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Abstract: For the problem of hydroacoustic communication constraints in multi-AUV leader follower
formation, this paper designs a formation control method combining CNN-LSTM prediction and
backstepping sliding mode control. First, a feedback linearization method is used to transform
the AUV nonlinear model into a second-order integral model; then, the influence of hydroacoustic
communication constraints on the multi-AUV formation control problem is analyzed, and a sliding
window-based formation prediction control strategy is designed; for the characteristics of AUV
motion trajectory with certain temporal order, the CNN-LSTM prediction model is selected to predict
the trajectory state of the leader follower and compensate the effect of communication delay on
formation control, and combine the backstepping method and sliding mode control to design the
formation controller. Finally, the simulation experimental results show that the proposed CNN-
LSTM prediction and backstepping sliding mode control can improve the effect of hydroacoustic
communication constraints on formation control.

Keywords: formation control; communication constraints; feedback linearization; CNN-LSTM
prediction; backstepping slide control

1. Introduction

With the further exploration of the ocean, Autonomous Underwater Vehicles (AUVs)
have started to play an important role in various marine activities, and AUVs are commonly
used in tasks such as marine ecosystem detection, underwater inspection and surveillance,
and subsea pipeline laying [1–3]. As the complexity of AUV missions increases, the
operating environment of AUVs will become more and more complex. Due to constraints,
such as the limited energy carried by them, AUVs start to look overwhelmed when facing
some more demanding tasks. Therefore, multi-AUV collaboration, information sharing,
and joint mission accomplishment have become the new direction of AUV development
today. Multi-AUV collaboration can accomplish difficult tasks faster and better for single
AUVs, especially in data acquisition [4], target search [5–7] and path planning [8,9], etc.
Therefore, multi-AUV collaborative operation is the future development trend of AUVs to
deal with complex problems in complex environments.

In the actual application, the multi-AUV formation will inevitably be affected by the
actual environment, there will be a communication delay when multi-AUVs communicate
with each other, and it takes some time to fuse and calculate the information of each
sensor, so the real-time information sharing between multi-AUVs cannot be achieved in
the actual application and the multi-AUV formation control will produce large control
errors [10,11]. Therefore, the study of multi-AUV formation control under communication
delay is helpful to apply the theory to practice and promote the development of multi-AUV
formation technology.
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For the multi-AUV formation control problem, different authors have proposed differ-
ent solutions. Kang [12] used fuzzy control theory to coordinate the behavior of multiple
AUV members, and the fuzzy control scheme inputs for the leader AUV in a multi-AUV
formation were the yaw angle during obstacle avoidance and the yaw angle during target
finding maneuvers, and the fuzzy control scheme for the follower consisted of the yaw
angle deviations during obstacle avoidance and formation keeping. Borhaug [13] proposed
a time-varying smooth feedback control law for multiple non-complete AUVs to maintain
formation. An integral backstepping method was used to cooperatively park the follower
AUV in its desired docking position and orientation relative to the leader, and the above
control law was applied to a real AUV formation system to investigate the implementa-
tion problem and singularity avoidance problem of the physical AUV system. Ding [14]
proposed a multi-AUV 3D formation control and obstacle avoidance method based on
backstepping control and a bio-inspired neural network model. The followers track the
virtual AUVs, during which the backstepping control method is guided to achieve 3D
underwater formation control. The formation of AUVs was transformed using a bio-neural
network model in order to avoid obstacles and pass through the area of obstacles. For the
problem of leader failure in multi-AUV leader-following formations, Juan [15] proposed
a solution to the problem of leader failure in multi-AUV leader-following formations by
using the Hungarian algorithm to reconstruct the failed formation with the lowest cost.
The Hungarian algorithm was improved to solve the nonstandard assignment problem.
To address the issue of increased leader communication pressure after formation recon-
struction, an event trigger mechanism was applied to reduce unnecessary communication.
The efficiency of the event trigger mechanism was improved by increasing the event trig-
ger condition of the sampling error threshold. Zheping [10] considered the presence of
bounded communication delay and non-convex control input constraints in multi-AUV
formation under weak communication conditions. They proposed a formation consis-
tency constrained controller algorithm for discrete-time leaderless multi-AUV systems
with dual independent communication topologies by introducing a constraint operator.
For the problem of hydroacoustic communication constraints between multiple AUVs,
Yuepeng [16] proposed a consensus control algorithm for multi-AUVs combined with the
leader-following method under communication time delay, using graph theory to describe
the communication topology of multi-AUVs and introducing a hybrid communication
topology to accommodate large formation control. The consensus theory was combined
with the leader-following method to construct distributed control laws. Suryendu [17]
designed a time-lag estimator based on the gradient descent method to estimate the com-
munication delay, and the actual delay was significantly reduced because the time tagging
of the leader AUV state packets was avoided in the formulation of the estimator. Shibin [18]
investigated the leader-following consistency problem for a multi-intelligent body system
with input delays. A distributed state observer was designed to estimate the states of neigh-
bors using the output information between neighboring intelligences, and a consistency
algorithm was proposed using the estimated state information. Sufficient conditions for
stability were constructed using Lyapunov theory and solved by a set of linear matrix
inequalities with iterative parameters.

