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Abstract: In this paper, contraction theory is applied to design a control law to address the horizontal
trajectory tracking problem of an underactuated autonomous underwater vehicle. Suppose that
the vehicle faces challenges such as model uncertainties, external environmental disturbances, and
actuator saturation. Firstly, a coordinate transformation is introduced to solve the problem of
underactuation. Then, a disturbance observer is designed to estimate the total disturbances, which
are composed of model uncertainties and external environmental disturbances. Next, a saturated
controller is designed based on singular perturbation theory and contraction theory. Meanwhile,
contraction theory is used to analyse the convergence properties of the observer and the full singular
perturbation system, and make quantitative analysis of the estimation error and the tracking error.
Finally, the results of numerical simulations prove that the method in this paper enables the vehicle
to track the desired trajectory with relatively high accuracy, while the control inputs do not exceed
the limitations of the actuators.

Keywords: underactuated autonomous underwater vehicle; trajectory tracking; actuator saturation;
singular perturbation system; contraction theory

1. Introduction

Underactuated AUV is a kind of AUV which has fewer independent control inputs
than the DOF to be controlled. Compared with the fully actuated AUV, it has more
advantages in saving costs, reducing consumption, and improving system reliability, so it
has a wide range of applications [1]. However, due to the challenges such as nonlinearity,
model uncertainties, time-varying external disturbance, actuator saturation, etc., the control
of the underactuated AUV becomes difficult. Currently, the precise motion control of the
underactuated AUV is one of the research hotspots.

As a powerful system design and analysis tool, CT [2] has been applied in many fields;
however, to our knowledge, there is currently no literature on the application of CT to
underactuated AUVs. Based on this, this paper focuses on the horizontal trajectory tracking
control of an underactuated AUV in the presence of model uncertainties, time-varying
environmental disturbances, and actuator saturation. CT and its application in SPS [3] are
used to design the controller and give quantitative analyses of various errors. In general,
the contributions of this paper are as follows:

(1) A coordinate transformation is introduced to cope with the problem of underactuation
and a disturbance observer is designed to estimate the total disturbances.

(2) CT and SPT are used to construct a saturated controller such that the reference states
defined by the coordinate transformation converge to the desired states asymptotically,
while the error between the actual states and the desired states converges to the
region near zero, and the control inputs do not exceed the limitations of the actuator.
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Compared with existing methods, the controller designed in this paper has a simple
form and is easy to apply. In solving input saturation problems especially, there is no
need to design auxiliary systems or run complex algorithms such as NN or FL.

(3) CT is applied to analyse the convergence properties of the DO and the SPS, and the
upper bounds of estimation error, tracking error, and the error between the ideal
controller and actual controller are given.

The structure of this paper will be arranged as follows. Section 1 introduces the
research background, purpose, contributions, and structure of this paper. Section 2 reviews
the literature related to the work of this paper. Section 3 establishes the mathematical
model for an underactuated 3-DOF AUV in the presence of model uncertainties, external
disturbances, and actuator saturation. A coordinate transformation is introduced to deal
with the problem of underactuation. The DO and the saturated controller are designed
in Section 4. Section 5 gives quantitative analysis of the control variable error and the
tracking error. Section 6 conducts numerical simulations and analyses the performance
of the controller and DO. Finally, Section 7 gives conclusions. In addition, Appendix A
summarizes the abbreviations used in this paper and Appendix B briefly introduces the
theoretical basis of this paper.

2. Literature Review

Underactuation is the first problem to be solved in the motion control of a USV or
underactuated AUV. One of the common methods to tackle this problem is to derive the
tracking error model in SF frame [4–7], and then design the control law on each controllable
DOF. In [4], a 3D-path-following error model for an underactuated 5-DOF AUV was
established based on virtual guidance method in SF frame, and then backstepping and
sliding mode control were applied to design controllers in surge, pitch, and yaw directions.
In [6], the path-following error dynamics were derived and several reduced-order ESOs
were designed to estimate various disturbances. Coordinate transformation is also a
common method [8–12]. In [8,9], the model of a USV was converted into a cascade system
and the control problem of the USV was transformed into the stabilization analysis of
two small subsystems. In [10,11], the output variables of the USV were redefined via a
coordinate transformation and then the other control methods were applied to design the
controller such that the new output variables could track their desired values. In addition,
the system order of the underactuated AUV can be reduced by constructing an SPS [13–15].
In [13], SPT was used to decompose the full system of a 4-DOF underactuated AUV into
two time-scale subsystems and then the independent controller design was carried out on
each subsystem.

