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Abstract: When analyzing the dynamic characteristics of marine cables, the static equilibrium state
must first be calculated; a dynamic analysis can then be carried out based on the static equilibrium.
Since the calculation of the static equilibrium is the basis of dynamic calculation, different methods
for the calculation of the static equilibrium will have important impacts on the dynamic response
characteristics of cables, which result in cables having different dynamic characteristics. This paper
summarizes the research progress in the effects of different methods for the calculation of the static
equilibrium on the dynamic response of marine cables during the releasing process, and current
methods for their static calculation are more comprehensively developed as well as being more
accurate. To study the influence of different static equilibrium calculation methods, with the reference
of some specific parameters of a mooring cable, combined with specific sea conditions, through the
necessary simplification of the cable releasing process, based on the lumped mass method, mooring
cables are discretized into the lumped mass model, and dynamic analysis models of the releasing
process of mooring cables under three methods for the calculation of the static equilibriums (the fast
static equilibrium calculation method, the analytic catenary calculation method, and the catenary
calculation method) are established. The dynamic characteristics of the spatial configurations of
mooring cables based on different static equilibrium calculation methods are obtained through time
domain coupling analyses. It was found that if the static equilibrium of a cable is calculated, taking
into account gravity, buoyancy, wave current resistance, inertia forces, and the axial stiffness of a
cable, then the characteristics of a cable during dynamic descent are closest to that of a real situation.
The calculation results have a certain guiding significance for specific engineering practices.

Keywords: marine cables; different static equilibrium calculation methods; dynamic analysis; lumped
mass method; dynamic characteristics

1. Review of Calculation Methods

Marine composite mooring and towing lines are usually composed of lines, chains,
buoys, and underwater objects; they are subject to wave, current, and other interactions.
The calculation of a marine cable is divided into two parts: a static analysis and a dynamic
analysis, where the static analysis is the basis for the dynamic analysis and the results are
used as the initial conditions for the dynamic analysis [1–3], so it is necessary to predict
their static configuration under different conditions from the early stage of the design
process. Section 1.1. introduces the static equilibrium calculation of a marine cable and
describes the different methods currently used for a static analysis. Section 1.2. introduces
the current methods for and research progress in the calculation of the dynamic response
of a marine cable.
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1.1. Static Equilibrium Calculation of a Marine Cable

The analysis of and research on the performance of traction/mooring systems be-
gan at the beginning of the 20th century. At the beginning, Macleod performed a two-
dimensional analysis of a traction cable in 1918. In 1957, Zajac, E.E., carried out a study
on a three-dimensional analysis of a balanced configuration of suspended telephone ca-
ble applications [4]. In 1980, Nakajima et al. [5] developed a new method based on a
lumped mass model that can be used for the complete analyses (both static and dynamic)
of cable mechanics.

So far, various methods (the lumped mass model, the quasistatic model, the finite
element model, etc.) have been used in mooring line modeling [6]. In order to fully
analyze cable movement, the initial configuration of a cable must be determined, which is
considered as a balanced configuration, as shown in Figure 1. The model is composed of
the differential equations of the static equilibrium configuration [7].

Figure 1. The equilibrium configuration of a mooring cable [7].

The solutions can be obtained in two different cases: The first is where the boundary
conditions are imposed at both ends of the line; only a part of the configuration parameters
is known, and the remaining parameters are determined through computation. The second
is where the boundary conditions are imposed only at one of the line ends. All of the
parameters must be known at the cable end where the computation begins. The conditions
that are required for stopping the computation are imposed at the other line end.

Researchers have come to recognize the importance of gravity, buoyancy, shear forces,
and the axial elasticity of a cable in the static analysis of a marine cable. When the flow
velocity is low, the influence of friction can be ignored. This is not the case for most traction
systems. For these traction systems, the coefficient of friction is usually determined by
experiments through hydrodynamic or aerodynamic tests on a sample cable. According
to Pode’s test data [8], the tangential component of hydrodynamic force acting on circular
and stranded cables was significantly smaller than the normal component, except that
the cable and water flow were inclined at a very small angle. In addition, if a cable was
too short and the tension change in a cable’s length was small relative to the force at the
end of a cable, ignoring the tangential component of fluid dynamics was permitted [7].
S. Chucheepsakul et al. [9] presented a method for the static analysis of a marine cable
spanning two fixed points. The top tension of the cable was given, while the total arc length,
equilibrium configuration, and top as well as bottom angles were determined. In the
analysis, a function was introduced in which the potential energy of stretching and virtual
work carried out by other forces were included the stationary condition of the function;
one of two equilibrium equations were used to solve the problem. Although the governing
differential equations of a cable segment are simple, explicit solutions can only be obtained
for simple cases due to the nonlinearity [10,11]. Jun Zhanga et al. [12] used the lumped
mass method to build a two-dimensional model and investigated the structure as well as
tension distribution of various mooring lines under the combined action of currents and
waves in a quasistatic analysis. The analysis results showed that the pretension, velocity,
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and shear strength had a significant impact on the tension distribution and configuration
of mooring lines. Pankaj Kumar et al. [13] proposed a new dynamic model of catenary
mooring lines based on the vector form eigen finite element (VFFE) method. The purpose
of this method was to calculate the motion of the system, which might include large rigid
body motion, large geometric changes, or very large deformation. Inertia, hydrodynamics,
and seafloor interactions are included in the model.