Based on the above research results, this paper proposes a formation control method
combining CNN-LSTM prediction and backstepping sliding mode control. The specific
contributions of this paper are summarized as follows:

1. A multi-AUV formation control method combining CNN-LSTM prediction and
backstepping sliding mode control is proposed, the stability of the control method is
demonstrated, and the effectiveness of the control method is verified by simulation.

2. Combining the advantages of CNN feature extraction, filtering noise and LSTM tem-
poral memory, a CNN-LSTM prediction model is built for predicting the state information
of navigators.

3. Applying the feedback linearization method, the AUV nonlinear model is trans-
formed into a second-order integral model, and the controller is designed by combining
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the backstepping method and sliding mode control, which improves the robustness of
the controller.

2. AUV Nonlinear Model Building and Feedback Linearization
2.1. AUV Nonlinear Model

To study the motion of the AUV, the fixed coordinate system {E} and the motion
coordinate system {O} established in this section are shown in Figure 1.
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Figure 1. Coordinate system diagram, where E − ξηζ is the fixed coordinate system, ξ points due
north, η points due east, O − xyz is the motion coordinate system, and O coincides with the center of
gravity of the AUV, where the x-axis points to the bow of the vehicle.

A fixed point at sea level is usually chosen as the origin of the fixed coordinate system,
where the ξ axis points to due north and the η axis points to due east. In order to simplify
the nonlinear model of the AUV, the center of gravity of the AUV is chosen as the origin
of the motion coordinate system {O}, where the x axis is located in the longitudinal mid-
profile and points to the bow of the AUV, and the y axis is perpendicular to the longitudinal
mid-profile and points to the starboard side of the AUV.

In model building, it may be assumed that the AUV studied in this paper is a rigid
body with a certain mass distribution, and the effect of its transverse rocking motion is not
considered when the AUV is operating underwater, i.e., the transverse rocking attitude
angle and angular velocity are kept as desired values. In the following, the nonlinear model
of the AUV and the feedback linearization process are based on this assumption.

For the purpose of the following study, the following motion variables are defined:
The position vector in a fixed coordinate system is η = [x y z θ ψ]T ∈ R3 × S2.
The position is η1 = [x y z]T ∈ R3, The attitude angle is η2 = [θ ψ]T ∈ S2.
The velocity vector in the motion coordinate system is v = [u v w q r]T ∈ R5.
The linear velocity in the motion coordinate system is v1 = [u v w]T ∈ R3.
The angular velocity in the motion coordinate system is v2 = [q r]T ∈ R2.
The forces and moments in the motion coordinate system are T = [X Y Z M N]T ∈ R6.
The force in the motion coordinate system is T1 = [X Y Z]T ∈ R3.
The moment in the motion coordinate system is T2 = [M N]T ∈ R2.
Where R3 denotes the three-dimensional Euclidean space and S3 denotes the three-

dimensional torus, i.e., there exist three angles in the range [0, 2π].
Combining the AUV kinematic model and dynamics model, the AUV nonlinear

mathematical model vector expression can be obtained as:

.
η = J(η)v
MR

.
v + MA

.
v + CR(v)v + Y(v) + g(η) = T + λ

(1)

The kinematic and kinetic mathematical model derivation process and model parame-
ters of the AUV are shown in the literature [19] shown.
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2.2. AUV Feedback Linearization Model

As can be seen from Equation (1), the nonlinear model of the AUV is still very compli-
cated even if it is written in vector form. In this subsection, we simplify the AUV nonlinear
model by using the transformation method to make the complex problem simple. By
coordinate transformation, we can transform the nonlinear model of the AUV in the motion
coordinate system to a specific coordinate system, in which the nonlinear model will realize
the decoupling of each control channel and transform into a second-order integral model.

According to the literature [20], the AUV model is transformed appropriately:{ .
η = J(η)v
.
v = M−1N(η, v) + M−1T

(2)

where M = MR + MA is the sum of the inertia matrix and the additional inertia matrix. T
denotes the control input forces and moments. Synthesizing the three terms of the model
CR(v)v, Y(v), g(η) into a column vector N(η, v), then Equation (2) can be transformed into:[ .

