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Abstract: Acoustic monitoring is an efficient technique for oil spill detection, and the development of
acoustic technology is conducive to achieving real-time monitoring of underwater oil spills, providing
data references and guidance for emergency response work. Starting from the research background
of oil spills, this review summarizes and evaluates the existing research on acoustic technology for
monitoring underwater oil spills. Underwater oil spills are more complex than surface oil spills, and
further research is needed to investigate the feasibility of acoustic technology in underwater oil spill
monitoring, verify the accuracy of monitoring data, and assess its value. In the future, the impact
mechanism and dynamic research of acoustic technology in oil spill monitoring should be explored,
and the advantages and differences between acoustic technology and other detection techniques
should be compared. The significance of auxiliary mechanisms combined with acoustic technology
in oil spill monitoring should be studied. Moreover, acoustic research methods and experimental
techniques should be enriched and improved to fully tap into the future value of acoustic technology.

Keywords: acoustic technology; underwater oil spill; oil spill monitoring; sunken oil

1. Introduction

With the increasing energy consumption worldwide, offshore oil exploration and
development activities have gradually intensified, and the focus of exploration and devel-
opment is shifting from shallow water to deep sea, which has led to an increase in oil spill
accidents. Figure 1 summarizes the causes of marine oil spill incidents of 50 t and above
in China from 1974–2018 [1]. Oil spill accidents not only cause huge economic losses, but
also seriously damage the ecosystem. Petroleum extraction, transportation, and natural
seepage are the main sources of oil release. While the extraction and transportation process,
mainly oil pipeline failures, tanker collisions and subsea well blowouts cause oil spills to
occur [2–4]. After an underwater oil spill occurs, methane gas and oil are released from the
damaged wellhead. Only a small portion of the oil rises to the surface to form an oil slick,
while most of the oil exists in the water column in the form of oil droplets and mixtures.
There is a significant difference between the amount of oil leaving the wellhead and the
amount of oil reaching the sea surface, and providing a monitoring feedback mechanism
is crucial as a guide for responding to the spill in the short term [5–7]. This feedback
mechanism can be used to guide subsequent oil spill response work. Therefore, emergency
monitoring of oil spills has become a major issue that needs to be addressed urgently in the
offshore oil industry.

Currently, the emergency response measures for oil spills are relatively mature, but
oil spill incidents still exist due to insufficient oil spill monitoring work [8,9]. Marine
oil spills include surface oil spills and underwater oil spills. Monitoring technology for
surface oil spills is relatively mature, with breakthroughs in optical sensor monitoring,
synthetic aperture radar (SAR) image monitoring, and ocean buoy remote sensing [10–12].
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Compared to surface oil spills, underwater oil spills are more complex, with characteristics
such as large leak volume, long duration, and uncontrollability. However, the energy of
radio wave or light wave is easily absorbed by seawater and is not suitable for long-distance
transmission in the ocean, making it difficult to grasp the situation of underwater oil spills.
Compared with traditional surface oil spill monitoring technology, sound wave is stable
in propagating through seawater and have greater application value. Therefore, acoustic
technology is a more suitable method for realizing real-time underwater oil spill monitoring.
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Figure 1. Causes of marine oil spill accidents of 50 tons and above in China, 1974–2018 statistics.

Acoustic oil spill monitoring technology mainly relies on acoustic detection equipment,
including multibeam sonar sensors, acoustic doppler current profilers, and so on [13]. Oil
and gas belong to different media from seawater. When the sound wave propagates to the
interface between different media, reflection and scattering phenomena occur. By analyzing
the reflected sound wave, information such as the spreading speed of the underwater oil
spill, the thickness of the oil layer, and oil spill volume can be obtained.

This article provides an overview of research progress in using acoustic technology
to detect oil spills, discussing the background of underwater oil spills, the development
of acoustics, feasibility analysis, and future prospects from different perspectives. It also
addresses key issues related to using acoustic technology to monitor underwater oil spills.
It is important to note that the four aspects mentioned above have internal connections and
logical relationships, mainly reflected in: First, the background of oil spills as the scenario
for the application of acoustic technology is a crucial premise and key to solving the
problem of oil spill monitoring. Second, the application mechanism of acoustic technology
in various aspects can provide research ideas for monitoring underwater oil spills. Third,
the application effect of acoustic technology in oil spills can provide a new perspective for
the future development of acoustic technology.

