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Abstract: The free transverse vibration of a surface-piercing, vertical cylinder partially submerged in
water was studied. The cylinder had an arbitrary non-circular, but symmetric, cross-section in the
vibration direction. The water was assumed to be an incompressible and inviscid fluid. The effect
of the surface waves of water was neglected in the analysis. The exact solution of velocity potential
of water was derived by the method of separation of variables. The unknown coefficients in the
solution of the velocity potential were expressed in the form of integral equations, including the
dynamic deformation of the beam. Then, the governing differential equation of bending vibration
of the cylinder under the hydrodynamic pressure was obtained. The Galerkin method was used to
obtain the eigenvalue equation by expanding the wet modes of the cylinder into a series of dry modes.
The elliptical cylinders partially submerged in water were taken as the numerical example. The
accuracy of the proposed method was evaluated by the convergence studies. As a consequent result,
the non-dimensional added virtual mass incremental (NAVMI) factor solutions were compared to the
present Galerkin solutions, which can be used as a benchmark test for more sophisticated numerical
simulations of computational fluid dynamics.

Keywords: fluid-structure interaction; non-circular column; free vibration; Galerkin solution;
semi-analytical method

1. Introduction

It is well known that structures in water behave differently from ones in air. Therefore,
to understand the natural frequencies and modes of fluid–structure systems is of great
importance for the study of structural responses to various excitations, such as earthquake
loads, wind loads, and incident waves [1–3].

Cantilever cylinders are commonly encountered in offshore structures, such as intake
towers, bridge piers, and stands of offshore oil platforms. Various methods have been
applied to solve the problem of fluid–structure interactions, such as analytical methods [4,5],
semi-analytical methods [6–9], and numerical methods [10–12].

It is generally accepted that numerical methods, such as finite element and boundary
element methods, can deal with the fluid–structure interaction. Yang et al. [13] investigated
the fundamental natural frequency of the free vibration of a rectangular cantilever beam
partially immersed in water by using the finite element method and the experimental
measure, respectively. Wang et al. [14] developed a finite element model to calculate
the earthquake-induced hydrodynamic forces of cylinders with an arbitrary cross-section
surrounded by water. Wei et al. [15] developed the simplified procedure for seismic
design and the analysis of water-surrounded composite axisymmetric structures, and
they proposed two types of formulations from analytical expression and finite element
analysis, respectively. Zhang et al. [16] developed a three-dimensional finite element
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model to evaluate the hydrodynamic added mass for cylinders with arbitrary cross-sections
immersed in water. Liu [17] developed a frequency-domain software for wave–structure
interactions based on the extended boundary integral equation method. However, it is well
known that the modeling, code preparing, and numerically calculating adopted numerical
methods require a long time. It may be especially difficult to properly handle the infinite
boundary of water and conduct a parametric analysis.

Han and Xu [18] derived the analytical expressions of natural frequencies and mode
shapes for a completely immersed cantilever cylinder with a circular cross-section and
proposed a simple formula to evaluate the natural frequencies by using the added mass
conception. Wang et al. [19] presented a simple added mass model for the dynamic analysis
of a flexible elliptical cylinder entirely submerged in deep water based on the analytical
solution for the hydrodynamic forces. Their solution was complex due to the requirement of
dealing with the infinite series of the Mathieu functions in the elliptic cylindrical coordinates.
The analytical method was also applied by Yu et al. [20] to obtain the distribution of the
added water mass for a cantilever cylinder partially submerged in water. On this basis,
they proposed a simplified calculation method to investigate the fundamental natural
frequency of a circular cross-sectional immersed cylinder, which is in good agreement
with their experimental results. The analytical methods can provide the exact solutions;
however, they are only limited to very special and simple cases. Semi-analytical methods,
which combine the advantages of the wide applicability of numerical methods and the
high accuracy of analytical methods, can solve the problem at a small computational cost.