η
.
v

]
=

[
I 0
0 M−1

][
J(η)v

N(η, v)

]
+

[
0

M−1

]
T (3)

In Equation (3), a mathematical model with three axial thrusters and two rudders is
considered, replacing the controller input T in Equation (3) with the thrust of the axial
thrusters Xprop, Yprop, Zprop and the rudder angles δr, δs. The vector ξ = [ηT , vT ]

T will be

formed by η and v. The two matrices in Equation (3) are taken to be M1 =

[
I 0
0 −M−1

]
∈

R10×10 and M2 =

[
0

M−1

]
∈ R10×5, respectively. The above Equation (3) is transformed

into the following vector form for model linearization:

.
ξ = f (ξ) + M2g′(ξ)û (4)

Among them f (ξ) = M1

[
J(η)v

N(η, v)

]
∈ R10×1, g′(ξ) =

[
g′ij(ξ)

]
∈ R5×5,

û =
[
Xprop, Yprop, Zprop, δs, δr

]T .
Vector field: the nonlinear first-order model is taken as the following equation:

.
x = f (x) + g(x)u
y = h(x)

(5)

where f (x), g(x), h(x) is smooth enough over the definition domain D ∈ Rn, the mapping
f : D → Rn and g : D → Rn are vector fields over the domain of definition D.

Lie derivative: derivative of y in Equation (5).

.
y =

∂h
∂x

[ f (x) + g(x)u] = L f h(x) + Lgh(x)u (6)

where L f h(x) = ∂h
∂x f (x), Lgh(x) = ∂h

∂x g(x), is said to be the Lie derivative of h along the
smooth vector field f .

Define the output function ζ = h(ξ), then the dynamics of the AUV are modeled as:

.
ξ = f (ξ) + M2g′(ξ)û
ζ = h(ξ)

(7)

The basic idea of feedback linearization is to find an appropriate coordinate transfor-
mation and a control rate after the coordinate transformation.
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Select the coordinate transformation z = ϕ(x).

z1 = [h1(x), h2(x), h3(x), h4(x), h5(x)]T

z2 =
[

L f h1(x), L f h2(x), L f h3(x), L f h4(x), L f h5(x)
]T (8)

From transforming the coordinates, we have:

z1 = h(x)
z2 = L f h(x) (9)

The transformation gives:

.
z1 = z2.
z2 = L2

f h(x) + LgL f h(x)û (10)

In a given coordinate system, to obtain a simpler form, we might as well allow u to
equal L2

f h(x) + LgL f h(x)û. So, we can obtain the following equation:

u = B(x) + Γ(x)û = L2
f h(x) + LgL f h(x)û (11)

Then, the second-order integral model of the AUV in the new coordinate system after
transformation can be obtained under the action of Equations (6) and (10).

û = Γ−1(x)(u− B(x)) (12)

The AUV linearized mathematical model can be obtained as:
.
z1 = z2.
z2 = u

(13)

where, z1 is the position information of the AUV after the coordinate transformation, z2 is
the speed information of the AUV after the coordinate transformation, and u is the control
input of the AUV after the coordinate transformation.

3. CNN-LSTM Prediction Model
3.1. Pre-Requisite Knowledge
3.1.1. Convolutional Neural Network

In underwater formations of multiple AUVs, the transmitted track data from the
leader to the follower may be subject to both delay and noise interference caused by various
factors such as oceanic noise. To enable accurate trajectory prediction, the data must be
filtered prior to analysis. In this study, a convolutional neural network is employed to filter
the data and extract the relevant trajectory data features. The basic structure diagram of
the network is illustrated in Figure 2.
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Figure 2 shows the structure of a convolutional neural network (CNN), which consists
of an input layer, a convolutional layer, a ReLU layer, a pooling layer, and a fully connected
layer. CNNs differ from traditional neural networks in two main ways:

1. CNNs use a common filter for different regions, which reduces parameters, improves
training speed, and prevents overfitting;

2. The output of a CNN is related to only a portion of the input data due to the convo-
lutional layers, which allows for the extraction of exclusive features for each input,
whereas a traditional neural network is fully connected and outputs are related to all
input units.

3.1.2. Long Short-Term Memory

For problems related to time series, such as AUV formation tracking, traditional neu-
ral network algorithms such as CNNs are not fully applicable. Long short-term memory
(LSTM) networks are better suited for these problems due to their memory effect. LSTM
networks use memory modules instead of traditional storage units, which are intercon-
nected recursive subnetworks. The memory module contains gates that control the flow
of information, allowing for memory information to affect neuronal nodes at longer time
intervals. The three gates of an LSTM cell are the input gate, output gate, and forgetting
gate, which control the storage and inflow of information as well as the core cell unit. The
cell structure of LSTM is shown in Figure 3. The activation function plays an important
role in the neural network by introducing nonlinear factors into the model, enabling it to
perform well on problems where the linear model is not suitable.
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In Figure 3, the symbol “ ft” represents the forgetting gate, “it” represents the input
gate, and “ot” represents the output gate. “xt” denotes the input to the input layer at time
“t”, “ht” denotes the output at time “t”, “Ct” denotes the state value of the memory cell at
time “t”, and “σ” represents the sigmoid function. The mathematical expressions for “σ”
and “tanh” in the figure are as follows:

