1

int+na0

(17)

where β/σ2
n does not affect the performance and can be omitted below. It is shown in (17)

that the SMI beamformer is a linear combination of two vectors. One is the MVDR beam-
former, which provides the highest possible SINRout. The other is the projection of this
MVDR beamformer inR

(
EH), which is generated by the SV mismatch. When aasv = a0,

R
(

ρ−1
int+naasv

)
= R

(
ρ−1

int+na0

)
, and EHρ−1

int+na0 = ρ−1
int+na0, the SMI beamformer is re-

duced to the standard MVDR beamformer. The projection of the MVDR beamformer in
R
(
EH) does not lie in the same linear space as itself in the presence of the SV mismatch

in adaptive beamforming, which leads to the deviation of the SMI beamformer from the
optimal one and the performance of itself degrading.

We define the oblique projection mismatch compensation vector (OPMCV) as

vOPMCV
4
= µ0ÊH

ρ̂−1
int+na0 (18)

where ÊH and ρ̂−1
int+n denote the estimates of the corresponding matrices, respectively.

Correspondingly, the geometric explanation of wMVDR, wSMI and vOPMCV is illustrated
in Figure 1. Three vectors form a triangle in the presence of the SV mismatch. wMVDR

does not lie in R
(

ρ−1
int+naasv

)
when aasv 6= a0. According to (17), wSMI (blue arrow) is

otherwise the difference between wMVDR (red arrow) and vOPMCV (green arrow). Since µ0
is proportional to the SNRin, the greater the SNRin, the larger the angle between wSMI and
wMVDR, indicating that the SINRout,SMI severely decreases.
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Figure 1. Diagram of the geometric interpretation of (17), in which the red arrow represents the
minimum variance distortionless response (MVDR) beamformer, and the blue arrow is the sample
matrix inversion (SMI) beamformer. When aasv 6= a0, the two beamformers are no longer linearly
correlated because of the SV mismatch, and the resulting error is vOPMCV represented by the green
arrow. These three vectors can form a vector triangle in linear space.

The core idea of the adaptive beamforming based on oblique projection (OP-ABF)
is to estimate the oblique projection matrix ÊH by the received data. Once the OPMCV
is obtained, the MVDR beamformer is derived by an arithmetical manipulation from (9)
and (17):

wMVDR = α(wSMI + vOPMCV) (19)

Ignoring the normalization factor α and substituting ÊH and wSMI in (11) into (19),
the expression in brackets at the right hand of the equation is rewritten as

wSMI + vOPMCV = σ2
n

(
R̂−1

+ σ−2
n µ0ÊH

ρ̂−1
int+n

)
a0 (20)

Applying the Woodbury matrix identity [27] to the expression in brackets at the right hand
of the equation in (20), we can derive(

R̂−1
+ σ−2

n µ0ÊH
ρ̂−1

int+n

)−1
=
(

I + σ−2
n µ0R̂ÊH

ρ̂−1
int+n

)−1
R̂

= R̂−
µαvH

1 R̂v1

1 + µα
ER̂

(21)

where

µα: an undetermined real number.
v1 = P

(
Ê
)
: the principal component of

(
Ê
)
.

ER̂ = v1(vH
1 R̂v1)

−1vH
1 R̂: an oblique projection matrix.

The derivation of (21) uses two properties of ÊH : its eigenvalues are only 0 or 1,
and Rank(ÊH

) = Rank[R(ρ̂−1
int+n âasv)] = 1. Substituting (20) and (21) into (19), this is

rewritten as

wMVDR = ασ2
n

(
R̂−

µαvH
1 R̂v1

1 + µα
ER̂

)−1

a0

= α
′
(

R̂−
µαvH

1 R̂v1

1 + µα
ER̂

)−1

a0

(22)
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where α
′

is also a normalization factor.
By comparing (22) with (13), it can be found that each entry in R̂ is “loaded” in (22) by

the OP matrix while only diagonal entries in R̂ are loaded in (13) by the identity matrix.
This means that the OP operation on the R̂ can be seen as a special case of the covariance
matrix loading (CML) method, where the loading matrix is the rank-1 OP matrix ER̂.
The covariance matrix R̂ after the CML no longer contains the desired signal component,
and the mismatch is eliminated without affecting the rest of R̂, which indicates that the
interference suppression is not reduced. wMVDR in (22) continues to be formulated as

wMVDR = α
′
R̂−1(I + µαÊ

)
a0 (23)

As a result, µα and Ê are parameters that need to be solved for wMVDR. The OP-ABF is
eventually written as

wOP = α
′
R̂−1(I + µαÊ

)
aasv (24)

As we will see in the next subsection, aasv is to be derived in the solution of Ê.