Disturbances are a ubiquitous challenge for the motion control of an AUV. It may
come from model uncertainties, unknown system parameters, or external environment
disturbances, or more likely the superposition of these factors. The estimation and com-
pensation of disturbances are very important for AUVs’ motion control. For mechanical
systems including AUVs, a common practice is to combine various disturbances into total
disturbances, and then design a DO to estimate it. The observer based on auxiliary variables
and the ESO [16] are two common types of DO. Readers can find a detailed overview of
the first type of DO in [17,18]. In [19], an auxiliary variable was introduced to design a
nonlinear DO and then a backstepping finite-time sliding mode controller was constructed
for the trajectory tracking control of a 5-DOF AUV. In [20], a reduced-order observer was
proposed to estimate the total disturbances. ESO estimates the total disturbances as another
state of the system. In [14], a high gain ESO based on SPT was designed to estimate the
total disturbances. In [21], a proportional-integral velocity variable based third-order fast
finite-time ESO was designed to estimate the lumped uncertainties and their first deriva-
tives. In addition, with the continuous maturity of artificial intelligence, more and more
researchers use NN [22] and FL [23] to approximate disturbances and uncertainties.

In practical applications, the problem of actuator saturation is almost unavoidable since
the force/torque provided by the actuators is limited. Ignoring this problem may reduce
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the performance of the controller or even cause instability. At present, the auxiliary variable
system [24–27], adaptive method [28], FL [29], NN [30], MPC [31,32], and DAI [33,34] are
common means used to address actuator saturation. In [27], the saturation effects of rudder
angle in diving control of AUVs were compensated by a modified auxiliary system with
time-varying nonlinear gains. In [28], a smooth dead zone based model was designed to
linearize the actuator model, so that the adaptive law could be applied to eliminate input
saturation and actuator failure. In [31,32], a 3D trajectory tracking controller based on
MPC was proposed such that the state and control input of the AUV did not exceed their
respective physical constraints. In [33], DAI was recently applied to guarantee saturation
avoidance and the techniques were applied to DC motor control for UUVs [34]. However,
most of the methods used to solve input saturation are relatively complex, and some require
additional design of new systems. In addition, methods such as NN and FL require strong
computing power, which is a significant challenge for AUVs.

In the above literature, the Lyapunov method occupies an absolute position in the
design and stability analysis of the system. However, for a complex nonlinear system,
it is not easy to find a suitable Lyapunov function and prove that its first derivative is
UND. In recent years, the continuous development of CT [2] provides researchers with new
ideas. It studies the convergence properties of system trajectory, which is very applicable
to tracking control problems. At present, CT has been widely used in many fields, such
as controller and observer design [35–39], cooperative control [40,41], SPS [3,42], iterative
learning control [43,44], convex optimization [45,46], and so on.

Compared with the extensive application in other fields, the application of CT in AUVs
is still rare, and the model of AUVs in some rare applications is relatively simple. In [35],
CT was used to design the position and velocity observer for an AUV with 1-DOF and
analyse the convergence properties. In [47], after omitting the Coriolis and centripetal terms
in the dynamic equation, CT was applied to design an UGES observer for a 6-DOF AUV.
Unfortunately, the simulation results of the observer were not shown. In [48,49], combining
the CT and the backstepping method, the author designed a speed stabilization controller
and a trajectory tracking controller for a simplified AUV, and discussed the incremental
stability of the AUV system. In [37], CT was applied to construct a trajectory tracking
controller for an openframe AUV under the pH framework.

3. AUV Modelling
3.1. AUV Modelling in the Horizontal Plane

This section establishes a horizontal 3-DOF kinematics and dynamics model for an
underactuated AUV. To describe the motion of the AUV, we first define two reference
frames: earth-fixed frame and body-fixed frame, as shown in Figure 1. Here, (x, y, z)T

and (ϕ, θ, ψ)T denote the position vector and the attitude vector relative to the earth-fixed
frame, respectively. The terms (u, v, w)T and (p, q, r)T represent the linear velocity vector
and angular velocity vector with respect to the body-fixed frame, respectively.

Figure 1. Schematic diagram of coordinate system.
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Since the motion considered here is the motion of an underactuated 3-DOF AUV in
the horizontal plane, the dynamics in heave, roll, and pitch directions are all neglected and
the AUV is supposed to be neutrally buoyant. The kinematics model is such that [50]

ẋ = ucosψ− vsinψ
ẏ = usinψ + vcosψ
ψ̇ = r

(1)

and the dynamics model
m11u̇−m22vr− Xuu− X|u|u|u|u = τu + τd1

m22v̇ + m11ur−Yvv−Y|vs.|v|vs.|v = τd2
m33ṙ + (m22 −m11)uv− Nrr− N|r|r|r|r = τr + τd3

(2)

where m11 = m− Xu̇, m22 = m− Yv̇ and m33 = Iz − Nṙ. m is the AUV’s mass; Iz is the
moment of inertia about the yaw rotation; Xu̇, Yv̇, and Nṙ are the hydrodynamic added mass
terms in the surge, the sway, and the yaw directions, respectively; Xu, Yv, and Nr are the
linear damping terms, and X|u|u, Y|vs.|v, and N|r|r are the second-order damping terms. τu
and τr are control inputs for the surge force and the yaw torque. τd1, τd2, and τd3 represent
the total disturbances in three directions, they are composed of model uncertainties and
time-varying environmental disturbances.