The early study on hydrodynamics can trace back to the motion of rigid bodies in fluid,
as discussed in references [12,21], by considering that the effect of the fluid on the motion
of the body is equivalent to an added virtual mass, which represents a force induced in the
fluid domain proportional to the acceleration of the fluid. Since then, the study was further
expanded to wave forces on the rigid bodies, as described by Williams [22]. Investigations
revealed that, in many cases, the rigid assumption of the structures is not applicable, and
the flexibility of structures has considerable influence on the dynamic behavior of the
fluid–structure system [18,19,23,24]. Lin et al. [8], McCormick [25], Williams [26], and
Han and Xu [18] investigated the vibratory characteristics of uniform cylinders partially
submerged in water, and the concept of added virtual mass was extended to include the
effect of vibration modes. In recent years, the simplified formulas for calculating the added
hydrodynamic mass of elliptical, round-ended, hollow, and rectangular cylinders, as well
as axisymmetric structures, were developed by Wang et al. [14,19], Yang and Li [27], Zhao
et al. [28], and Wei et al. [15], respectively. However, up until now, most of the studies
focused on cylinders with circular cross-sections, such as the references [5,18,20,24–26].
Except for several papers using elliptical cross-sections [19,22,29], few cylinders with non-
circular cross-sections [6,9] have been studied. In fact, the analytical methods mentioned
above are not able to deal with the cylinders with general cross-sections (such as rectangle
and triangle). Additionally, the accuracy of the added virtual mass approach has not been
evaluated properly, although the concept of the added virtual mass has been commonly
used in the approximate analysis of fluid–structure interaction.

The purpose of this paper was to develop a general semi-analytical method for study-
ing the hydroelastic behavior of uniform slender cylinders partially submerged in water
with arbitrary non-circular cross-sections. Based on the orthogonality and completeness of
trigonometric series, the velocity potential function of water was expanded into a Fourier
series along the external surface of the cylinder. The exact solution of motion of the water
was derived by using the method of separation of variables in the cylinder coordinate
system. The Galerkin method was applied to obtain the eigenfrequency equation of the
cylinder under the hydrodynamic pressure. The results for elliptical cylinders partially
submerged in water, taken as the numerical example, were studied in detail. It was shown
that this method has high accuracy and small computational cost. The analysis process
is relatively simple and suitable for arbitrary non-circular cross-sections, which involves
no particularly complex mathematical equations, such as Mathieu functions for elliptical
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cross-sections. The accuracy of the commonly used NAVMI (non-dimensional added vir-
tual mass incremental) factor solutions in engineering was evaluated by comparing them
to the present Galerkin solutions. The results of this study provide a benchmark test for
simulating more complex fluid–structure interactions.

2. Semi-Analytical Method
2.1. Governing Equations of Fluid–Structure Interaction

Consider a uniform slender solid or hollow cylinder with an arbitrary non-circular
cross-section, as shown in Figure 1. The surface-piercing cylinder is surrounded by infinite
water of depth h and makes transverse free vibration in the x direction. The cylinder,
which is treated as a one-dimensional elastic beam, has a length H and a symmetric cross-
section F about the x axis. The mass of the cylinder per unit length is ρ0F, and the flexural
stiffness of the cylinder is EI. Assuming that the cylinder is acted upon by a transversely
distributed liquid pressure P (z, t) along its axis in the interval (0, h) (h ≤ H), then the
governing differential equation of motion of the elastic cylinder can be described by the
Bernoulli-Euler beam theory, as follows:

EI
∂4y
∂z4 + ρ0F

∂2y
∂t2 =

{
0 h ≤ z ≤ H
P(z, t) 0 ≤ z < h

(1)

where y (z, t) is the dynamic deformation of the cylinder, and t is time. The bending moment
M (z, t) and shear force V (z, t) of the cylinder are shown, respectively, as follows:

M(z, t) = EI
∂2y
∂z2 , V(z, t) = −EI

∂3y
∂z3 (2)
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Figure 1. The cylinder with a non-circular cross-section partially submerged in water.