3.2. Solutions of E and µα

The covariance matrix of the received data R̂ can be eigen-decomposed as

R̂ = UΛUH =
M

∑
i=1

λiuiuH
i (25)

where

Λ = diag(λ1, λ2, · · · , λm, · · · , λM): the eigenvalue matrix in which eigenvalues are in
descending order.
U = [u1, u2, · · · , uM] = [Us, Un]: the eigenvector matrix corresponding to the eigenvalues.
Us: the eigenvectors that span the signal-plus-interference subspace associated with domi-
nant eigenvalues.
Un: the eigenvectors that span the noise subspace.

The desired signal SV and the interference SVs lie in Us, which are formulated asaasv ∈
{

a | a = Uses0 , ∀es0 , es0 ∈ RD×1
}

adi
∈
{

a | a = Usedi
, ∀edi

, edi
∈ RD×1

}
, i = 1, · · ·D− 1

(26)

where

es0 : the linear coefficient vector of aasv.
edi

: the linear coefficient vector of adi
.

a: a random vector that lies in Us or Un.

Assume that the desired signal is located at a certain angle sector, and we can define
R̂s as the virtual covariance matrix of the desired signal. R̂s is roughly estimated by the
MVDR spatial spectrum over an angular sector as

R̂s =
∫

Φ

ai(φ)aH
i (φ)

aH
i (φ)R−1ai(φ)

dΦ (27)

where

Φ = [φ0 − ∆, φ0 + ∆]: the angle sector centering at the direction of a0 with a range of 2∆.
φ0: the bearing of a0.
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For the convenience of computation, replacing the integral in (27) by summation, R̂s
in (27) can be approximately expressed as

R̂s =
P

∑
p=1

ai
(
φp
)
aH

i
(
φp
)

aH
i
(
φp
)

R−1ai
(
φp
) (28)

where

ai
(
φp
)
: the nominal SV at φp that is uniformly sampled in Φ.

P: the number of samples in Φ.

Let Ês denote the eigenvector matrix corresponding to the dominant eigenvalues,
which are derived from the eigen-decomposition of R̂s. Similarly, the desired signal SV
lies in Ês, which is reformulated as

aasv ∈
{

a | a = Êses1 , ∀es1 ∈ RLs×1
}

(29)

where

es1 : a linear coefficient vector in the set in (29).
Ls: the dimension of Ês.

From (26) and (29), aasv lies in the intersection of Us and Ês. Therefore, aasv can be
estimated by

âasv =
√

MP
(

PUs PÊs

)
(30)

where

PUs = UsUH
s : the orthogonal projection matrix of Us

PEs = ÊsÊH
s : the orthogonal projection matrix of Ês.

Similarly, adi
can be also estimated by the following equation

[âd1 , · · · , âdD−1 ]
T =
√

MP
(

PUs PÊint

)
(31)

where PÊint
= ÊintÊ

H
int represents the orthogonal projection matrix of Êint, which contains

the dominant eigenvectors obtained by eigen-decomposition of the matrix below

R̂int =
∫

Φ̄

ai(φ)aH
i (φ)

aH
i (φ)R−1ai(φ)

dΦ̄

≈
Q

∑
q=1

ai
(
φq
)
aH

i
(
φq
)

aH
i
(
φq
)

R−1ai
(
φq
) (32)

where

R̂int: the virtual covariance matrix of the interference-plus-noise in the complementary set
of Φ.
Φ̄: the complementary set of Φ.
Q: the number of samples in Φ̄.
ai
(
φq
)
: the nominal SV at φq that is uniformly sampled in Φ̄.

P
(
PUs PEint

)
: the L dominant eigenvectors corresponding to the largest L eigenvalues.

According to âasv and [âd1 , · · · , âdD−1 ]
T , the OP matrix ÊH of the OPMCV in (18) can

be estimated as

EH =
ρ̂−1

int+nâasvâH
asv

âH
asvρ̂−1

int+nâasv
(33)
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where

ρ̂int+n = Â

 γint,1
. . .