2. Marine oil Spill Investigations
2.1. Analysis of Marine Oil Spill Movement

Understanding the movement of oil droplets in water is an important factor in the
study of monitoring technology. Through the research, it is found that the oil spill behavior
and fate of subsea oil spill in the rising process are obviously different from that of surface
oil spill due to the influence of tide, temperature, and pressure. The behavior of underwater
oil spill mainly includes oil and gas particle size distribution, ascent velocity, oil and gas
separation, and reel suction, which will eventually exist in the hydrate or dissolve in
the water column, or exist in the suspended plume. There have been a large number of
experimental and simulated studies on underwater oil spills, such as the real distribution of
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oil droplets released from the seabed, the uncertainty of the size distribution of oil droplets
affecting the short-term fate of deep-sea oil, and the horizontal wave and spiral upward
movement of rising oil droplets [6,14,15]. Most oil droplets float under the combined
effect of initial momentum and buoyancy, and those that rise to the sea surface form an oil
film that is influenced by both ocean currents and wind, allowing it to travel further and
diffuse over a larger area. Oil droplets of different sizes undergo horizontal diffusion in
water, with larger ones floating to the sea surface and expanding into an oil film due to the
influence of gravity, while smaller ones remain suspended in the water [16]. In the near-
shore environment, oil spills can interact with suspended sediment, forming oil sediment
residues [17–19]. Figure 2 shows a conceptual model of the various oil residues found in
the nearshore environment, where oil interacts primarily with coarse sediments to form
sediment–oil agglomerates; and large oil slicks can also interact with sediments to produce
sediment–oil mats, which float after long-term weathering to a black or brown ball of oil
of varying shapes that floats in nearshore waters. Oil spill monitoring requires advance
knowledge of the dispersal behavior of spilled oil and the formation of conjunctures with
other materials. A conceptual model of nearshore oil residues can provide a reference
aid for the implementation and deployment of oil spill monitoring. Previous studies
have summarized the characteristics of ocean oil spills from the conditions, effects, and
processes of oil and gas diffusion, which can help subsequent studies to accurately grasp the
evolutionary pattern of oil spills and provide reference guidance for acoustic monitoring.
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2.2. Limitations of Underwater Oil Spill Monitoring

Different monitoring methods are needed for underwater and surface oil spill situ-
ations. Optical and electromagnetic technologies are more suitable for solving oil spills
on the water surface [20,21], and further research is currently being carried out. However,
underwater oil spills occur in a high-pressure and low-temperature environment, with a
relatively complex movement process that can generate effects such as entrainment, and oil
and gas dissolution [22,23]. In addition, the distribution and rising speed of oil and gas
will change, and the state of oil and gas is unstable [24,25]. As the oil spill occurs in the un-
derwater environment, the energy produced by optical and electromagnetic technologies is
greatly absorbed by seawater, making it difficult to achieve energy emission and reception,
and general equipment cannot meet the requirements. Furthermore, human monitoring
poses significant risks. It can be concluded that monitoring for underwater oil spills is
highly limited due to complex conditions and high monitoring equipment requirements.
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3. Research on Underwater Oil Spill Monitoring Technology
3.1. Traditional Oil Spill Monitoring Method

Traditional methods for monitoring marine oil spills include optical and remote sens-
ing technologies. Currently, optical technologies have been used to monitor oil spills using
thermal infrared images, ultraviolet spectroscopy, and fluorescence spectroscopy [20,26–30].
Optical video survey and other non-contact technology is easy to operate; however, the
monitoring speed is slow and, limited by the light conditions, does not meet the require-
ments of emergency response. Due to the absorption and scattering of light in seawater,
light transmission has a very short distance and the application range is limited by distance.
Experimental techniques such as airborne laser fluorescence have been proven to detect
aromatic hydrocarbons in shallow waters, but the feasibility of this technology decreases
with increasing depth or seawater turbidity; in addition, it is only suitable for estimating
the amount of oil that has reached the surface and cannot evaluate the internal oil spill
situation in the ocean.