σ(z) =
1

1− e−z (14)

tanh(x) =
ex − e−x

ex + e−x (15)

The LSTM processes the data internally as follows:
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ft = σ
(

Wx f xt + Whjht−1 + b f

)
(16)

it = σ(Wrixt + Whiht−1 + bi) (17)

o f = σ(Wxvxt + Whuht−1 + bo) (18)

ct = ft · ct−1 + it · tanh(Wxcxt + Whcht−1 + bc) (19)

hi = ot · tanh(ct) (20)

where, W is the weight matrix, · is the product of point pairs, and b is the deviation.
From Equations (14)–(18), it can be seen that the LSTM is computed by first calculating

the values of the forgetting gate, input gate, output gate, and candidate state ht−1 and the
input at the current moment based on the external state. Next, the internal state ct−1 is
used to compute the values of the forgetting gate, the input gate and the candidate state in
order to update the internal state ct. Finally, the information is passed to the external state
ht via the current internal state and output gates.

3.2. CNN-LSTM Prediction Model Building

This paper proposes a neural network prediction model that combines the advantages
of CNN feature extraction and noise filtering with LSTM temporal memory. The model is
designed by connecting the CNN and LSTM layers in series, and its structure is depicted in
Figure 4.
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The proposed structure is composed of two main modules: the data processing module
and the model prediction module. Upon receiving the navigator state information, the data
are first preprocessed and then fed into the prediction model. As illustrated in Figure 4,
the CNN module is composed of three convolutional layers: a BatchNorm layer, a dropout
layer, an expansion layer, and a fully connected layer, which is responsible for receiving
the preprocessed data and extracting data features. The LSTM module, on the other hand,
consists of two LSTM layers, which analyze the features extracted by the CNN, explore the
time series relationships in the data, and predict multiple future points.
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The overall prediction process is as follows: the navigator state information is pre-
processed by the data processing module, and the processed data are passed to the CNN
module for filtering and spatial feature learning. The CNN generates a sequence of high-
level features representing the capture and passes it to the tensor processing module. The
tensor processing layer then reshapes the output of the CNN so that it can be accepted by
the LSTM sub-module. Finally, the LSTM module learns the time-series dependencies of
the delayed data and outputs the predicted values for the current moment.

4. Predictive Control of Multi-AUV Formations Based on CNN-LSTM Models
4.1. Multi-AUV Formation Controller Design under Ideal Communication Conditions

It may be assumed that there are five AUVs in the formation: one leader and four
followers. The formation that the formation wants to form and maintain is an isosceles
triangle (the specific formation is shown in Figure 5 below), and the AUVs are required to
maintain the formation even when making a spiral dive.
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Figure 5. Formation diagram.

As shown in Figure 5, L denotes the leader, and F1, F2, F3 and F4 are all follower
AUVs. According to the formation that we want to achieve, we introduce the variables R
and β to constrain the formation, where the distance from the leader to the followers F1
and F2 line is R, the distance from the follower F1 and F2 line to the follower F3 and F4
line is also R, and the attitude angle of the formation hold is β. The formation constraints
proposed in this paper are: 

ηF1 + d1 = ηL
ηF2 + d2 = ηL
ηF3 + d3 = ηL
ηF4 + d4 = ηL
.
ηF1 + dv1 =

.
ηL.

ηF2 + dv2 =
.
ηL.

ηF3 + dv3 =
.
ηL.

ηF4 + dv4 =
.
ηL

(21)

where d1, d2, d3, d4, dv1, dv2, dv3 and dv4 are denoted as:
d1 = (−(cos β)−1R cos(ψL − β− π

2 ), (cos β)−1R cos(ψL + β− π
2 ), 0, 0, 0)

T

d2 = (−(cos β)−1R cos(ψL + β− π
2 ),−(cos β)−1R cos(ψL − β− π

2 ), 0, 0, 0)
T

d3 = (−(cos β)−12R cos(ψL − β− π
2 ), (cos β)−12R cos(ψL + β− π

2 ), 0, 0, 0)
T

d4 = (−(cos β)−12R cos(ψL + β− π
2 ),−(cos β)−12R cos(ψL − β− π

2 ), 0, 0, 0)
T

dv1 = Jη(rL tan(−β)× R, 0, 0, 0, 0)T

dv2 = Jη(rL tan(β)× R, 0, 0, 0, 0)T

dv3 = Jη(rL tan(−β)× 2R, 0, 0, 0, 0)T

dv4 = Jη(rL tan(β)× 2R, 0, 0, 0, 0)T

(22)

In a leader-follower formation control with five AUVs, the motion state vector of the
i th follower AUV at the moment of t is εi(t) = ηi(t) and the motion state vector of the



J. Mar. Sci. Eng. 2023, 11, 873 9 of 22

leader is εL(t) = ηL(t). If the formation satisfies Equation (23), it is said that the formation
can achieve formation maintenance and stability convergence.

lim
t→∞

∣∣∣∣εi(t)− εL(t) + di

∣∣∣∣= 0

lim
t→∞

∣∣∣∣ .
εi(t)−

.
εL(t) + dvi

∣∣∣∣= 0
i = 1, 2, 3, 4 (23)

Let the attitude vector of the i th follower AUV at the time of t and the attitude vector
of the leader AUV at the time of z1d in the lead follower formation control of the AUV
be z1i.