γint,D−1

ÂH
+ I (34)

and γint,1, · · · , γint,D−1 are the eigenvalues corresponding to Êint. Additionally,
Â = [âd1 , · · · , âdD−1 ]

T .
Now E and âasv have been solved.
It is observed that (23) can be considered the solution of an optimization problem,

and its Lagrangian function is inversely deduced as

L(wMVDR, λ) = wH
MVDRR̂wMVDR + λ

[
wH

MVDR
(

I + µαÊ
)
a0

]
(35)

where λ denotes the Lagrangian multiplier. Finally, the solution of µα is transformed into
an optimization problem

minimize
wMVDR

wH
MVDRR̂wMVDR

subject to wH
MVDRa0 = 1

wH
MVDRÊHa0 = wH

MVDR
âasvâH

asvρ̂−1
int+na0

âH
asvρ̂−1

int+nâasv
≤ ξ < 1

âasv =
√

MP
(

PUs PÊs

)
Â =
√

MP
(

PUs PÊint

)
(36)

where ξ is a real number. Unlike most other optimization problems, (36) is a definite solution
problem, and its solution can be solved as below. The Lagrangian function of (36) is

L(wMVDR, λ, η) =wH
MVDRR̂wMVDR

+ λ
(

wH
MVDRa0 − 1

)
+ λ∗

(
aH

0 wMVDR − 1
)

+ µ
(

wH
MVDRÊa0 − ξ

)
+ µ∗

(
a0

H ÊHwMVDR − ξ
) (37)

µα is given by the following formulas

µα = µ/λ

λ = (1− ξ)/(b− a)

µ = [(ξ − 1)a]/
(

b2 − ab
)
− 1/b

a = a0R̂−1a0

b = a0ÊH R̂−1a0 = a0R̂−1Êa0 = a0ÊH R̂−1Êa0

(38)

Substituting âasv in (30), E in (33), and µα in (38) into (24), wOP can be constructed to
eliminate the SV mismatch in wSMI. The proposed OP-ABF algorithm is summarized in
Table 1 and the concrete implementation is demonstrated by the flowchart in Figure 2.
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Table 1. Proposed Adaptive Beamforming Algorithm Based on Oblique Projection (OP-ABF).

step1 : Obtain the eigen-subspaces corresponding to the dominant eigenvalues of R̂ in (3), R̂s
in (28) and R̂int+n in (32) by eigen-decomposition, respectively.

step2 : Substitute (30), (31), and (34) into (33). The OP matrix and the actual SV of the desired
signal are estimated by Ê and âasv, respectively.

step3: Solve the optimization problem (36), and obtain the solution of µα in (38).

step4: Substitute Ê, âasv and µα into (24) and obtain wOP.

Start

Input: y(t) or R̂ =
1
L ∑L

t=1 y(t)yH(t)

The eigen-
decomposition of
R̂: R̂ = UΛUH

Calculate the
virtual covariance
matrix of signals
in Φ: R̂s by (28)

Calculate the
virtual covariance
matrix of signals
in Φ̄: R̂int by (32)

Extract the
dominant eigen-

vectors: Ês

Extract the
signal subspace

Us from U

Extract the
dominant eigen-

vectors: Êint

âasv =√
MP

(
PUs PÊs

)
in (30)

ρ̂int+n in (34)

Estimate the OP
matrix ÊH by (33)

Solve µα by
(36)–(38)

Output: the weight
vector of the OP-
ABF: wOP in (24)

End

Figure 2. Flowchart of the implementation of the OP-ABF. It can be seen from the flowchart
that Ê is calculated by R̂, and µα is solved by R̂ and Ê. Substituting Ê and µα into (24), wOP is
eventually derived.
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4. SINRout Analysis of the OP-ABF

The fundamental cause of performance degradation of the adaptive beamformers is
that the SV of the desired signal in the received data is mismatched with the presumed one,
which is almost inevitable in applications of passive sonar. In traditional methods, the SV
mismatch is eliminated with the loss of the SINRout because the SV of the desired signal is
not orthogonal to that of the interference, which is bound to be affected when the mismatch
is removed by the orthogonal complementary subspace of aasv.