Remote sensing technology is usually used to detect and track oil spills on the sea
surface, and synthetic aperture radar (SAR) images can be used for oil spill monitor-
ing [21]. SAR remote sensing images have a wide coverage range and can monitor oil
spills on the ocean for long periods of time. In the marine environment, remote sensing
monitoring technology uses thermal scanners, laser-induced fluorescence systems, and
hyperspectral imaging for monitoring [31–33]. SAR remote sensing images can be analyzed
through model algorithms, including neural network models, oil drift models, genetic
algorithms, machine learning algorithms, deep learning methods, etc. [34–38]. However,
electromagnetic wave has a large signal attenuation coefficient when transmitting in sea-
water, requiring a lot of energy to support transmission. Remote-sensing technology and
optical technology are only suitable for monitoring oil spills on the sea surface; in addition,
they can only monitor oil or gas that has already reached the surface, and cannot directly
determine the dynamic situation in the water column. They are useful for large-scale ship
oil spill accidents, but are not suitable for monitoring deep-sea oil spills and often involve
long time scales for detection.

Currently, there is a need for a fast, real-time, and efficient technology to scan and
sample the water column to determine the physical and dynamic characteristics of oil
plumes. Table 1 compares the differences between acoustic technology and optical and
remote sensing technologies, and finds that acoustic technology has potential for monitoring
underwater oil spills.

Table 1. Technology comparison.

Category Depth of
Investigation Directivity Attenuation

Degree
Monitoring

Range Operability Cost

Acoustic
technology

High depth of
penetration

Strong
directivity

Weak
attenuation Large range Easy operation and

high flexibility Low

Optical
technology Short distance Weak

directivity
Large

attenuation Small range Easy operation and
high flexibility High

Remote-
sensing

monitoring

Short distance
and suitable for

sea-surface
monitoring

Strong
directivity

Large
attenuation Large range Complicated and low

sensitivity High

3.2. Principles of Acoustic Technology

Acoustics is a field of wave mechanics in physics that studies mechanical waves in
a medium, including sound waves, ultrasonic waves, and infrasonic waves. Acoustic
technology mainly analyzes the changes and processes in sound waves through their
emission and reception, in order to obtain the necessary information. Underwater acoustics
primarily studies the generation, propagation, and reception of sound waves in water. A
sound wave is currently the only known wave that can propagate over long distances
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in water [39], and its propagation performance is far better than electromagnetic waves
such as light waves and radio waves [40]. This advantage highlights the value of acoustic
technology in the monitoring of oil spills underwater.

3.2.1. Basic Principles of Acoustic Propagation

The basic principle of acoustic technology is to use the emission and reception of sound
waves to obtain information about the target [41,42]. An acoustic transmitter continuously
emits periodic small pulses, and the sound waves are backscattered upon contacting the
hydrocarbons present in the water column [43]. An acoustic receiver continuously receives
the echoes reflected by deep-sea oil and gas particles. By comparing the collected echoes
with the pulses of the emitted sound wave, information about the state of oil and gas, and
dynamic information such as rising speed can be obtained.

3.2.2. Acoustic Scattering Principle

In nature, sound waves are scattered and reflected when they encounter obstacles [44].
Figure 3 shows the process of sound waves scattering by a target object, which occurs when
the sound wave is projected onto a rough interface or particles in a medium, and propagates
in different directions [43,45]. The condition for scattering is that the wavelength of the
sound wave is much smaller than the size of the obstacle, and small obstacles will become
new sources of ultrasound and emit waves in all directions when scattered [46]. In the
event of an oil spill, seawater and oil and gas form three different media, between the oil
droplets and seawater, between the bubbles and seawater, and between the oil droplets and
the bubbles [47–49]. When a sound wave propagates to the interface between oil droplets,
seawater, and bubbles, scattering occurs. In the process of scattering, the scattered signal
carries information about the oil and gas obstacles due to different mechanisms of scattering
echo generation. In underwater oil spill monitoring, the scattered echo signal produced
by the detection sound wave encountering an oil and gas target is used to obtain dynamic
information about the spill. Acoustic backscatter signals can also be used to analyze the
state information of oil and gas.
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3.2.3. Sound Wave Influence Factor