Define the trajectory tracking error of the i th follower AUV as zi1e = zi1 − z1d + di,
then

.
zi1e = zi2 −

.
z1d.

Define the following Lyapunov function:

Vi1 =
1
2

zi1e
2 (24)

Define zi2 = zi2e +
.
z1d − ci1zi1e, where ci1 is the positive constant and zi2e is the

intermediate virtual control item. We can get zi2e = zi2 −
.
z1d + ci1zi1e, and the derivation

gives
.
zi1e = zi2 −

.
zi1d = zi2e − ci1zi1e.

The derivative of Vi1 gives:

.
Vi1 = zi1e

.
zi1e = zi1ezi2e − ci1zi1

2 (25)

Define the switching function as:

σi = ki1zi1e + zi2e (26)

Among them, ki1 > 0.
Because of

.
zi1e = zi2e − ci1zi1e, we can derive:

σi = ki1zi1e + zi2e = ki1zi1e +
.
zi1e + ci1zi1e = (ki1 + ci1)zi1e +

.
zi1e (27)

Because of ki1 + ci1 > 0, there is σi = 0 only when zi1e = 0, zi2e = 0 and
.

Vi1 ≤ 0. For
this, the next design step is needed.

Define the following Lyapunov function.

Vi2 = Vi1 +
1
2

σi
2 (28)

The derivative of Vi2 gives:

.
V2 =

.
Vi1 + σi

.
σi

= zi1ezi2e − ci1zi1e
2 + σi

.
σi

= zi1ezi2e − ci1zi1e
2 + σi(ki1

.
zi1e +

.
zi2e)

= zi1ezi2e − ci1zi1e
2 + σi(ki1(zi2e − ci1zi1e) +

.
zi2 −

..
z1d + ci1

.
zi1e)

= zi1ezi2e − ci1zi1e
2 + σi(ki1(zi2e − ci1zi1e) + Ui + F− ..

z1d + ci1
.
zi1e)

(29)

where Ui is the expression of the controller to be designed. F is the total uncertainty of the
system.

The design of the i follower controller is shown below.

Ui = −ki1(zi2e − ci1zi1e)− Ftanh(σi) +
..
z1d − ci1

.
zi1e − hi(σi + βitanh(σi)) (30)

where hi and βi are positive constants.
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Substituting Equation (30) into
.

Vi2 yields:

.
Vi2 = zi1ezi2e − ci1zi1e

2 − hiσi
2 − hiβi|σi|+ Fσi − Fσi

≤ −ci1zi1e
2 + zi1ezi2e − hiσi

2 − hiβi|σi|
(31)

Let Qi be equal to the following matrix.

Qi =

[
ci1 + hik2

i1 hiki1 − 1
2

hiki1 − 1
2 hi

]
(32)

Due to

zie
TQizie =

[
zi1e zi2e

][ ci1 + hik2
i1 hiki1 − 1

2
hiki1 − 1

2 hi

][
zi1e zi2e

]T
= ci1z2

i1e − zi1ezi2e + hik2
i1z2

i1e + 2hiki1zi1ezi2e + hiz2
i2e

= ci1z2
i1e − zi1ezi2e + hiσi

2

(33)

Among them, zie
T =

[
zi1e zi2e

]
.

If you want to guarantee that Qi is a positive definite matrix, then

.
Vi2 = −zie

TQizie − hiβi

∣∣∣σi

∣∣∣6 0 (34)

Due to ∣∣∣∣∣Qi

∣∣∣∣∣= hi

(
ci1 + hik2

i1

)
−
(

hiki1 −
1
2

)2
= hi(ci1 + ki1)−

1
4

(35)

Therefore, it is possible to guarantee
.

Vi2 ≤ 0 by taking the values of hi, ci1 and ki1
such that |Qi|> 0 , i.e., Qi is a positive definite matrix.

By taking the values of h, c1 and k1, you can make |Q|> 0 . Thus, it can be deduced
that Q is a positive definite matrix and that

.
V2 ≤ 0 is guaranteed.

According to LaSalle’s invariance principle, when
.

Vi2 ≡ 0 is taken, it can be deduced
that zie ≡ 0, σi ≡ 0. When t→ ∞ , since zi1e → 0 , zi2e → 0 , it can be deduced that zi2e → 0 ,
.
zi1 →

.
z1d .