Substituting (17) into (12), we can obtain the following equation:

SINRout,SMI =
(

σ2
s /σ2

n

)
aH

asvρ−1
int+naasv

·
aH

0

[
(1− µ0)

2EH
]
ρ−1

int+na0

aH
0

[(
I − EH)+ (1− µ0)

2EH
]
ρ−1

int+na0

(39)

It can be seen from (39) and (15) that the SINRout,SMI depends on the magnitude of µ0
in the fraction; furthermore, the effect of the SV mismatch on the SINRout,SMI increases
with the SNRin. According to (13), the effect of DL is equivalent to reducing the SNRin,
which alleviates the SV mismatch to some extent as µ0 decreases. µ0 approaches zero
as λ → +∞ and the LSMI beamformer degenerates into the conventional beamformer
(CBF) [35]. The SV mismatch, however, still exists, and much of the SINRout is lost.

The OP matrix belongs to parallel projection, the orthogonality of which is not required
for subspaces. Hence, the rank-1 OP matrix in (22) eliminates only the SV mismatch of
the desired signal and preserves the interference-plus-noise in the received data, thus
maintaining the interference suppression of the OP-ABF beamformer itself. Substituting (24)
into (7), the SINRout of the OP-ABF is derived as

SINRout,OP−ABF =
(

σ2
s /σ2

n

)
·

∣∣∣aH
asv
[
I − (µ0 − µα + µ0µα)EH]ρ−1

int+naasv

∣∣∣2
aH

asv
[
I −

(
µ0 − µα + µ0µα

)
EH]ρ−1

int+n
[
I −

(
µ0 − µα + µ0µα

)
E
]
aasv

(40)

Equation (40) indicates that the maximum SINRout,OP−ABF can be achieved with a proper

µα to offset the mismatch
(

µ0EHρ−1
int+na0

)
even if µ0 is unknown.

In brief, the main advantages of the proposed OP-ABF include the following:
The OP-ABF can perfectly remove the SV mismatch of the desired signal in the received

data by the OPMCV while the DL beamformers do not.
The OP-ABF uses as little prior information as possible to obtain the oblique pro-

jection operator, while the INCM algorithms need to perform the high resolution spatial
spectrum estimation.

The OP-ABF is not sensitive to noise characteristics, while both of the DL beamformers
and the INCM algorithms cannot be carried out perfectly without characteristics of noise.

5. Simulation Results

The simulation is considered to be implemented in the underwater free field where
the sound velocity is constant at 1500 m/s. The point source is single-frequency with a
frequency of 10 kHz. The receiving array is located in the far field relative to the source,
and the propagation loss is not considered.

Two kinds of arrays are analyzed in this section: a uniform linear array (ULA) con-
sisting of 12 hydrophones, and a half-cylindrical conformal array (HCCA) consisting of
40 hydrophones. Assuming that the look direction is 0◦, there are two interferences in
the direction of −45◦ and 60◦, and their interference-to-noise ratios (INRs) are 25 dB and
35 dB, respectively.
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Simulations are presented to demonstrate the OP-ABF compared with representative
classical algorithms, including the SMI, the LSMI [13], the robust Capon beamforming
(RCB) [14], the INCM based on spatial spectrum estimation (INCM-sp) [18], and the INCM
based on eigenspace decomposition (INCM-es) [19]. In the proposed OP-ABF and the two
INCM algorithms, the desired signal angular sector is [−10◦ + 0◦, 0◦ + 10◦] = [−10◦, 10◦],
its complementary angular sector is [−90◦,−10◦) ∪ (10◦, 90◦], ξ is set as 0.9 in the OP-ABF,
and ε = 0.95 is used in the INCM-es [19]. In the LSMI, the LNR is taken as 10 dB. In RCB,
CVX [36] is used to solve the convex optimization problem and the upper bound of the
norm of the SV mismatch is set as ε0 = 1. The SINRout and the SPG obtained in each
simulation are computed by (7) and (8), respectively. All signals and noise are generated by
MATLAB 2020b. For each result, 100 Monte Carlo trials are performed.

5.1. The Results on ULA

In this scenario, aasv is formulated according to a general model with the SV mismatch
as [37]

aasv = a0 +
4

∑
l=1

ej∆θl a∆φl (41)

where

a∆φl : the presumed SV in the l-th path.
∆φl : the angle independently drawn in each trial from a Gaussian distribution of N(0◦, 2◦)
while changing from trial to trial.
∆θn: a random phase that obeys the uniform distribution of (0, 2π) in each simulation [38].

The arrangement is set such that the OP-ABF is proved to be valid when the SV
mismatch is taken into account.

5.1.1. The SINRout and SPG versus the SNRin

In this case, the sample size is fixed to be L = 400. Figure 3 shows the relationship
between the SINRout and the SNRin and that between the SPG and the SNRin, respectively.