The speed of sound propagation varies with the elasticity and density of the medium.
Since the density and adiabatic compressibility of seawater are greatly affected by its
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temperature, salinity, and pressure, the speed of sound in seawater changes continuously
with these factors. Therefore, these factors need to be carefully considered in oil spill
monitoring. Many researchers have found through experiments and theoretical analyses
that temperature and the complex underwater environment have the greatest impact
on sound velocity. Due to the sound channel phenomenon, low-frequency sound wave
consumes less energy and can propagate over longer distances in the ocean. Due to the
different acoustic properties of different substances and the stronger focusing effect of the
sound wave as the emission source approaches the sound channel axis, the propagation
speed of the sound wave is also faster, and the received information is clearer. The sound
channel phenomenon and focusing effect provide reference guidance for the frequency
selection of acoustic equipment used in oil spill monitoring [9]. Selecting a more suitable
sound channel frequency can not only reduce sound attenuation, but also improve the
efficiency of oil spill monitoring.

3.3. Advances in Acoustic Technology for Monitoring Underwater Oil Spills

After several accident scene investigations and research experiments, acoustic technol-
ogy has been proven to be the best method for detecting underwater oil spills. When an
oil spill occurs on the seafloor, a large amount of hydrocarbons are released and spread
into the water column in the form of bubbles, dissolved gas, and oil droplets. In oil spill
monitoring, it is necessary to comprehensively analyze the changes in acoustic waves when
they encounter oil droplets and gas (Figure 4). The characteristics are determined based on
the scattering of sound waves by the target.
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3.3.1. Progress in Acoustic Monitoring of Underwater Gas Leaks

Foreign countries have already begun to monitor methane bubbles released from
the deep sea, and optical technology has been used to quantify the ocean bubble flow
using wide-baseline stereo photogrammetry [50,51]. However, optical waves are greatly
attenuated when propagated in seawater due to the effects of underwater turbulence and
seawater turbidity. Compared to light wave, sound wave has less energy loss in seawater.
In recent years, acoustic backscatter has been applied to quantitatively monitor various
targets in seawater, showing the potential of acoustic technology in the detection of an oil
spill. Additionally, acoustic detectors are suitable for large spatial scales and do not affect
seabed organisms. Using the high acoustic impedance and strong scattering characteristics
of bubbles to accurately identify and locate ocean leaks is an important breakthrough in
the acoustic monitoring of oil spills. Previous studies have used echosounders (Figure 5)
and side-scan sonar to monitor the methane bubble plumes from underwater leakage,
predicting relative flux and the fate of bubbles by analyzing the acoustic target intensity
profile [52–55]. These acoustic methods can be used to monitor natural hydrocarbon leaks
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and provide references for artificial oil spill monitoring. However, these acoustic methods
require advance knowledge of the nature of leakage, such as the size distribution of bubbles,
the relative number of bubbles in the water column, and the physical properties of the
gases present in the leak. It is difficult to perform a complete acoustic inversion to estimate
the natural gas flow rates, and the prediction uncertainty is high, requiring other means to
properly constrain the measurements and quickly estimate the dynamic leakage reaching
the surface on a large time and spatial scale.
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3.3.2. Progress in Acoustic Monitoring of Underwater Leakage Oil Droplets

Researchers at home and abroad have carried out investigation and research on
acoustic monitoring of underwater oil spills in the Deepwater Horizon, Arctic Ocean Basin
and North Sea well sites in the United States to fully verify the feasibility of the application
of acoustic technology in this area and to explore the potential of acoustic technology.
Currently, research has found that the backscattering property of acoustic technology can
be well applied to the monitoring of underwater oil spills. Optical technology can be used
to verify the target identity of oil droplets to improve the accuracy of monitoring. At the
same time, from the perspective of the attenuation of sound wave, the monitoring of marine
sediments can also be applied to the study of underwater oil droplets, and its feasibility
can be verified [40,56–59].