To facilitate subsequent design, (2) is simplified as follows:
u̇ = fu + m−1

11 τu + m−1
11 τd1

v̇ = fv + m−1
22 τd2

ṙ = fr + m−1
33 τr + m−1

33 τd3

(3)

with fu = m−1
11 (m22vr + Xuu + X|u|u|u|u), fv = m−1

22 (−m11ur + Yvv + Y|vs.|v|vs.|v), and
fr = m−1

33 ((m11 −m22)uv + Nrr + N|r|r|r|r).
This paper also considers the problem of actuator saturation. In order to deal with this

problem, we design a control law τi = σ(τci, τmax), i = u, r, where τci is the force/torque
calculated by the controller, τmax represents the maximum force/torque that the actuator
can provide, τi is the actual output force/torque of the actuator, and σ(·) is a bounded
smooth function, which satisfies

σ(0, τmax) = 0
sσ(s, τmax) > 0, ∀ s 6= 0
lim

s→+∞
σ(s, τmax) = τmax, lim

s→−∞
σ(s, τmax) = −τmax

∂σ(s,τmax)
∂s > 0, ∀s ∈ Ds ∈ R

(4)

As we know, many functions including the Gaussian error function and hyperbolic tangent
function satisfy the properties in (4). Here we choose the hyperbolic tangent function (Figure 2),
so the form of the controller is τ = σ(τc, τmax) = τmaxtanh(τc/τmax), where τ = [τu τr]T,
τc = [τcu τcr]T.

Figure 2. Schematic diagram of tanh(x).
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The dynamics model considering actuator saturation is obtained:
u̇ = fu + m−1

11 σ(τcu, τmax) + m−1
11 τd1

v̇ = fv + m−1
22 τd2

ṙ = fr + m−1
33 σ(τcr, τmax) + m−1

33 τd3

(5)

The following Assumptions are made to facilitate the subsequent design and analyses:

Assumption 1. τd1, τd2, and τd3 are all unknown and time-varying, and their first and second
time derivatives are bounded.

Remark 1. The disturbances are bounded since the energy of the environmental disturbance and
the state of AUVs are finite. Therefore, Assumption 1 is reasonable.

3.2. Coordinate Transformation

To cope with the problem of underactuation, the following coordinate transformation
is introduced [10,12]: {

xr = x + lcosψ
yr = y + lsinψ

(6)

where l > 0 is a constant, xr → x, y→ y as l → 0. The first order derivatives of xr and yr
with respect to time are given:{

ẋr = ucosψ− vsinψ− lrsinψ
ẏr = usinψ + vcosψ + lrcosψ

(7)

Subsequently, the second derivatives of xr and yr are obtained:{
ẍr = u̇cosψ− (v̇ + lṙ)sinψ− fx(z)
ÿr = u̇sinψ + (v̇ + lṙ)cosψ + fy(z)

(8)

where z = [u v r ψ]T , {
fx(z) = ursinψ + (vr + lr2)cosψ
fy(z) = urcosψ− (vr + lr2)sinψ

(9)

In the light of (5) and (8), we have{
ẍr = Fx(z)− fx(z) + ∆x + m−1

11 cosψσ(τcu, τmax)− lm−1
33 sinψσ(τcr, τmax)

ÿr = Fy(z) + fy(z) + ∆y + m−1
11 sinψσ(τcu, τmax) + lm−1

33 cosψσ(τcr, τmax)
(10)

where {
Fx(z) = fucosψ− ( fv + l fr)sinψ

∆x = m−1
11 τd1cosψ− (m−1

22 τd2 + lm−1
33 τd3)sinψ

(11)

{
Fy(z) = fusinψ + ( fv + l fr)cosψ

∆y = m−1
11 τd1sinψ + (m−1

22 τd2 + lm−1
33 τd3)cosψ

(12)

Let η1 = [xr yr]T be the reference trajectory and η2 = [ẋr ẏr]T , (10) can be rewritten as
follows: {

η̇1 = η2
η̇2 = Φ(z) + ∆ + g(ψ)σ(τc, τmax)

(13)

where Φ(z) = [Fx(z)− fx(z) Fy(z) + fy(z)]T , ∆ = [∆x ∆y]T is the combined disturbance
vector and

g(ψ) =
[

m−1
11 cosψ −lm−1

33 sinψ

m−1
11 sinψ lm−1

33 cosψ

]
(14)

It is obvious that the matrix g(ψ) is nonsingular for any ψ. The control objective is
to design a controller τc such that the reference trajectory η1 = [xr yr]T converges to the



J. Mar. Sci. Eng. 2023, 11, 805 6 of 18

desired trajectory ηd = [xd yd]
T asymptotically, and the error between the actual trajectory

η = [x y] and the desired trajectory is small enough. In addition, considering that the
disturbance ∆ is unknown, a DO is needed.

Assumption 2. According to Assumption 1, (11) and (12), the disturbance vector ∆ and its first
derivative are also bounded. For the convenience of subsequent analysis, we assume that ‖∆̇‖ ≤ ∆.

Assumption 3. The desired trajectory ηd = [xd yd]
T and its first two time derivatives η̇d, η̈d are

bounded. Furthermore, the desired yaw angle ψd = arctan ẏd(t)
ẋd(t)

is also bounded.