In summary, it can be seen that the Lyapunov functions Vi1 and Vi2 are positive definite,
and the values of Vi1, ci1 and ki1 can be reasonably chosen to ensure that

.
Vi1 and

.
Vi2 are

negative definite, so the designed AUV formation controller (30) is stable and convergent.

4.2. Sliding Window-Based Predictive Control of Multi-AUV Formations under
Communication Constraints

In the previous section, the backstepping sliding mode control method was used and
the formation controller was designed according to the formation constraint relationship.
The controller for the follower AUV in the formation with time-lag state is presented below
due to the communication delay between the leader and the follower and the limitations
of the hydroacoustic sonar in transmitting high-frequency signals, resulting in a longer
communication interval between them. As a consequence, the follower may not receive the
real-time status information of the leader.

Ui = −ki1(zi2e − c1zi1e)− Ftanh(σi) +
..
z1d − c1

.
zi1e − h(σi + βtanh(σi)) (36)

where, zi1e = zi1 − z1d(t− τ) + di, zi2e = zi2 − z2d(t− τ) + c1zi1e + dvi, σi = k1zi1e + zi2e,
and τ are the communication delay times between the navigator and the follower.

To illustrate the effect of communication delay on formation control while preparing
for a new predictive control strategy, the following assumptions are made about the
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communication delay between the leader and the follower and the hydroacoustic sonar
occurrence interval:

Assumption 1. The distance between the navigator and the follower is close, and the speed of
acoustic wave transmission in the water is 1500 m/s, so the communication time delay caused by the
communication transmission is small, where it is assumed that the delay time between the broadcast
of the navigator sending the status information and the follower receiving the information and
measuring the settlement is 1 s.

Assumption 2. Due to the limitation of communication bandwidth, the navigator cannot send too
many beats of historical status data to the follower at one time; so, suppose the navigator can send
five beats of status data to the follower at one time.

Assumption 3. The hydroacoustic sonar is unable to sound at high frequencies and the sounding
time is affected by the size of the data sent, assuming that the communication interval of the
hydroacoustic sonar is 6–9 s.

To solve the communication delay and communication interval problem between the
leader and the follower, this section proposes a formation control strategy based on a sliding
window to achieve multi-step prediction, which iterates the historical state information of
the leader to predict the current state information of the leader step by step, which saves
computational efficiency and has better adaptability compared with the observer-based
iterative prediction method. The specific principle of the strategy is described below.

At the M time, the navigator sends its own status data {Z1, Z2, · · · · · · ZM−1, ZM}
from the previous M time to the follower in the formation. Due to the communication
transmission delay τtran and the hydroacoustic sonar sounding time consuming τinter, a
fixed time delay τonce_tal = τtran + τinter is defined, and the follower receives the status
information of the navigator at the M + τonce_tal time, and the status information of the
navigator received by the follower at this time is the status information of the navigator
at the M time. So, the follower needs to predict the state information of the leader at the
M + τonce_tal time as the tracking target based on the state information of the leader at the
M time.

The second sounding of the sonar starts immediately after the first sounding. Since
the transmission delay after the first sounding is included in the second sonar sounding
elapsed time, the follower needs time τinter to receive the information of the navigator
for the second time. Therefore, after the follower receives the status information of the
navigator at the M + τonce_tal time, the follower firstly has to predict the status information
of the navigator at the M time as the tracking target; secondly, since the follower cannot
receive the status information of the navigator at the τinter time in the future, the follower
needs to then predict the status information of the navigator at the τinter time in the future.
A schematic diagram of the information transfer process is shown in Figure 6.
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This paper focuses on predicting the real-time state of the leader in AUV formation
by using delayed state data received by the followers as input to the prediction model.
The delayed data are in the form of a time series, and to achieve continuous prediction, a
sliding window approach is designed where the delay information is fed into the window
as input and the real information as output, as illustrated in Figure 7. To evaluate the
model’s performance, a delay time of 10 s is set, and the size of the sliding window, which
corresponds to the time step of the input data, is set to 5. The prediction equation is given
as follows:

z(t) = f ({z(t− 14), · · · , z(t− 11), z(t− 10)}) (37)

where z = [z1, z2] denotes the position vector of the navigator in time. z1 = [x, y, depth, θ, ψ]T,
where x, y and depth represent the displacement in three coordinate directions; θ and
ψ represent the pitch and heading angles. z2 = [u, v, w, q, r]T , where u, v and w are the
longitudinal, lateral and vertical velocities respectively; q and r are the longitudinal and
bow angular velocities.
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The prediction strategy designed in this paper has two main phases: fixed delay
prediction and communication interval prediction. In the fixed delay prediction stage, the
follower puts the state information sent by the navigator into the designed sliding window
and uses the prediction model to predict the state quantity ẐM+1 at the M + 1 th time based
on the data in the first M times of the sliding window. Put ẐM+1 into the sliding window,
and then the sliding window moves forward to obtain ẐM+2 using ẐM+1 and the historical
state quantity prediction, and finally obtain the state prediction ẐM+τonce_tal