(a) (b)
Figure 3. Performance comparison of different algorithms by the uniform linear array (ULA): (a) the
output signal-to-interference-plus-noise ratio (SINRout) vs the input signal-to-noise ratio (SNRin) and
(b) the spatial processing gain (SPG) vs. SNRin.

It can be seen from Figure 3a,b that, except for the SMI, the performance of other
algorithms is similar as the mismatch has less impact on the SINRout at low SNRin(≤5 dB).
With the increase of the SNRin, the SINRout and the SPG of the SMI decrease seriously. The
LSMI and the RCB improve the performance of the SMI to some extent, but both of them
are DL methods [12] and cannot eliminate the SV mismatch. The mismatch is amplified
as the SNRin increases, so their SPGs start to decline significantly at 10 dB and 20 dB,
respectively, as shown in Figure 3b. The SINRout and the SPG of the two INCM algorithms
and the OP-ABF achieve their own optimal values under each SNRin, respectively, and the
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OP-ABF is about 1dB closer to the global optimal SINRout (SNRin + 10lgM) than the two
INCM algorithms

(
Gopt ≈ 10lgM

)
[35], which suggests that the OP-ABF eliminates more

mismatch components than the INCM algorithms.

5.1.2. SINRout versus the Sample Size

In this case, the SNRin of each hydrophone is fixed at 10 dB. Figure 4a demonstrates
the convergence rates of different algorithms when they achieve their own optimal SINRout.
The SMI has the worst SINRout, while the LSMI and the RCB gradually converge with the
increase in the sample size, and their SINRout values finally approximate their maximum
values, corresponding to Figure 3a. The other three algorithms converge to their respective
SINRout, although the sample size is small (L < 200), in which the OP-ABF is closest to the
optimal SINRout, followed by the two INCM algorithms. The OP-ABF has the best SINRout
provided that the minimum number of samples(L ≥ 2M) [23,39] is satisfied.

(a) (b)

Figure 4. Performance comparison of different algorithms by the ULA: (a) SINRout versus the sample
size and (b) SINRout versus the direction of arrival (D.O.A) mismatch.

5.1.3. SINRout versus Mismatch Angles

In this case, the SNRin and the sample size are fixed at 10 dB and 400, respectively.
Assume a direction of arrival mismatch between a0 and aasv, and that the angular sector of
the D.O.A mismatch is [−10◦, 10◦] [40].

As shown in Figure 4b, the SINRout of the SMI, the LSMI, and the RCB decrease with
the increase in angle mismatch, indicating that these three algorithms are sensitive to the
D.O.A mismatch, while the SINRout of the INCM-sp does not degrade as severely as those
of the previously mentioned three algorithms (10 dB lower than the optimal value at worst),
and the SINRout of the INCM-es is slightly lower than the optimal one. In particular, the
SINRout degradation is not more than 0.5 dB when the D.O.A mismatch exceeds 8◦. In other
words, the SINRout of the OP-ABF basically does not change with the D.O.A mismatch,
mainly due to the OP-ABF estimates aasv caused by constructing an angular sector, and the
change in aasv within this sector does not affect the SINRout of the OP-ABF.

5.2. The Results on HCCA

The geometry and parameters of the conformal array are shown in Figure 5. A table
(Table 2) was drawn to supply the relevant parameters of the HCCA shown in Figure 5d.
The aasv was obtained by the finite-element software COMSOL [41] to guarantee the model
in practice [9], which converts the physical model into the finite element mesh model,
and then carries out the numerical calculation.
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Table 2. The physical parameters of the HCCA in Figure 5.

The Length of
the Bus Bar The Radius The Number of

Hydrophones

The Spacing
between

Hydrophones

The Operating
Frequency

h = 0.775 m r = 0.25 m 40 d = 0.075 m 6 kHz−10 kHz

(a)
(b)

(c)
(d)

Figure 5. Diagram of the half−cylindrical conformal array (HCCA) configuration: (a) the
three−dimensional (solid black dots represent hydrophones); (b) front view (the top left circle
represents the hydrophone number 1, the bottom right circle represents the hydrophone number 40,
and the labels of hydrophones increase from top left corner to bottom right corner); (c) side view;
(d) the real object.