Acoustic Backscatter Technology

Some studies have found that after an oil spill, a portion of the leaked substances will
rise to form a surface oil slick; in addition, another portion will form oil droplet aggregate
and exist in the form of a mixture of oil and sediment in the water (Figure 6) [17]. Scholars
have borrowed monitoring techniques from marine sediments and studied the application
of acoustic backscattering in underwater oil spill detection, and have practiced it in multiple
underwater leak events and experiments. As shown in Table 2, acoustic instruments used in
underwater oil spill detection include echo sounders, multibeam sensors, side-scan sonars,
and acoustic Doppler current profilers. An echo sounder can identify underwater oil
leaks by the changes in acoustic backscattering intensity [59–61]. Multibeam sensors have
good target classification and recognition functions, and can provide a three-dimensional
diffusion map of oil droplets in the water column [62–64]. Side-scan sonar can quickly
monitor large areas of oil spills through the image of acoustic reflectivity [65,66]. The
acoustic Doppler current profiler can obtain the dynamic characteristics of oil droplet
targets and then estimate the oil spill leakage situation [60,67]. Some acoustic instruments
use high-frequency sound waves to monitor underwater oil droplets. High-frequency
sound waves propagate over long distances, and can be used in deep water environments
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and turbid water bodies. They also have a broad monitoring coverage area, which is
conducive to capturing underwater oil droplets [62].
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Broadband acoustics has a continuous frequency band, which can provide more
information about different target bodies. Broadband acoustic backscatter has been used to
identify fish species and plankton, among others [68,69]. By using the amplitude and shape
of broadband acoustic backscatter, it is possible to differentiate hydrocarbons in leaked
substances and determine the flow rate of hydrocarbons, and to estimate the distribution of
leaked gas and oil droplets [60]. Acoustic technology has been experimentally verified to
detect oil and gas in water columns, but subsequent sampling or fitting of oil droplet and
bubble models are necessary to verify and estimate the acoustic characteristics of observed
oil droplets, ensuring the accuracy of detection data and improving the sensitivity and
reliability of underwater oil spill monitoring.

Table 2. Statistics of oil spill monitored by acoustic technology.

Project Status Technical Progress Sound Wave Frequency

Galicia oil spill (2002) Monitoring of oil spills on the seafloor using
multi-beam acoustic backscatter [64]. High frequency

Gulf of Mexico oil spill (2010)

1. Using 1.2 MHz acoustic Doppler current profiler
and dual frequency sonar [67];
2. Shipborne single-wave echo sounder for
underwater oil spill monitoring;
3. Combined telescopic fluorescence sensor and
broadband multibeam sonar for monitoring [70];
4. Broadband acoustic backscatter angle study of
oil droplet scattering characteristics [71].

1. Low frequency
2. High frequency
3. High frequency
4. High frequency

Ohmsett oil spill monitoring
experiment (2013)

Testing the application of multibeam sonar and
wide-angle scatter to underwater oil spills [72]. Low frequency

Mississippi River oil spill (2015)
Mississippi MC20 oil spill

Acoustic backscatter images of underwater oil
droplets using side-scan sonar [65].
Shipboard acoustic observations with ADCP and
high-frequency broadband echo sounder to assess
liquid and gaseous hydrocarbon flow rates [60].

1. High frequency
2. High frequency

Undersea pipeline leak in Santa Barbara
County, California (2016) [26]

Acoustic volume backscatter values for oil and gas
in the water column were collected using a partial
wave echosounder and calibrated using in situ
capture [61].

High frequency
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Table 2. Cont.

Project Status Technical Progress Sound Wave Frequency

Bohai oil sinking event (2018)

Multi-beam sonar is used to detect oil droplets;
and backscattering intensity image, which can
directly reflect the characteristics of oil droplets, is
generated [62].

High frequency

Fuel tank leak in Baltic shipwreck
Multibeam echo sounder backscatter data were
used to monitor and investigate the frequency of
the acoustic instrument [63].

Low and high frequencies

Oil spill monitoring requires studying the influence of oil droplets on acoustic backscat-
ter characteristics, and droplet size is critical to determining the dispersion of oil in the
marine environment. Developing an underwater oil droplet model is an important aspect
of solving this problem. In reality, the traditional spherical model is not applicable for
oil droplets moving in the deep sea. To improve the accuracy of acoustic monitoring, it
is necessary to further improve the oil droplet model and explore underwater oil spill
behavior. Researchers have found that oil droplets become elliptical in shape and spiral
in their trajectory during floating, which provides support for oil droplet models in deep-
water oil spill monitoring [6,73]. Various increasingly complex acoustic scattering studies
have been reviewed, such as simplified spherical droplet acoustic scattering models, the
effect of crude oil density and sound speed on acoustic scattering under ocean temperature
and pressure, the final impact of the degree of deviation of oil droplets from spherical
on acoustic scattering, and the prediction of the sizes of leaking oil droplets and bubbles
through a fluid particle rising speed model, taking into account the reality of oil spill treat-
ment, such as the status of oil droplets and bubbles under dispersants, and other chemical
reagents. The oil droplet target calculation method has been optimized and the underwater
oil droplet model has been improved [59,60,70,74].