at M + τonce_tal

moments through continuous iterative prediction.
At the same time, due to the effect of hydroacoustic sonar sounding time consumption,

the follower will only receive the next status data from the navigator at the moment of
M + τonce_tal + τinter, so the follower will continue to make iterative predictions based on
the status quantity ẐM+τonce_tal

obtained from the prediction compensation during this pe-

riod, obtain ẐM+τ
once_tal+1+1, ẐM+τonce_tal+2· · · · · · ẐM+τonce_tal+τinter , and output in turn until

it receives the time delay status data from the navigator again. Based on the above strategy,
the follower will get the predicted value of the current moment of the leader; the controller
of the follower in the AUV formation at this time is shown below.

Ui = −ki1(ẑi2e − c1ẑi1e)− Ftanh(σ̂i) +
..
z1d − c1

.
ẑi1e − h(σ̂i + βtanh(σ̂i)) (38)

where, ẑi1e = zi1 − ẑ1d(t) + di, ẑi2e = zi2 − ẑ2d(t) + c1ẑi1e + dv2, σ̂i = k1ẑi1e + ẑi2e, ẑ1d(t)
and ẑ1d(t) are the predicted values of CNN-LSTM model.

The block diagram of CNN-LSTN-based multi-AUV formation prediction control
under communication constraints is shown in Figure 8. Based on the pilot-follower for-
mation control strategy, there is a communication delay when the follower AUV receives
the position and speed information from the pilot due to the influence of hydroacoustic
communication. In this paper, a CNN-LSTM prediction model is established to make
predictions based on the historical information of the pilot, which can well offset the effects
of noise and communication delay on formation control. The prediction information and
feedback information are used as the input of the AUV formation controller to finally
realize the AUV formation prediction control.
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5. Simulation Verification and Analysis
5.1. Simulation Results and Analysis of CNN-LSTM Model

The trajectory data of a small AUV, consisting of longitude and latitude measurements
from multiple positioning systems, as well as values from GPS, bathymetry, and Doppler
measurements with a maximum depth of 20 m, were selected as the training set for this
study. The relevant information of the training set is shown in Table 1.

Table 1. AUV status information.

Sample Size Maximum Depth (m) Lon Lat U (m/s)

39,875 20 119.18◦ E 29.56◦ N 1–3

These training data were obtained from the trajectory data of an AUV on-lake experi-
ment, and some of its trajectories are shown in Figure 9. The raw data were preprocessed
and used for the training of the CNN-LSTM model.
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The CNN model designed in this paper contains three convolutional layers with filter
sizes of (2, 1), (3, 1) and (3, 1) for each layer, and a dropout layer is added to prevent
overfitting. The processed features were passed to the two-layer LSTM model, and the
predicted data were output by the last LSTM layer. Through continuous debugging, it
was found that the network with 125 and 128 neurons in each layer was trained well.
Additionally, to prevent the overfitting of the network, a discard layer with probability
0.3 is built after the hidden layer. The Adam algorithm is used for optimization, and
the design learning rate decline period is 100, the learning rate is 0.012, the learning rate
decline coefficient is 0.8, and finally, the gradient threshold is set to 1 in order to prevent
gradient explosion.

After processing the delayed data according to the aforementioned data processing
steps, they are fed into the CNN-LSTM model using the sliding window format. The
performance of the model is then evaluated by computing the mean square error (MSE) and
maximum absolute error (MAXERR) between the predicted values and the actual trajectory
data. The evaluation metrics can be formulated as follows:

MSE =
1
N

N

∑
t=1

( observed t − predicted i)
2 (39)

where N indicates the number of samples.

Maxerr = max
∣∣∣∣ observedt − predicted t

observed

∣∣∣∣ (40)

According to Assumption 2, the leader broadcasts the data of the past five beats to
each follower at a time, so the size of the sliding window is set to 5, and the prediction effect
of the prediction model is verified under the fixed delay of 2 s and the communication
interval of 7 s. The selected navigator trajectory is a spiral dive trajectory, and Gaussian
white noise with an amplitude of 0.003 is superimposed on the trajectory data, and the
LSTM prediction model is selected for simulation comparison. The parameters of the two
model designs are shown in Table 2.

Table 2. AUV status information.