Since cantilever cylinders are common in offshore structures, a cylinder fixed at the
bottom and free at the top was taken as an example without loss of generality. Thus, the
boundary conditions of the cantilever beam are shown, respectively, as follows:

y = 0,
∂y
∂z

= 0, at z = 0 (3)

∂2y
∂z2 = 0,

∂3y
∂z3 = 0, at z = H (4)
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In order to analyze the motion of the water surrounding the cylinder, cylindrical
coordinates (o, r, θ, z) are established, as shown in Figure 1. The water is treated as an
ideal, incompressible, and inviscid fluid. It is further assumed that the wave heights of
the water are sufficiently small, such that its effect on the vibration of the cylinder can be
neglected. Subjected to the above restrictions and assumptions, the motion of the water
may be described in terms of a velocity potential φ (r, θ, z, t) satisfying the Laplace equation
in the flow region as follows:

∂2φ

∂r2 +
1
r

∂φ

∂r
+

1
r2

∂2φ

∂2θ
+

∂2φ

∂z2 = 0 (5)

The relations between the velocity potential and the velocities of water are:

vr =
∂φ

∂r
, vθ =

1
r

∂φ

∂θ
, vz =

∂φ

∂z
(6)

The boundary conditions to φ (r, θ, z, t) are:

∂φ

∂z
= 0, at z = 0,

∂φ

∂t
= 0, at z = h,

∂φ

∂t
= 0 , r → ∞ (7)

∇φ•⇀n =
∂y
∂t

(
⇀
n•⇀x ), at r = a0a(θ) (8)

where ∇ is the gradient operator,
→
n is the outward unit normal vector of the cylinder

surface,
→
x is the unit vector in the x direction, and

→
θ is that in the θ direction. r = a0a(θ) is

the equation of the external surface of the cylinder, where a0 is the characteristic size of the
cross-section (in most cases, a0 takes the maximum radial size of the cross-section).

2.2. Solution of Velocity Potential

Consider that the cylinder makes free vibration. Both y (z, t) and φ (r, θ, z, t) are
the harmonic functions of time and have the same vibratory frequency ω (natural radian
frequency of the cylinder–water system). Then, the dynamic deformation of the cylinder
y (z, t) and the velocity potential φ (r, θ, z, t) can be assumed in the form of separated
variables, respectively, as follows: The method of separating variables is as follows

y(z, t) = Y(z)e−iωt, φ(r, θ, z, t) = R(r)Θ(θ)Z(z)e−iωt (9)

By substituting Equation (9) into Equation (5), three ordinary differential equations
can be obtained by separating variables [30] (pp. 183–185). Then, solving these equations
and combining the boundary conditions in Equation (7) gives the following:

φ(r, θ, z, t) = −iωe−iωt > {
∞
∑

n=0

∞
∑

j=0
Cj

nKn(αj
β
µ χ) cos(

αj
µ ζ) cos(nθ)+

∞
∑

n=1

∞
∑

j=0
Cj

nKn(αj
β
µ χ) cos(

αj
µ ζ) sin(nθ)}

(10)

where Cj
n and Cj

n are the unknown constants, and Kn is the modified Bessel functions of
the second kind of order n. In Equation (10), the following non-dimensional parameters
and coordinates are introduced:

αj = (j + 0.5)π, β = a0/H, µ = h/H, χ = r/a0, ζ = z/H (11)

in which, β is the aspect ratio of the cylinder and µ cylinder-water size factor.
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By substituting Equation (10) into Equation (8) and considering the symmetry of the
cross-section of the cylinder about the x axis, the following is obtained:

Cj
n = 0, n = 1, 2, 3, . . . , j = 0, 1, 2, . . . (12)

∞

∑
n=0

∞

∑
j=0

Cj
ngj

n(θ)N(θ) cos(
αj

µ
ζ) = a0e(θ)N(θ)Y(ζ), 0 ≤ ζ ≤ µ (13)

where

gj
n(θ) = αj

β

µ
a(θ)

.
Kn(αj

β

µ
a(θ)) cos(nθ) + n

.
a(θ)
a(θ)

Kn(αj
β

µ
a(θ)) sin(nθ) (14)

N(θ) = 1/
√

a(θ)2 +
.
a(θ)2, e(θ) = a(θ) cos(θ) +

.
a(θ) sin(θ) (15)

in which,
.
Kn(r) = dKn(r)/dr and

.
a(θ) = da(θ)/dθ.