4. DO and Saturated Controller Design
4.1. DO Design

Here, we introduce an auxiliary variable to design a DO to estimate ∆, and its expres-
sion is as follows:{

∆̂ = ξ + K1η2
ξ̇ = K1(−Φ(z)− gψσ(τc, τmax))− K1(ξ + K1η2)

(15)

where ∆̂ is the estimated value of ∆, ξ is the auxiliary variable and K1 > 0 is the observer
gain. Define the estimation error e1 = ∆̂− ∆. According to (13) and (15), the dynamic of e1
is obtained as follows:

ė1 = ˙̂∆− ∆̇ (16)

= K1(−Φ(z)− f (z)− gψσ(τc, τmax))− K1∆̂ + K1η̇2 − ∆̇

= −K1e1 − ∆̇

according to Assumption 2, the dynamic of e1 can be regarded as the combination of the
nominal dynamic ė0 = −K1e0 and the bounded disturbance ∆̇. Obviously, the nominal dy-
namic is contracting with respect to e0 with a contracting rate λ1 = K1 and a transformation
matrix Θ1.

According to triangular inequality, we obtain ‖e1‖ ≤ ‖e1 − e0‖ + ‖e0‖. Since
ė0 = −K1e0 is contracting, there is ‖e0(t)‖ ≤ ‖e0(0)‖ and e0(0) is the initial value of e0.
Then, applying the robust properties of contracting system, we can obtain

‖e1‖ ≤ ‖e1 − e0‖+ ‖e0‖

≤ χ1‖e1(0)− e0(0)‖exp−λ1t +
χ1∆
λ1

+ ‖e0(0)‖

= v1 (17)

where χ1 is the upper bound of the condition number of Θ1.
We can see that v1 consists of three parts. The first part χ1‖e1(0)− e0(0)‖exp−λ1t will

converge to zero exponentially, so the size of v1 will ultimately depend on the last two
items. Obviously, ‖e1‖ can be infinitely close to zero by selecting the appropriate observer
gain and the initial estimation values of the disturbances.

4.2. Saturated Controller Design

In this subsection, we apply CT and SPT to design a saturated controller. Firstly, we
define a tracking error e2 = η1(t)− ηd(t) and then construct a new variable based on e2:

S = ė2 + K2e2 (18)

here K2 > 0 is the gain. From the definition of S, we know that
S→ 0⇒ e2 → 0 (19)
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In the light of (13) and (18), we have

Ṡ = F(z, τc, ∆, e2) = Φ(z) + ∆ + g(ψ)σ(τc, τmax)− η̈d + K2ė2 (20)

The present objective is to design a controller τc to make S converge to 0. Applying
SPT, we construct a dynamic process for τc:

µτ̇c = H(z, τc, ∆, e2, µ) = −gT(ψ)(K3S + Φ(z) + ∆ + g(ψ)σ(τc, τmax)− η̈d + K2ė2) (21)

where 0 < µ� 1 is the singular perturbation parameter and K3 > 0 is the controller gain.
Equations (20) and (21) constitute a standard SPS [51], where (20) is the slow subsystem,

and (21) is the fast subsystem. Since µ� 1, the dynamic process of (21) is much faster than (20).
Now, we apply CT to analyse the properties of the controller. By solving the partial

derivative of τc, the Jacobian of (21) is

Jb = − 1
µ

gT(ψ)g(ψ)

[
∂σ(·)
∂τu

∂σ(·)
∂τr

]
(22)

According to the properties of σ(·) and g(ψ), it is obvious that Jb is UND. Therefore, for
any z, ∆, e2, and µ, H(z, τc, ∆, e2, µ) is partially contracting with respect to τc, we assume
that the contracting rate is λ2

µ and the transformation matrix is Θ2. Then, according to the
results in [3], the algebraic equation H(z, τc, ∆, e2, 0) = 0 can be equivalently written as
τd = ϑ(z, ∆, e2), i.e., there is a unique, global mapping between τc and z, ∆, e, where τd is
the root of the above algebraic equation, which is also called the quasi-steady state of the fast
subsystem (21). According to the properties of contracting system, τc converges to its quasi-
steady state τd exponentially. Now, solving the algebraic equation H(z, τd, ∆, e2, 0) = 0,
we obtain

σ(τd, τmax) = g−1(ψ)(−K3S−Φ(z)− ∆ + η̈d − K2ė2) (23)

according to SPT, the slow subsystem can be simplified via the quasi-steady state of the fast
subsystem, therefore, bring (23) into (20), and the simplified slow subsystem is obtained:

Ṡ = −K3S (24)

since K3 > 0, the dynamic of S is contracting with a transformation metric I and a contract-
ing rate λs = K3. Therefore, S converges to 0 exponentially. Based on the above analysis,
we know that

µ→ 0⇒ τc → τd ⇒ S→ 0 (25)

Therefore, when µ is small enough and K3 is large enough, τc → τd and S→ 0 quickly.
At the same time, due to the existence of σ(·), the control input will not exceed the limit
of the actuator. Compared with the literature in the introduction, the method proposed
in this paper is simple in form and convenient in application when dealing with actuator
saturation.