5.2.1. The SINRout and SPG versus the SNRin

The parameter settings are the same as Section 5.1.1 Regardless of the SINRout or the
SPG in Figure 6a or Figure 6b, the performance curves of the SMI, the LSMI, and the RCB
are consistent with their own, as shown in Figure 3. The SINRout and the SPG of the two
INCMs and the OP-ABF keep the same trend as the optimal; the difference is that the
performance of these INCMs is always 3 dB–4 dB lower than that of the optimal, and that
of the OP-ABF is the closest to that of the optimal drop of no more than 2 dB because the
OP operator can eliminate the SV mismatch no matter the type of mismatch, while the
other methods do not perform well for the mismatch caused by scattering effects. As a
result, the SPG of the OP-ABF is the highest compared with other algorithms.
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5.2.2. SINRout versus the Sample Size

In this case, the SNRin of each hydrophone is set the same as Section 5.1.2 In addition
to the similar phenomenon as Figure 4a, it can be observed in Figure 7a that, when L ≤ 2M,
the SINRout of the INCM-sp, the INCM-es, and the OP-ABF are distinctly lower than those
of their respective converged values. Then, their SINRout eventually reach their maximum
values with L increasing by 800. There are two main reasons for this phenomenon: first,
the converged number of samples required here is higher than that of the ULA because
more hydrophones are used than ULAs. The second is that the scattering effect increases
the convergence threshold of beamformers.

(a) (b)

Figure 6. Performance comparison of different algorithms by the HCCA: (a) SINRout versus SNRin

and (b) the SPG versus SNRin.

(a) (b)
Figure 7. Performance comparison of different algorithms by the HCCA: (a) SINRout versus the
sample size and (b) SINRout versus the D.O.A mismatch.

5.2.3. SINRout versus Mismatch Angles

In this case, the SNRin and the sample size are set as Section 5.1.3. The only difference
with Section 5.1.3 is that here, aasv, including the component scattered by a rigid baffle,
is adopted by using COMSOL. As shown in Figure 7b, one obvious difference is that the
INCM-es with the HCCA is less sensitive to the D.O.A mismatch than that with the ULA,
as shown in Figure 4b. Similarly, the SINRout of the OP-ABF maintains the optimal result
compared to all other algorithms; the reason for this is analyzed in Section 5.1.3.

5.2.4. Beampatterns

In this case, the SNRin and the sample size are the same as those in Section 5.2.3.
In Figure 8a, both beampatterns of the SMI and the LSMI show the signal self-nulling
phenomenon [42] in the vicinity of the direction of the desired signal, which results in their
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SINRout degradation. Although the beampattern of the INCM-sp has a narrower mainlobe
bandwidth than that of the RCB, the interference at −45◦ is not perfectly suppressed by
the INCM-sp. Fortunately, the OP-ABF accurately suppresses all interferences, while it
maintains its overall performance, and its sidelobe level is slightly lower than that of
the INCM-es.

The results in Figure 8a confirm the evaluations of various methods in the above: the
DL beamformers cannot completely eliminate the SV mismatch, the INCM algorithms
retain some of the mismatch component, and the OP-ABF eliminates the mismatch while
ensuring the interference suppression of the beamformer.

Figure 8b illustrates beampatterns of different algorithms using experimental data,
which are derived from an experiment in the anechoic pool. The schematic diagram of the
experimental environment and instrument arrangement are given in Figure 9, in which the
information on each instrument is listed in the Table 3. The source adopts a continuous
wave (CW) pulse and the duration of the pulse is reasonably designed. It transmits a
single-frequency signal whose frequency is 10 kHz, and the sampling frequency is 48 kHz.
The source and the HCCA are on the same plane. The format of the experimental data
collected by the HCCA is converted and then we input it to MATLAB to obtain the results
on beamforming. The SVs of the desired signal and interferences are obtained through
experimental measurement. These SVs are not only affected by the SV mismatch mentioned
in this paper, but also affected by the experimental errors.

(a) (b)
Figure 8. Beampattens by the HCCA: (a) simulation data and (b) experiment data.

In Figure 8b, only the OP-ABF and the INCM-sp can maintain a performance close
to those in the simulation, while the other three suffer from serious performance degra-
dation. Interestingly, the beampattern of the INCM-sp in Figure 8b loses the interference
suppression with its performance close to that of the CBF, whereas there is only a null
for the interference at 45◦ by the OP-ABF. We think the signal incident from the endfire
direction has low power due to the block of the rigid baffle and is submerged in noise,
while the preservation of the mainlobe proves that the OP-ABF is robust in eliminating the
SV mismatch of the desired signal. The results of the experimental data are in agreement
with the simulated ones, which verifies the effectiveness of the OP-ABF algorithm.
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Figure 9. Schematic diagram of the experimental environment and the instruments arrangement.
The receiving module is on the left and the transmitting one is on the right.