Considering the orthogonality among cosine functions cos(
αj
µ ζ) (j = 1, 2, 3, . . . ) in the

interval [0, µ], that is: ∫ µ

0
cos(

αj

µ
ζ) cos(

αi
µ

ζ)dζ =
µ

2
δ(i− j) (16)

Multiplying cos(
αj
µ ζ) to two sides of Equation (13), then making the integration about

ζ in the interval [0, µ], one can obtain the following:

∞

∑
n=0

Cj
ngj

n(θ)N(θ) =
2a0

µ
e(θ)N(θ)

∫ µ

0
Y(ζ) cos(

αj

µ
ζ)dζ, j = 0, 1, 2, . . . (17)

Further, by making the Fourier expansion to the above equation for the circumferential
coordinate θ in the interval [0, π], the following can be obtained:

Sj
00 Sj

01 · · · Sj
0N

Sj
10 Sj

11 · · · Sj
1N

...
...

. . .
...

Sj
N0 Sj

N1 · · · Sj
NN




Cj
0

Cj
1
...

Cj
N

 = 2
a0

µ
Gj


Q0
Q1
...

QN

, j = 0, 1, 2, . . . (18)

where N is the order of the Fourier expansion and

Sj
in =

∫ π

0
gj

n(θ)N(θ) cos(iθ)dθ, Qi =
∫ π

0
e(θ)N(θ) cos(iθ)dθ (19)

Gj =
∫ µ

0
Y(ζ) cos(

αj

µ
ζ)dζ (20)

Introducing the following formula to Equation (18):
Dj

0
Dj

1
...

Dj
N

 =


Sj

00 Sj
01 · · · Sj

0N
Sj

10 Sj
11 · · · Sj

1N
...

...
. . .

...
Sj

N0 Sj
N1 · · · Sj

NN


−1

Q0
Q1
...

QN

 (21)

one has:
Cj

n = 2
a0

µ
GjD

j
n, n = 0, 1, 2, . . . , N, j = 0, 1, 2, . . . , J (22)
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Finally, the exact solution of the velocity potential of the water can be given by:

φ(χ, θ, ζ, t) = −2ω
a0

µ
ie−iωt

N

∑
n=0

J

∑
j=0

Dj
nGjKn(αj

β

µ
χ) cos(

αj

µ
ζ) cos(nθ) (23)

In the above equation, the integral equations Gj (j = 0, 1, 2, . . . , J), which represent the
coupling effect of the cylinder and the water, are dealt with later.

2.3. Eigenvalue Equation

From the Bernoulli equation in fluid mechanics, the dynamic pressure distribution
p (ζ, t) of water on the external surface of the cylinder is:

p(ζ, t) = −ρ1
∂φ

∂t

∣∣∣χ=a(θ) (24)

where ρ1 is the density of the water. Therefore, the resultant force P (ζ, t) of the water
dynamic pressure on the cylinder per unit length is:

P(ζ, t) = −2a0

∫ π

0
p(ζ, t)(

⇀
n•⇀x )

√
a(θ)2 +

.
a(θ)2dθ (25)

Substituting Equations (23) and (24) into the above equation gives:

P(ζ, t) = −4
a0

2

µ
ρ1ω2e−iωt

N

∑
n=0

J

∑
j=0

Dj
nGj cos(

αj

µ
ζ)I j

n (26a)

in which,

I j
n =

∫ π

0
Kn(αj

β

µ
a(θ))e(θ) cos(nθ)dθ (26b)

By substituting Equations (26a) and (9) into Equation (1), one can obtain the following:

d4Y(ζ)
dζ4 − λ2Y(ζ) =


0 µ ≤ ζ ≤ 1

−4 γ
µ λ2

N
∑

n=0

J
∑

j=0
Dj

nGj I
j
n cos(

αj
µ ζ) 0 ≤ ζ < µ

(27)

where λ is the non-dimensional frequency parameter, and γ is the cylinder–water density
factor, as follows:

λ2 =
ρ0F
EI

ω2H4, γ =
ρ1a0

2

ρ0F
(28)