Since it has been proven in Section 3.1 that ∆̂ approaches ∆ infinitely, we replace ∆

in (21) with its estimated value, and the practical controller can be obtained:

µτ̇c = −gT(ψ)(K3S + Φ(z) + ∆̂ + g(ψ)σ(τc, τmax)− η̈d + K2ė2
τ = τmaxtanh(τc/τmax)

(26)

In order to ensure the fast convergence of τc to τd and e2 to 0, K2, K3 and µ should
be reasonably selected. At the same time, K1 should be large enough to ensure the rapid
convergence of the estimation error. Of course, due to the complexity of the system, each
parameter has an impact on the performance of the controller. After many simulations,
we find that three parameters l, µ, and K2 have a significant impact on the performance of
the controller. For l, when l is too small, the controller may diverge, while too large l will
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reduce the tracking accuracy. Reducing µ can improve the convergence speed, but it also
makes the changes of the control input less smooth. For µ , the smaller the µ , the faster the
convergence speed will be, but it will lead to drastic changes in the control input, while an
excessively large µ will reduce the convergence speed. At the same time, the larger the K2
, the faster the convergence speed, but this will cause oscillation. In addition, K1 mainly
affects the performance of DO, and K3 has a limited impact on the results. Based on the
above analysis, it is necessary to make a balance between tracking accuracy, convergence
speed, and smooth changes in control input when selecting parameters.

5. Error Analysis
5.1. Error Analysis of Control Variables

As analysed above, when τc converges exponentially to its quasi-steady state τd, the
contracting reduced-order slow subsystem will be obtained. However, there is always an
error between τc and τd, because µ can only be be as small as possible and cannot be equal
to zero. Here, we make a quantitative analysis of the error between τc and τd.

Defining the control variable error τe = τc − τd. According to SPT, the fast boundary
layer dynamics in a new time scale t1 = t

µ can be derived as

dτe

dt1
= H(z, τe + τd, ∆̂− e1, e2, µ)− µτ̇d (27)

The unperturbed error dynamic of (27) is

dτe

dt1
= H(z, τe + τd, ∆̂− e1, e2, µ) (28)

Because the Jacobian Jb in (22) is UND, it implies that (28) is also partially contracting with
respect to τe, and the contracting rate is λ2

µ and the transformation matrix is denoted as Θ2

with a supermum condition number χ2. Assume that τ̇d is Lipschitz continuous in τe and
e1 [42], i.e.,

‖τ̇d(·)‖ ≤ c1‖τe‖+ c2‖e1‖+ c3 (29)

where c1, c2, c3 are all positive constants.
According to the robust properties of contracting system and ignoring the initial value

of τe,

‖τe(t)‖ = ‖τc − τd‖ ≤ χ2‖τc(0)− τd(0)‖exp
− λ2

µ2 t
+

µχ2(c1‖τe‖+ c2‖e1‖+ c3)

λ2
(30)

then, we can obtain

‖τe(t)‖ ≤
λ2χ2

λ2 − µχ2c1
‖τc(0)− τd(0)‖exp

− λ1
µ2 t

+
µχ2(c2v1 + c3)

λ2 − µχ2c1
(31)

it can be observed that τe depends not only on µ, but also on λ2 and χ2, which are related
to the values of observer gain and controller gain. Therefore, τe can be very small by
reasonably selecting parameters.

5.2. Analysis of Tracking Error

The existence of e1 and τe causes S to fail to converge to zero. In this subsection, a
quantitative analysis of S is conducted. By performing some simple transformations on (20),
we obtain a new dynamic form of S

Ṡ =Φ(z) + g(ψ)σ(τd, τmax) + ∆− η̈d + K2ė2+

Φ(z) + g(ψ)σ(τc, τmax) + ∆− η̈d + K2ė2−
(Φ(z) + g(ψ)σ(τd, τmax) + ∆− η̈d + K2ė2) (32)



J. Mar. Sci. Eng. 2023, 11, 805 9 of 18

By substituting (23) in (32), we obtain

Ṡ = −K3S + g(ψ)σ(τd, τmax)(σ(τc, τmax)− σ(τd, τmax)) (33)

Similarly, the dynamic of S can be regarded as the coupling of the contracting nominal
dynamic Ṡ0 = −K3S0 and the bounded disturbance g(ψ)(σ(τc, τmax)− σ(τd, τmax)). Sup-
pose the contracting rate is λ3 and the transformation matrix is Θ3. For the convenience of
analysis, it is further assumed that g(ψ)(σ(τc, τmax)− σ(τd, τmax)) is Lipschitz continuous
in τe with constant L, i.e.,

‖g(ψ)(σ(τc, τmax)− σ(τd, τmax))‖ ≤ L‖τc − τd‖ = L‖τe‖ (34)

Continuing to apply the triangular inequality and the robustness property of the
contracting system, and we can obtain:

‖S‖ ≤ ‖S− S0‖+ ‖S0(0)‖

≤ χ3‖S(0)− S0(0)‖exp−λ3t +
χ3L‖τe‖

λ3
+ ‖S0(0)‖ (35)

where χ3 is the upper bound of the condition number of Θ3 and S0(0) is the initial value
of S0. If we replace τe in (35) with (31), a more detailed expression of S can be obtained.