Table 3. The information on hardware in the experiment.

Transmission Reception

Instruments Information Instruments Information

Source
RIGOL DG1000

function/arbitrary
waveform generator Conformal array

HCCA shown in
Figure 5 and Table 2

Power amplifier
L6 linear

power amplifier

Transmitting
Transducer

Overflow ring
Filter and amplifier

PF28000 Cut-off frequency:
Operating frequency:

8 kHz–10 kHz 1 Hz–3.15 MHz

Oscilloscope InfiniiVision 2000 X
Maximum gain
multiplier: 8192

Bandpass filter

PF-1U Filter

Data collection

Channels: 64
Cut-off frequency:

204.6 kHz
Sampling frequency:

32 kHz–96 Hz

Maximum gain
multiplier: 8192

Measurement
amplifier Conditioning Amplifier

Standard
hydrophone

D/140/H
Data storage WorkstationOperating frequency:

10 Hz–200 kHz
Receive sensitivity

(re 1 V/µPa): −193 dB@1 kHz

6. Conclusions

In this paper, a novel algorithm of adaptive beamforming based on OP (OP-ABF) was
proposed to solve the SV mismatch of hydrophone arrays. This algorithm originates from
the introduction of the OP operator to the analytical expression of the SMI weight vector,
and application of the OPMCV to compensate for the SV mismatch. Then, the indispensable
parameters in the OPMCV were estimated, the OP matrix was derived, and the remaining
parameters were optimized under the CML framework. Finally, in the case of the SV
mismatch, the effectiveness of the proposed OP-ABF was verified by simulation and
experimental data using two different geometric arrays. The OP-ABF can not only eliminate
the arbitrary-type of SV mismatch, but also improves the beamforming performance
without using too much information in the received data. The simulations of the ULA
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show that the OP-ABF can obtain the highest SINRout under different conditions compared
with other algorithms introduced in this paper. In particular, the OP-ABF can not only
eliminate the SV mismatch caused by the scattering of the rigid baffle of the conformal
arrays, but also maintain a high SINRout with the help of COMSOL and experimental
data, which indicates that OP-ABF has broad application prospects on various underwater
platforms. For example, the OP-ABF can be simultaneously applied to multiple arrays of
the unmanned underwater vehicle (UUV) to realize combined data processing. In addition,
the OP-ABF shows significant performance in underwater interference suppression by
eliminating the SV mismatch.

There are various avenues for the future work to be explored. For example, it would
be interesting for conformal arrays to extend our proposed algorithm to two-dimensional
space. This would provide them with an advantage over towed linear arrays. Alternatively,
an important issue, falling slightly beyond the scope of the current work, is to extend our
results to produce D.O.A methods and to analyze their performance, such as robustness,
resolution, etc.
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Appendix A. Oblique Projection

Now consider a n× (m + k) matrix [H, S] composed of two full column rank matrices
H ∈ Cn×m and S ∈ Cn×k, where m + k < n, andR(H) is linearly independent ofR(S), so
there is disjointness betweenR(H) andR(S).

According to the definition, the orthogonal projection matrix toR(H, S) is

PHS = [H, S]
[

HH H HHS
SHS SHS

]−1[
HH

SH

]
(A1)

and PHS can be rewritten as
PHS = EH|S + ES|H (A2)

where
EH|S = H

(
HHP⊥S H

)−1
HHP⊥S (A3)

and
ES|H = S

(
SHP⊥H S

)−1
SHP⊥H (A4)

are known as oblique projection (OP) operators, where P⊥H = I − PH and P⊥S = I − PS
correspond toR⊥(H) andR⊥(S), respectively.

It can be seen from (A3) and (A4) that EH|S and ES|H are idempotent but not Hermitian.
Such matrices have the following properties:

EH|S H = H, EH|SS = 0
ES|H S = S, ES|H H = 0

(A5)
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The geometric relationship between EH|S and ES|H is shown in Figure A1, in which EH|S
is the oblique projector onto R(H) along the direction parallel to R(S), and ES|H is the
oblique projector ontoR(S) along the direction parallel toR(H).

Figure A1. Geometric interpretation of oblique projection.
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