In the following analysis, the Galerkin method is applied to derive the eigenvalue
equation from Equation (28). Assuming that the wet mode Y(ζ) of the cylinder can be
expanded by the dry modes of the cylinder Ỹl(ζ) (l = 1, 2, 3, . . . ) in the form of:

Y(ζ) =
L

∑
l=1

AlỸl(ζ) (29)

where Al (l = 1, 2, 3, . . . , L) are the unknown constants, L is the truncated order of the dry
modes. For a cantilever beam, Ỹl(ζ) are as follows:

Ỹl(ζ) = cosh(klζ)− cos(klζ)−
sinhkl − sin kl
cosh kl + cos kl

[sinh(klζ)− sin(klζ)] (30)

in which, kl satisfies:
cosh(kl) cos(kl) = 1, l = 1, 2, 3, . . . , L (31)

It is obvious that all of Ỹl(ζ) exactly satisfy the boundary conditions (3) and (4).
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By substituting Equation (29) into Equation (28), then multiplying the two sides of
Equation (28) by Ỹi(ζ) (I = 1, 2, 3, . . . , L), and integrating the equation from 0 to 1, one can
obtain the following eigenvalue equation:

{[K]− λ2([I] + γ[M̃])}{A} = 0 (32)

where

[K] =


k1

4

k2
4 0

0
. . .

kL
4

, [M̃] =


m̃11 m̃12 · · · m̃1L
m̃21 m̃22 · · · m̃2L

...
...

. . .
...

m̃L1 m̃L2 · · · m̃LL



[I] =


1

1 0

0
. . .

1

, {A} =


A1
A2
...

AL


(33)

in which,

m̃il = −
4
µ

∞

∑
n=0

∞

∑
j=0

Dj
n I j

nqi
jq

l
j, i, l = 1, 2, 3, . . . , L (34)

qi
j =

∫ µ

0
Ỹi(kiζ) cos(

αj

µ
ζ)dζ (35)

In Equation (33), the orthogonal relations among Ỹl(klζ) (l = 1, 2, 3, . . . , L) were used.
Matrix [M̃] represents the effect of water on the dynamic characteristics of the cylinder
and is called the non-dimensional added virtual mass incremental (NAVMI) matrix. The
diagonal elements m̃ii (i = 1, 2, . . . , L) are called NAVMI factors, which are discussed in
following analysis.

3. Convergence Studies

In order to verify the applicability of the method proposed, the convergence study
was carried out for solid elliptical cylinders. The external surface equation of the elliptical
cylinder is:

a(θ) = (b0/a0)/
√
(b0/a0)

2 sin2(θ) + cos2(θ) (36)

Two different cylinder–water size factors, µ = h/H = 1.0;0.8, and two different cross-
sectional size factors, b0/a0 = 1.0;0.5, were considered for the convergence study. In the
computations, unless otherwise stated, the following parameters were used: water density
ρ1 = 1000 kg/m3; cylinder density ρ0 = 2450 kg/m3; and aspect ratio of the cylinder
β = a0/H = 0.1.

The exact solution of the velocity potential of the water φ (χ, θ, ζ, t) in Equation (23)
is numerically stable and converges rapidly with the increase of terms N and J. When
N = 20 and J = 40, it is sufficient to guarantee the accuracy of the solution φ (χ, θ, ζ, t) to
five significant digits. Therefore, 20 terms about N and 40 terms about J were enough for
the present analysis without losing accuracy.

In order to verify the convergence of the present method, Table 1 gives the first five non-
dimensional frequency parameters

√
λi (i = 1, 2, 3, 4, 5) of the cylinder–water interaction by

using a different number L of vibrating beam functions, steadily increasing from 3 to 6. It
can be observed that the results in Table 1 are convergent with the increase term of L, and
the slight difference between L = 5 and L = 6 assures the accuracy and the rapid convergence
rate. It is seen that the influence of the cross-sectional size factor of the cylinder b0/a0 and
the cylinder–water size factor µ on the convergence rate is relatively small. However, it
can be seen from Table 1 that the convergence rate of the elliptical cylinder (b0/a0 = 0.5) is
slightly slower than that of the circular cylinder (b0/a0 = 1.0). The convergence rate of the
fully submerged cylinder (µ = 1.0) is faster than that of the partially submerged cylinder
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(µ = 0.8). In Table 1, it is also seen that the natural frequencies of the cylinder in water are
always smaller than those in air.