From the above analysis, we can see that the estimation error and tracking error can
finally converge to a small range by reasonably selecting the controller gain, the observer
gain, and the singular perturbation parameters.

6. Numerical Simulations

In this section, based on Matlab Simulink, numerical simulations on the Remus
AUV [52] are conducted to illustrate the effectiveness of the proposed method; the pa-
rameters in (2) are given as follows: m = 30.58, Iz = 3.45, Xu̇ = −0.93, Yv̇ = −35.5,
Nṙ = −4.88, Xu = −13.5,Yv = −66.6, Nr = −6.87, X|u|u = −1.62, Y|v|v = −131 and
N|r|r = −188.

In order to highlight the advantages of this method, the simulation results obtained
based on the methods in [53] are compared with the results in this paper. In [53], the
sliding mode control method was applied to deal with the trajectory tracking problem of an
underactuated AUV by introducing a first-order sliding surface in terms of surge tracking
errors and a second-order surface in terms of lateral motion tracking errors. The sliding
surfaces are defined as {

S1 = eu + λ1
∫ t

0 eu(τ)dτ

S2 = ėv + λ3ev + λ2
∫ t

0 ev(τ)dτ
(36)

where λ1, λ2, λ3 > 0. eu = u− ud and ev = v− vd are tracking errors for surge and sway
velocity, respectively. ud and vd are desired surge velocity and sway velocity, and they are
defined as follows: [

ud
vd

]
=

[
cosψ sinψ
−sinψ cosψ

][ẋd + lxtanh(− kx
lx

xe)

ẏd + lytanh(− ky
ly

ye)

]
(37)

where kx, ky > 0 are controller gains and lx, ly > 0 are saturation constants. xe = x− xd
and ye = y− yd are position tracking errors.

Then, the control law is given by{
τu = τu,eq + τu,sw
τu = τr,eq + τr,sw

(38)
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where

τu,eq = −m22vr− Xuu− X|u|u|u|u + m11u̇d −m11λ1eu

τu,sw = m11(−k1S1 −W1sign(S1)

τr,eq = −(m11 −m22)uv− Nrr− N|r|r|r|r + (m11m−1
22 u̇r−m−1

22 (Yv + 2sign(v)Y|v|vv)v̇)/b

+ (Γ− λ3 ėv − λ2ev)/b

τr,sw = (−k2S2 −W2sign(S2))/b

b = m−1
33 (ud −m11m−1

22 )

Γ = −...
x dsinψ +

...
y dcosψ− ẍdrcosψ− ÿdrsinψ− u̇dr + γ1rcosψ + γ2rsinψ

+ γ̇1sinψ− γ̇2cosψ

γ1 = kx ẋesech2(− kx

lx
xe)

γ2 = kyẏesech2(−
ky

ly
ye)

The first derivatives of the desired velocity is given by[
u̇d
v̇d

]
= r
[
−sinψ cosψ
−cosψ −sinψ

][ẋd + lxtanh(− kx
lx

xe)

ẏd + lytanh(− ky
ly

ye)

]
+

[
cosψ sinψ
−sinψ cosψ

][
ẍd − γ1
ÿd − γ2

]
(39)

There are two types of trajectories that need to be tracked by the AUV, one is a
sinusoidal curve, and the other is a combination of straight lines and circles.

Trajectory 1: Sinudoidal curve{
xd(t) = 0.5t
yd(t) = 20cos(0.02t)

The total simulation time is 200π s. To facilitate the distinction, we mark the simulation
based on the method in this paper as Case 1, while the simulation based on the literature [53]
is marked as Case 2. The various settings for Case 1 and Case 2 simulations have been
given in Table 1.

Table 1. Settings in Case 1 and Case 2.

Terms Case 1 Case 2

parameters
l = 0.35, K1 = 10, K2 = 0.024 lx = ly = 1, kx = ky = 0.5

K3 = 500, µ = 0.01 l1 = l2 = l3 = 1
k1 = k2 = 1, W1 = W2 = 0.1

initial
conditions

[x(0) y(0) ψ(0)]T = [0 − 2 0]T [x(0) y(0) ψ(0)]T = [0 − 2 0]T

[u(0) v(0) r(0)]T = [0.2 0 0]T [u(0) v(0) r(0)]T = [0.2 0 0]T

ξ(0) = 0, τc(0) = 0

actuator limitation τu,max = τr,max = 30

Trajectory 2: A combination of straight lines and circles{
xd(t) = 0.4t, yd(t) = 20, t < 100
xd(t) = 40 + 20cos(0.02t + 1.5π − 2), yd(t) = 40 + 20sin(0.02t + 1.5π/− 2), t ≥ 100

The total simulation time is 100π + 100 s. Similarly, two simulations are called Case 3
and Case 4, respectively. The various settings required for them are shown in Table 2.
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Table 2. Settings in Case 3 and Case 4.