When a leak occurs underwater, a large amount of gas and oil droplets will mix and
spew out. Gas and oil droplets belong to different media, and the complex multiphase
plume formed by the oil–gas mixture has dispersed phases of oil droplets and bubbles of
different sizes, with seawater as the continuous phase. Bubbles and oil droplets can appear
side by side, posing a challenge to deep-sea monitoring. Currently, optical technology
is used to separate and monitor deep-sea oil droplets and bubbles, and shadow images
are used to obtain information on the motion of oil droplets and bubbles. This method
can effectively solve the identification problem of bubbles and oil droplets and has great
application value for small-scale oil spills [75]. This also provides a reference idea for using
acoustic technology to monitor underwater oil spills. Since a multiphase turbulent flow
is formed between seawater and dispersed-phase oil droplets and bubbles, and there is a
slip velocity between them, the identification and monitoring can be achieved by using the
influence of the multiphase turbulent flow on the sound wave and taking this deviation
velocity as a starting point. Studies have been conducted to obtain velocity profiles in oil
and water laminar flows using Doppler methods [48,49], as well as instantaneous velocity
distributions of liquid and bubble phases in bubble flows; and also to study the motion of
oil and gas in seawater from ultrasound and acoustic emission perspectives to obtain its
velocity profile, dispersed phase size distribution, and volume fraction [47].

Acousto-Optic Technology Combination

To address the problem of oil droplet size distribution, people consider using opti-
cal instruments for direct sampling. Some researchers have combined shipborne hydro-
graphic surveying with direct underwater observation and investigation to monitor oil
spills [59,76,77]. The position of the oil spill is determined by the backscatter anomaly point
of the acoustic instrument, and sonar technology can provide a three-dimensional diffusion
view of spilled oil droplets. Sampling is performed using optical technology, in which
the tripod is a structure for fixing the optical sensor and sonar to beam scan the oil layer
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to determine information about its status. Underwater cameras can be used to transmit
monitoring images in the water column. The technology identifies oil droplets and gases,
confirms the presence of oil and gases in the sonar images, and provides a comprehensive
understanding of hydrocarbon transport routes underwater (Figure 7) [70,78,79]. Figure 8
summarizes the workflow of four acoustic instruments - echosounder, multibeam trans-
ducer, sidescan sonar and acoustic doppler current profiler - in monitoring underwater oil
spills and the subsequent development of the combination with optical technology. The
research results prove that the combination of acoustic and optical instruments is effective
in detecting and identifying oil plumes in the water column. However, the deployment
and operation of optical sampling instruments are complex and expensive, and are affected
by ocean environments such as underwater turbulence, requiring further research for im-
provement [80]. Sampling is performed using equipment with an optical sampling device,
where the tripod is a structure with fixed optical sensors and sonar, and beam scanning
of the oil layer to determine its status information. Underwater cameras can be used to
transmit monitoring images in the water body.
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3.3.3. Active and Passive Acoustic Detection of Oil Spills

Active and passive detection are different exploration methods for deep-sea oil spill
monitoring. Active detection refers to the analysis of the movement of oil droplets and
gases according to the echoes by emitting sound waves into oil droplets and gases in the
deep sea [81]. Active acoustic detection is commonly used for underwater oil droplet
and low solubility gas monitoring [60–63,67,73,82,83]. However, active detection requires
higher working power and is suitable for short-time-period monitoring, while deep-sea oil
spill monitoring requires a longer working period. In terms of energy consumption, active
acoustic detection has greater limitations.