Models Structural Layer Parameter Setting Learning Rate

LSTM model

Hidden layer neurons [10, 10, 10, 10]

0.02
activation function ReLU

Optimizers Adam
Epochs 30

Batch size 128

CNN-LSTM model

Filter 1 ×16 size (2, 1)

0.012

Filter 2 ×16 size (3, 1)
Filter 3 ×16 size (3, 1)

Dropout ratio 0.3
Optimizers Adam

LSTM cells 1 10
LSTM cells 2 10

Activation function ReLU

Since the velocity quantities in the selected trajectories are kept constant, in order to
objectively compare the advantages and disadvantages of the two prediction models, only
the navigator state quantities z = [x, y, depth, θ, ψ] are compared for prediction, and the
simulation results are shown in Figure 10.
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Based on Figures 10 and 11, it can be observed that the CNN-LSTM model predicts
a trajectory that is closer to the actual value, with a smoother prediction curve and lower
error fluctuations. These results demonstrate that the CNN-LSTM model provides higher
accuracy and stability. The MSE values for the predicted states by the LSTM model are
1.7911, 1.7947, 1.1921, 1.6871, and 0.2564, while the CNN-LSTM model predicts the state
with lower MSE values of 0.6868, 0.6315, 0.0664, 1.3078, and 0.1139. These MSE values are
smaller compared to those of the pure LSTM model, indicating that the CNN-LSTM model
provides better prediction results.
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5.2. Formatting of Mathematical Components

To verify the prediction effectiveness of the CNN-LSTM prediction model in the
formation and formation holding phases of the multi-AUV formation, the communication
transmission delay τtran is set to 1 s and the hydroacoustic sonar sounding delay τinter is
set to 4 s, i.e., the fixed time delay τonce_tal is defined to be 5 s and the maximum total time
delay is 9 s. The formation design is consistent with Figure 5.

The navigational track of the navigator is
xp = 60 cos(2πt/1000)
yp = 60 sin(2πt/1000)
zp = −0.3t

0 ≤ t ≤ 2000 (41)

The initial state of the AUV is as follows: initial position x(0) is randomly taken in the
range of [55, 65] m, y(0) is randomly taken in the range of [−10, 10] m, x(0) is 65 m, depth
is 0 m, initial attitude θ(0) is 0 rad, bow angle ψ(0) is 4π/3 rad, longitudinal velocity u(0)
is 0.5 m/s, all other velocities are initialized to 0 m/s, and controller parameters are h = 1,
k1 = 0.3, c1 = 0.3, F = 0.02, β = 0.5.

The simulation results are shown in Figures 12 and 13.
In Figure 12, (a) to (e) are the simulation plots of AUV formation position information,

from which it can be seen that the leader and the follower always keep the same position,
pitch angle and bow angle during the spiral dive under the action of the formation con-
troller; (f) to (j) are the simulation plots of AUV formation speed information, from which
it can be seen that the bow speed, lateral speed and vertical speed of the follower in the
formation have some fluctuations, but the overall velocity remains stable. Figure 13 shows
the 3D trajectory of the AUV formation and its projection on the horizontal plane, from
which it can be seen that the followers can follow the leader more accurately and can realize
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the multi-AUV formation control in a 3D environment. The simulation results illustrate that
the formation control method combining CNN-LSTM prediction and backstepping sliding
mode control designed in this paper can better realize the three-dimensional predictive
control of multi-AUV formation under the communication constraints.
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Figure 12. Simulation diagrams of formation position and velocity information: (a) AUV northward
trajectory, (b) AUV eastward trajectory, (c) AUV vertical trajectory, (d) AUV longitudinal inclination
angle state, (e) AUV bow angle state, (f) AUV longitudinal velocity, (g) AUV lateral velocity, (h) AUV
vertical velocity, (i) AUV longitudinal inclination angle velocity and (j) AUV bow angle velocity.
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Figure 13. AUV formation 3D trajectory diagram and its horizontal projection: (a) 3D trajectory
diagram and (b) horizontal projection diagram.
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Figure 14 shows the position and attitude errors of the AUV formation under CNN-
LSTM prediction. Figure 15 shows the position and attitude error of AUV formation under
communication delay. From Figures 14a,b and 15a,b, it can be seen that the northward and
eastward errors of the AUV formation under predictive control are much smaller than the
control errors under delay, indicating that the CNN-LSTM prediction-based AUV formation
control method can better overcome the effect of communication delay on formation control.
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Figure 14. Errors of follower AUV under CNN-LSTM model prediction: (a) northward error, (b) east-
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error, (d) longitudinal inclination angle error and (e) bow angle error.

6. Conclusions

This paper focuses on the multi-AUV formation control problem under communica-
tion constraints. Firstly, a five-degree-of-freedom nonlinear model of the AUV is established
and processed by using feedback linearization to obtain a second-order integral model of
the AUV. A sliding-window-based formation prediction control strategy is designed to
iteratively predict the current state information of the leader by the historical state informa-
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tion of the leader step by step. The method saves computational efficiency and has better
adaptability. The CNN-LSTM prediction model is chosen to predict the trajectory state
of the navigator for the characteristics of AUV motion trajectory with certain temporality,
which compensates for the influence of communication delay on the formation control; and
the backstepping method and sliding mode control are combined to design the formation
controller, which improves the robustness of the controller. The stability of the control is
proved based on Lyapunov stability theory. The effectiveness of the CNN-LSTM prediction
model and the designed controller are verified by simulation.
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