Table 1. The non-dimensional frequency parameters of elliptical cylinders partially submerged in
water, using a different number of terms of vibrating beam functions (N = 20, J = 40).

b0/a0 µ L
√

λ1
√

λ2
√

λ3
√

λ4
√

λ5

1.0

1.0

3 1.76214 4.40831 7.42111
4 1.76214 4.40830 7.42033 10.45594
5 1.76214 4.40830 7.42033 10.45483 13.51868
6 1.76214 4.40830 7.42029 10.45483 13.51737

0.8

3 1.82937 4.45475 7.47621
4 1.82937 4.45474 7.47374 10.55185
5 1.82937 4.45474 7.47367 10.54663 13.63776
6 1.82937 4.45473 7.47360 10.54646 13.63005

0.5

1.0

3 1.66802 4.17647 7.04960
4 1.66802 4.17644 7.04755 9.96702
5 1.66802 4.17642 7.04752 9.96387 12.93266
6 1.66802 4.17642 7.04740 9.96386 12.92871

0.8

3 1.78331 4.27320 7.15348
4 1.78331 4.27316 7.14618 10.14705
5 1.78331 4.27315 7.14590 10.12947 13.17693
6 1.78331 4.27315 7.14573 10.12872 13.15165

Dry modes 1.87510 4.69409 7.85476 10.99554 14.13717

In general, 6 terms about L, 20 terms about N, and 40 terms about J could provide
the first five frequencies with sufficiently satisfactory accuracy; hence they are used in the
following calculations.

4. Results and Discussion
4.1. NAVMI Factor Solutions

In engineering, the NAVMI factor approach is usually used for approximate analysis by
considering the effect of water as the equivalent added virtual mass on vibration modes of
structures. Observing Equation (32), one can find that if the NAVMI matrix [M̃] is diagonal
(its non-diagonal elements are neglected), then the non-dimensional natural frequency
λ can be obtained simply and directly from Equation (32); that is, λi = k2

i

√
1 + γm̃ii

(i = 1, 2, 3, . . . , L). This assumes that the wet modes of the cylinder in water are similar to
the dry modes of the cylinder in air. At this point, a corresponding NAVMI factor m̃ii is
added to each dry mode of the cylinder, which means that the effect of water only modifies
the mass of each dry mode. However, the actual NAVMI matrix [M̃] is not a diagonal one.
Therefore, using the NAVMI factor approach that considers only diagonal elements of the
NAVMI matrix [M̃] to estimate the natural frequency of the cylinder–water interaction
may lead to a certain error, which should be carefully evaluated. Still, taking cylinders
considered in the preceding section as an example and using five vibrating beam functions
in the computation, one has:

[M̃] =


2.296042 0.54951 −0.28841 0.26260 −0.14763
0.54951 2.33897 0.41394 −0.13511 0.24106
−0.28841 0.41397 2.13281 0.31866 −0.04891
0.26260 −0.13511 0.31866 1.89388 0.25115
−0.14763 0.24106 −0.04891 0.25115 1.68177

 (37)
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for an elliptical cylinder (b0/a0 = 0.5) with a cylinder–water size factor of µ = 1.0 and

[M̃] =


0.84962 1.04825 −0.26678 −0.05605 0.24164
1.04825 1.98485 0.61417 −0.20547 0.20856
−0.26678 0.61417 1.85430 0.58603 −0.23336
−0.05605 −0.20547 0.58603 1.55282 0.54830
0.24164 0.20856 −0.23336 0.54830 1.37745

 (38)

for the elliptical cylinder with the cylinder–water size factor µ = 0.8.
It is seen that, when the cylinder is entirely submerged in water (µ = 1.0), the NAVMI

matrix has a dominance of diagonal elements over the others. In this case, the mode
parameters can be accurately estimated by the NAVMI factor approach. However, when
the cylinder is partially submerged in water (µ = 0.8), the matrix is not diagonally dominant.
In this case, larger errors would occur if the mode parameters were derived using the
NAVMI factor approach.