Passive detection, on the other hand, refers to the analysis of the dynamic information
through the sound wave signals emitted by oil droplets and bubbles. Passive acoustic
technology can obtain continuous motion information of the target body and is simple
in equipment and low in cost, making it suitable for long-term monitoring. Currently,
passive detection technology is widely researched in underwater gas monitoring. Passive
acoustic detection is mainly conducted by hydrophones to monitor the sound generated
by underwater bubbles, and in the case of a single gas, a method based on bubble feature
identification is used. When dealing with gas leakage in the form of plumes, hydrophone
arrays are used to quantify the leakage. However, passive acoustic detection is easily
affected by underwater noise, resulting in ineffective monitoring. To solve this problem,
some scholars have summarized the noise-impact assessment model of passive acoustic
measurement, finite element model of underwater gas escape process, etc., which improves
the noise resistance of measurement technology and abates the influence of ocean noise
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on acoustic monitoring. It can be seen that passive acoustic techniques are feasible in
monitoring underwater gases [84–88].

Currently, active acoustic detection is widely used in underwater oil spill monitor-
ing, while research on passive acoustic technology for oil droplet monitoring is limited
domestically and internationally. This field needs further exploration. Both active and
passive acoustic technologies have advantages and limitations in monitoring underwater
oil spills, and a cross-comparison of the two can verify their effectiveness and feasibility in
monitoring underwater gas and oil droplets.

In existing studies, the monitoring of underwater oil spills using acoustic techniques
has been carried out after a spill has occurred. In future marine oil and gas operations, mon-
itoring systems should be deployed in advance within and around the offshore petroleum
and natural gas systems to enable real-time monitoring.
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4. The Advantages of Acoustic Detection Systems
4.1. High Precision

Compared to light and electromagnetic wave, the propagation of low-frequency
sound wave in seawater is less affected by seawater and can not only meet the long-
distance transmission, but also ensure the accuracy of the transmission process. If multiple
acoustic emission points and signal reception points are placed in the oil spill monitoring
area to form a sensor network, large-scale observations can be made along the acoustic
propagation path in the ocean, and the more emission and reception points there are,
the more information on the dynamics of oil droplets along the propagation path can be
obtained and the higher the spatial resolution.

4.2. Modular Development

The monitoring system adopts a modular design scheme, mainly including control
modules, power supply modules, communication modules, and various observation mod-
ules. It can achieve multi-aspect monitoring of marine targets. Each module has its own
responsibilities, which effectively improves the efficiency and accuracy in the monitoring
process. The oil spill acoustic monitoring module can learn from the development of other
acoustic monitoring systems, such as the modular design of the ice and sea interface acous-
tic monitoring system applicable to the polar regions, which not only has the operating
efficiency of the monitoring system improved, but it is also conducive to the debugging
and inspection of the monitoring system [89]. The oil spill acoustic monitoring system is
oriented towards modular development, which can further improve the efficiency of oil
spill monitoring.

4.3. Good Stability

Compared to other forms of energy such as electromagnetic waves, sound waves
are minimally absorbed by seawater, especially low-frequency sound waves, which can
propagate over long distances and receive a higher quality sound-wave signal. Due to the
dynamic and irreproducible nature of the marine environment, acoustic technology has
good precision and stability, and is more suitable for application in marine detection.

5. Future Prospects for Oil Spill Monitoring Technology

Currently, oil spill monitoring is continuously evolving, gradually achieving intel-
ligence, systematization, and integration. In the future, the development of acoustic
technology in oil spill monitoring can be improved from the technical level, monitoring
schemes and monitoring methods, enhancing the applicability of acoustic technology in
oil spill monitoring. Additionally, integrating acoustic technology with oil spill trajectory
simulation can provide better detection tools for oil spill response and risk assessment [90].

5.1. Intelligent Detection

The future development of acoustic technology will be deeply integrated with un-
manned submersible technology, as the marine environment is very complex and presents
certain risks and challenges. As shown in Table 3, research has already explored intel-
ligent acoustic monitoring through experimental exploration, using underwater vehi-
cles equipped with acoustic technology for in situ measurements in harsh environments
(Figure 9), to achieve real-time simulation of the three-dimensional structure of oil and gas
plumes [90–92]. Figure 10 shows the structure of the acoustic equipment carried by ROVs.
The underwater vehicle sends information on the status of subsea oil spills to support
ships via underwater communication, and after automatically floating to the surface, sends
information on the location of the spill. This connects the underwater acoustic communica-
tion network with the oil spill monitoring platform, providing guidance and assistance for
global marine oil industry oil spill emergency response [10,93,94].
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Table 3. Research on intelligent acoustic monitoring.