Terms Case 3 Case 4

parameters
l = 0.25, K1 = 50, K2 = 0.08 lx = ly = 1, kx = ky = 0.5

K3 = 500, µ = 0.02 l1 = l2 = l3 = 1
k1 = k2 = 1, W1 = W2 = 0.1

initial
conditions

[x(0) y(0) ψ(0)]T = [−1 − 18 0]T [x(0) y(0) ψ(0)]T = [−1 − 18 0]T

[u(0) v(0) r(0)]T = [0.2 0 0]T [u(0) v(0) r(0)]T = [0.2 0 0]T

ξ(0) = 0, τc(0) = 0

actuator limitation τu,max = 30, τr,max = 25

The following disturbances are considered in these simulations:
τd1 = 0.1 fu − 3 + 2sin(0.2t) + 2ε(5)
τd2 = 0.2 fv + 5 + 0.2sin(0.2t) + 5ε(5)
τd3 = 0.15 fr + 2 + sin(0.1t) + 3ε(5)

(40)

here, ε(5) is the zero-mean white noise with power intensity of 5%. Specifically, the first term
denotes degrees of model uncertainties. The second, third, and forth terms, respectively,
account for the constant, periodic unknown disturbances, and Gaussian white noise.

Simulation results for Case 1 and Case 2 are shown in Figures 3–6. Figure 3 illustrates
the trajectory of the AUV. It can be seen that both the method in this paper and the sliding
mode control method in the literature have high tracking accuracy. The reference trajectory
in Case 1 and the actual trajectory in Case 2 all converge to the desired trajectory. Of course,
the error between the actual trajectory and the desired trajectory in Case 1 is relatively
large, which can be more clearly seen from Figure 4.

Figure 3. The comparison of trajectories in Case 1 and Case 2.

(a) (b)

Figure 4. The tracking errors in Case 1 and Case 2: (a) position error, (b) heading angle error.
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Figure 5. The estimation results of DO in Case 1.

Figure 6. The control inputs in Case 1 and Case 2.

Figure 4 shows the trajectory tracking error and heading angle error, where
ηe1 =

√
(x− xd)2 + (y− yd)2 and ηe2 =

√
(xr − xd)2 + (yr − yd)2 denote the trajectory

tracking error, ψe = ψ − ψd represents the heading angle error. It can be seen from
Figure 4a that the trajectory error ηe2 in Case 1 converges after about 200s, and it is almost 0,
indicating that the reference state defined via coordinate transformation can accurately
be traced to the desired state. However, ηe1 in Case 1 does not converge to 0 but remains
around 0.35, which is just the value of l. Reviewing Equation (6), we know that there is
an inherent error between the reference state and the actual state. The results here just
confirm this phenomenon. A very natural idea is that the value of l should be as small
as possible to reduce ηe1. However, we find in the simulation that too small l will lead to
slower convergence and even divergence. Therefore, the value of l should be balanced
between tracking accuracy and convergence speed. In contrast, the sliding mode control
methods in the literature have high tracking accuracy and convergence speed regardless of
trajectory tracking error shown in Figure 4a or heading angle error shown in Figure 4b, which
is a disadvantage of the method in this paper.

Figure 5 provides the results of the DO in Case 1. It reveals that the unknown distur-
bance including model uncertainties and time-varying environmental disturbance can be
accurately estimated by the DO designed in this paper.

Figure 6 shows the control inputs of surge force and yaw torque in Case 1 and Case 2. It
can be seen that the method in this paper considers the problem of input saturation, so neither
τu nor τr exceed the limitation of the actuator, and the control input changes smoothly, which is
conducive to the stable operation of the actuator. However, the methods in the literature do not
solve the problem of input saturation. We can see that at the initial stage of simulation, both τu
and τr are large, which can easily exceed the limitation of the actuator. Moreover, due to the use
of symbolic functions in the controller, there is significant chattering in the control input curve,
which is detrimental to the stable operation of the actuator.
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In general, the sliding mode control methods in the literature excel in tracking accuracy
and convergence speed. The advantage of the method in this paper lies in the simple form
of the controller, and it easily solves the problem of input saturation, ensuring stable
changes in control inputs and stable operation of the actuator. Of course, improving
tracking accuracy and convergence speed is the work we must do in the next stage.

Simulation results for Case 3 and Case 4 are shown in Figures 7–10. It can be seen that
the conclusions obtained from the analysis of Case 1 and Case 2 are still applicable here.
Although the desired trajectory becomes more complex, the AUV still tracks the desired
trajectory accurately. At the same time, even if the input saturation is more complex, the
saturated controller proposed in this paper enables the control input in each direction to
not exceed the limit of the actuator. Similarly, it can be seen that the performance of the
sliding mode control method in the literature in Case 4 is the same as in Case 2.

Figure 7. The comparison of trajectories in Case 3 and Case 4.

(a) (b)
Figure 8. The tracking errors in Case 3 and Case 4: (a) position error, (b) heading angle error.

Figure 9. The estimation results of DO in Case 3.
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Figure 10. The control inputs in Case 3 and Case 4.

In all of above simulation results, the proposed controller works well for the horizontal
trajectory tracking of underactuated AUVs in the presence of unknown internal and external
disturbances. Therefore, we reach a conclusion that the validity and efficacy of the proposed
method and proposed control scheme are sufficiently demonstrated.