To evaluate the accuracy of the NAVMI factor approach, the NAVMI factor solutions
obtained by simplifying the NAVMI matrix [M̃] to a diagonal one were compared with
the solutions from the accurate non-diagonal one. λ̃ and λ represent the non-dimensional
natural frequency of the NAVMI factor solutions and the Galerkin solutions, respectively.
Then, the error between the ith non-dimensional natural frequency of the NAVMI factor
solutions with respect to that of the Galerkin solutions was defined by ei = (1− λ̃i/λi).
Figures 2 and 3 give the percentage errors ei (i = 1,2,...,6) of the first six natural frequencies
of the NAVMI factor solutions, with respect to those of the Galerkin solutions, respectively,
for entirely (µ = 1.0) and partially (µ = 0.8) submerged elliptical cylinders (b0/a0 = 0.5),
as the function of the cylinder–water density factor γ. As can be seen in Figures 2 and 3,
the simplification of the NAVMI matrix to a diagonal one results in different errors in
different cases. It is seen that the errors of the NAVMI factor solutions for the partially
submerged cylinder (µ = 0.8) are greatly larger than those for the entirely submerged
cylinder (µ = 1.0). However, in all the cases, the errors for the fundamental frequency are
always relatively small. The larger the cylinder–water density factor, the larger the errors
of the frequencies are.
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The percentage errors of the first six natural frequencies of the NAVMI factor solutions
with respect to the Galerkin solutions for partially submerged elliptical cylinders (b0/a0 = 0.5),
with the cylinder–water density factor γ = 5.0 as the function of the cylinder-water size factor
µ, are given in Figure 4. It is shown in Figure 4 that the errors of natural frequencies between
the NAVMI factor solutions and the Galerkin solutions vary with the cylinder–water size
factor µ by a big margin, except for fundamental frequency. It should be noted that the
maximum errors of frequencies do not occur at µ = 1.0; however, they do among µ = 0.3~0.7.
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From the above analysis, one can conclude that the fundamental frequency of the
cylinder–water interaction can always be accurately estimated by the NAVMI factor ap-
proach. However, the frequencies more than the second order can be accurately estimated
only for very small cylinder–water density factors γ and cylinder aspect ratios β, especially
when the cylinder is partially submerged in water.

4.2. Numerical Results

In this section, the elliptical cylinders partially submerged in water are investigated
numerically. The densities of the cylinder and water are the same as those used in Section 3.
Six terms for L, twenty terms for N, and forty terms for J were taken in the following
computations. Three different cross-sectional size factors b0/a0 = 0.5; 1.0; 2.0, two different
aspect ratios β = 0.05;0.1, and two different cylinder–water size factors µ = 0.8; 1.0 were
considered. The first six non-dimensional frequency parameters

√
λi (i = 1, 2, . . . , 6) are

given in Table 2.

Table 2. The first six non-dimensional frequency parameters of elliptical cylinders submerged in
water for different aspect ratios β of the cylinder and cylinder–water size factor µ.

β µ
√

λ1
√

λ2
√

λ3
√

λ4
√

λ5
√

λ6

b0/a0 = 0.5

0.05
0.8 1.76816 4.24859 7.04660 9.93900 12.89451 15.87104
1.0 1.64492 4.11938 6.92178 9.74505 12.60615 15.50506

0.1
0.8 1.78330 4.27310 7.14564 10.12862 13.15153 16.18568
1.0 1.66800 4.17636 7.04731 9.96374 12.92856 15.93466

b0/a0 = 1.0

0.05
0.8 1.82007 4.43447 7.40232 10.42459 13.47035 16.51177
1.0 1.74523 4.36876 7.33377 10.30927 13.31098 16.33582
1.0 (1.77103) (4.42978) (7.40222) — — —

{1.74192} — — — — —

0.1
0.8 1.82937 4.45473 7.47360 10.54646 13.63005 16.71520
1.0 1.76214 4.40830 7.42029 10.45483 13.51736 16.60071

b0/a0 = 2.0

0.05
0.8 1.84876 4.55571 7.62672 10.71887 13.81788 16.91419
1.0 1.80859 4.52616 7.59265 10.66015 13.74357 16.83899
1.0 [1.82577] [4.54193] [7.61742] — — —

0.1
0.8 1.85423 4.57186 7.67258 10.78961 13.90756 17.02715
1.0 1.82000 4.55155 7.64721 10.74665 13.85935 16.98048
1.0 [1.83926] [4.56738] [7.67191] — — —

Note: Data in parentheses were taken from Reference [18], and data in square brackets were taken from Reference
[19]. The data in curly brackets were taken from Reference [31].