Status of the Project Technical Progress

Acoustic monitoring of methane seeps in the northern Gulf
of Mexico

The ROV used a combination of multi-beam and split-beam
echo sounders to map methane seepage [95].

Applications for mapping spilled oil in Arctic waters
Technique for measuring oil slick thickness and bubble/oil
droplet size using an electro-acoustic transducer in conjunction
with an ROV and AUV [72].

Acoustic oil spill detection and mapping under Arctic sea ice
using an autonomous underwater vehicle

The ROV is coupled with high-frequency sonar to provide
quantitative information on acoustic scatterers such as oil
droplets [96].

Eu Horizon Research project integrated oil spill
emergency response

The underwater vehicle monitors oil spills in situ to improve
the ability to monitor oil spills in real time [97].

The experiment uses bubbles as proxies for oil droplets to test
the AUV monitoring of oil spills

Verify the feasibility of sonar to capture gas in the water
column [91].
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5.2. Active Detection and Passive Detection Techniques Are Combined

Water acoustic monitoring technology is achieving a monitoring mode that combines
active detection with passive detection [98]. When pressurized oil and gas leak from the
subsea oil pipeline, it will suddenly expand and release, generating sound wave. A passive
detection mode can be used to monitor and locate the oil and gas injection position using
acoustic instruments such as hydrophones. For the diffusion of oil and gas in water, a sonar
array can be used to achieve high-resolution scanning and detection of the oil spill source.
The sonar emits sound wave towards targets such as oil droplets, receives echo signals, and,
thus, can obtain real-time information on their movement and the formation of oil slicks.
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6. Conclusions

Acoustic technology is of great significance for underwater oil spill monitoring. Com-
pared with other technologies such as optics, the feasibility of acoustic monitoring in this
area is relatively high and has received extensive attention from scholars. Underwater oil
spill emergency monitoring is an extremely complex engineering problem, and solving
the problem of underwater oil spill monitoring is of extraordinary significance for oil spill
emergency response. Through a survey and summary of domestic and foreign underwa-
ter oil spill monitoring methods, it was found that although many research results have
been achieved in the key technologies for underwater target detection based on acoustic
technology, there are still some problems that can be addressed in the following areas.

The first aspect is to optimize the monitoring effectiveness of acoustic technology,
which can be enhanced through research on technical indicators, program deployment, and
data analysis. After an oil spill event, oil droplets will spread in the form of a plume. When
acoustics is used for remote plume measurement, the pulse length and bandwidth should
be adjusted, and a relatively small bandwidth and long acoustic pulse can be selected to
monitor the plume consisting of individual oil droplet scatterers to enhance the applicability
and feasibility of acoustic technology in underwater oil spill monitoring [83].

Secondly, there is the issue of monitoring oil droplets and bubbles. During underwater
oil spill monitoring, it is necessary to classify and identify gases and oil droplets. The acous-
tic backscatter strength of bubbles and oil droplets in seawater is different. The acoustic
impedance of oil droplets and seawater are similar, and the scattering characteristics of
oil droplets are weaker compared to the high scattering characteristics of bubbles [90,99].
Solving the acoustic scattering problem of oil droplets can help to improve underwater
oil spill monitoring. Research has found that the difference in target strength between oil
droplets and bubbles is significant at low frequencies. Attempts can be made in a wider
frequency range to help detect the characteristics of individual oil droplets to determine
their size and identity [90]. Meanwhile, the velocity and other motions of the oil phase
can be studied using ultrasonic Doppler technology based on the multi-phase floating jet
model formed between oil droplets, bubbles, and seawater [45,47]. Currently, this research
area is relatively scarce and can serve as a breakthrough point for underwater oil spill
acoustic monitoring.

In addition, studying the impact of marine environmental factors and practical con-
ditions for oil spill treatment on the acoustic properties and status of oil droplets is also
an important task for optimizing monitoring. The deep-sea environment is complex and
there are interfering factors such as sound and light that can affect monitoring effectiveness.
The next research needs to use acoustic technology to overcome the limitations of the un-
derwater environment and achieve real-time monitoring of underwater oil spills. Further
exploring the potential of acoustic technology in the field of marine detection is of great
significance for the development of emergency response to marine oil spills [100].
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