7. Conclusions

This paper focusses on the horizontal trajectory tracking control of a 3-DOF underactu-
ated AUV in the face of model uncertainties, time-varying external disturbance, and input
saturation. A coordinate transformation is introduced to tackle the problem of underactua-
tion and a DO is designed to estimate the total unknown disturbance. Applying CT and
SPT, we design a saturation controller and perform quantitative analysis for the estimation
error and the tracking error. Simulation results show that the controller proposed in this
paper makes the AUV track the desired trajectory well and avoid the problem of input
saturation. Of course, compared to the methods in the literature, the method in this paper
still needs to be improved in terms of tracking accuracy and convergence speed. Therefore,
the next research direction is to improve the tracking accuracy and convergence speed on
the basis of this paper, while expanding the research results to the 3D trajectory tracking of
underactuated AUVs.
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Appendix A

Due to the use of many abbreviations in this paper, for the sake of standardization, they
are summarized in the Table A1 according to the order in which they appear in the paper.
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Table A1. The abbreviations used in this paper.

Abbreviation Full Name

AUV autonomous underwater vehicle
CT contraction theory
DO disturbance observer
SPT singular perturbation theory
SPS singular perturbation system
NN neural networks
FL fuzzy logic

DOF degrees-of-freedom
USV unmanned surface vehicle
SF Serrent–Frenet

ESO extended state observer
3D three-dimensional

MPC model predictive control
DAI deterministic artificial intelligence
UUV unmanned underwater vehicles
UND uniformly negative definite
UGES uniformly global exponential stable

pH port-Hamiltonian

Appendix B

Appendix B.1. Contraction Theory

For a nonlinear system

ẋ = f (x, t), x(t0) = x0, ∀t ≥ t0 ≥ 0 (A1)

where x(t) ∈ Rn is the state vector, t is the time and f : R×Rt≥t0 → Rn is a nonlinear
smooth function, meaning that all required derivatives and partial derivatives exist and are
continuous. If there is a positive scalar λ and a uniformly positive matrix Θ, such that

(F + FT)/2 ≤ −λIn (A2)

then (A1) is said to be contracting, where In denotes the identity matrix with dimension
n, F = (Θ̇ + ΘT ∂ f (x,t)

∂x )Θ−1 is the generalized Jacobian. For a contracting system, the
trajectories starting from any initial condition will converge together exponentially. If λ = 0,
(A1) is called semi-contracting and all its trajectories converge together asymptotically [2].

Partial contraction is a very important concept in CT [40]. Let the auxiliary system,
called virtual system

ς̇ = f (ς, x, t) (A3)

associated with (A1) through f (x, x, t) = f (x, t). Assume that (A3) is contracting with
respect to ς, i.e., the Jacobian ∂ f (ς,x,t)

∂ζ is UND for any ς and x.
If a particular solution of the virtual system verifies a smooth specific property, then

all trajectories of the original x-system verify the same property exponentially. The original
system is called partial contracting.

When a contracting system is subject to bounded disturbance, the error between the
trajectory of the system after the disturbance and the original system trajectory is very
small, that is, the contracting system is robust.

Consider the perturbed system:

ẋp = f (xp, t) + d(xp, t) (A4)
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where d(xp, t) is bounded, i.e., ∃ d0 ≥ 0, ∀xp, ∀t ≥ 0, ‖d(xp, t)‖ ≤ d0. Then the error
between x(t) and xp(t) satisfies

‖xp(t)− x(t)‖ ≤ χp‖xp(0)− x(0)‖exp−λt +
χpd0

λ
(A5)

where χp is the upper bound of the condition number of Θ.

Appendix B.2. Contraction Analysis of Singular Perturbation System

For a standard singular perturbation system (SPS) [51]:{
ẋ = f (x, z)
εż = g(x, z, ε)

(A6)

0 < ε � 1 is the singular perturbation parameter. For any z, if the virtual system ẏx =
f (yx, z) is contracting with respect to yx, then the system (A6) is called to be partially
contracting with respect to x. Similarly, it is partially contracting in z when the virtual
system εẏz = g(x, yz, ε) is contracting for any x [3,40].

If the system (A6) is partially contracting in z, there exist a unique, global mapping
between x, z and ε [3], i.e., the algebraic equation g(x, z, ε) = 0 can be equivalently written
as z = h(x, ε), here h(x, ε) is called slow manifold or the quasi-steady state of the z-
subsystem. According to SPT, the x-subsystem can be simplified by introducing the slow
manifold into the x-subsystem:

ẋre = f (xre, h(xre, ε)) (A7)

To analyse the convergence behavior between z and the slow manifold h(x, ε), we
define a error variable y = z− h(x, ε), and the dynamic for y can be expressed as:

dy
dτ

= g(x, y + h(x, ε), ε)− ε
h(·)
dt

(A8)

where τ = t
ε is a new time scale. Then, the dynamic behavior of the whole SPT (A6) can be

determined by analysing the behavior of the reduced order state variables xre and z.
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