It is seen in Table 2 that the smaller the cross-sectional size factor b0/a0 and aspect
ratio β of the cylinder, the lower the natural frequencies of the cylinder–water interaction.
However, the smaller the cylinder–water size factor µ, the higher the natural frequencies
of the cylinder–water interaction. To verify the accuracy of the proposed model, the first
three non-dimensional frequency parameters of circular and elliptical cylinders completely
submerged in water were compared with References Han and Xu [18] and Wang et al. [19].
The fundamental frequency of the circular cylinder completely submerged in water with
β = 0.05 was also compared with that from Li et al. [31] using the Timoshenko beam
theory, as shown in Table 2. The first three natural frequencies from [18] and [19] and the
fundamental frequency from [31] were converted into the corresponding non-dimensional
frequency parameters

√
λi (i = 1, 2, 3) given in Equation (29). It is seen that the present

results are in good agreement with those from the three references. It should be noted that
the present Bernoulli-Euler beam theory result of 1.74523 (corresponding to 2.0991 Hz)
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is very close to the result of 1.74192 (corresponding to 2.0911 Hz) using the Timoshenko
beam theory [31]. Compared with the fundamental frequency 1.77103 (corresponding to
2.1616 Hz) given by Han and Xu [18] using the Bernoulli-Euler beam model, the present
result is in better accordance with that of Li et al. [31]. This shows that the Bernoulli-Euler
beam theory does not bring significant computational errors for slender cylinders studied
in the present analysis.

5. Conclusions

In this paper, a semi-analytical method was applied to investigate the characteristics of
free vibration of a cylinder with a non-circular cross-section that was partially submerged
in water. The analytical method was applied to obtain the solution of the velocity potential
of the water, and the Galerkin method was applied to obtain the eigenfrequency equation
of the cylinder–water interaction. Convergence studies and numerical results for elliptical
cylinders partially submerged in water are given. The accuracy of NVAMI factor solutions
was evaluated in detail, compared to the more accurate Galerkin solutions. Some interesting
conclusions were obtained. It is shown that, for fundamental frequency, the NAVMI factor
solutions can always give good estimations, especially for the cylinders entirely submerged
in water. However, for the estimation of higher-order frequencies, the NAVMI factor
approach can be used only when the cylinder–water density factor is very small, especially
when the cylinders are partially submerged in water. The present semi-analytical method
can serve as a benchmark test for numerical simulations of more complex computational
fluid dynamics problems.

The Bernoulli-Euler beam theory was used because the present study focused on
slender, solid, or hollow cylinders that were dominated by bending deformations. Thus,
whether to use higher-order beam theories or shell theories does not bring significant
computational errors. However, for short cylinders, more accurate results can be reached
by adopting higher-order beam theories, such as the Timoshenko beam theory, rather than
the Bernoulli-Euler beam theory because the transverse shear deformation tends to be
more significant with larger β = a0/H. For thin shell cylinders, more accurate results can be
obtained by adopting shell theories if one wants to obtain the circumferential modes. It
should be noted that the difference in the choice of theories does not affect the analytical
process, especially for the analysis of the velocity potential of water.

The present study only gives the numerical results for a cantilever beam as an example;
however, the entire analysis process is applicable for other boundary conditions.

Although the influence of the surface waves of water was neglected in the analysis, it
should be noted that the present semi-analytical method is still applicable if the action of
the surface waves needs to be considered. At this time, the solution of the velocity potential
of water in Equation (10) should be obtained by adopting the Bessel functions instead of
the modified Bessel functions.
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