In most analyses, the effect of axial deformation on the equilibrium configuration is
ignored; however, if the axial flexibility of a cable is large, the results of ignoring axial
deformation need to be carefully checked [14]. Huang et al. [15] proposed a formula with
which to obtain the cable balance configuration considering the effect of axial deformation.
For cases involving small axial strain, the solution was reasonable for engineering appli-
cations. Thomas U. Watson et al. [16] proposed a simulation model which was consistent
with large underwater instrumented structures constructed of extensible cables subject to
arbitrary current profiles. Recent activities in the offshore oil extraction industry require the
adoption of new structural concepts for flexible pipelines (mooring lines and risers) [17,18].
This kind of system presents more and more complex configurations in addition to having
dynamic nonlinear behavior; therefore, the use of an efficient numerical solution program
based on the finite element method becomes a mandatory requirement for its analysis [19].

A number of researchers have since carried out static calculations of cables by improv-
ing the finite element method. The conventional finite element method (FEM) analysis
program for flexible lines is based on the calculation of the initial stable static equilibrium
configuration to define the finite element mesh. This configuration is usually obtained
through the classical catenary equation [20,21]. G. Moe et al. [22] developed an analytical
expression for the shape of steel catenary risers (SCRs) under the influence of its dead
weight, assuming that it was at least evenly segmented along the riser axis. The closed-form
expressions of riser tension and related axial elongation would also be given. Finally, an
approximate but quite accurate solution for SCR bending moment distribution and its in-
fluence on displacement would be given. Chainarong Athisakul et al. [23] proposed a finite
element method with which to calculate the static equilibrium configuration and applied
top tension of an expandable marine riser under the specified total arc length. Based on the
functional principle, the variational formula of an expandable marine riser was formulated.
The variational model formula involves the strain energy caused by bending and axial
tension, as well as the virtual work completed by hydrostatic pressure and other external
forces. Marco Lepidi et al. [24] developed an elastic continuous one-dimensional model for
damaged cables (including geometric nonlinearity). Damage was described as a diffuse
reduction in the axial stiffness of a cable and is defined by its strength, range, and location.
The exact solution of the static balance equation of a cable under the dead weight was
obtained, and the significance of the tension loss and sag increase caused by the damage
was studied under the actual significant parameter changes. Gang Ma et al. [25] established
a nonlinear mechanical model that could be used to deal with large deformation problems
with global slope as the unit coordinate, rather than the rotation used in the traditional
finite element model.

In order to more accurately calculate the static equilibrium results of a marine cable,
many researchers have started to consider the effects of gravity, buoyancy, wave and current
resistance, inertia, and the axial stiffness of the cable on gravity, buoyancy, wave and current
resistance, inertia, and the axial stiffness of the cable. The balance equation is established
in the deformation configuration. With the help of global coordinates, the nonlinear
relationship between the strain and displacement can be easily described. Yang et al. [26]
developed numerical programs for static and dynamic nonlinear analyses of mooring lines.
Based on the total Lagrange formula, a geometrically nonlinear finite element method using
two-point iso-parametric cable elements was obtained, and then the static and dynamic
equilibrium equations of mooring lines were established. The incremental iteration method
was used to determine the initial static equilibrium state of a cable system under the
action of dead weight, buoyancy, and water flow. Traditionally, researchers use numerical



J. Mar. Sci. Eng. 2023, 11, 764 4 of 18

methods to solve unknown responses at the boundary nodes, and the solution is sensitive
to the initial guess. The proposed semi-analytic solution avoids this difficulty [27]. Anil
Kumar Sharma et al. [28] proposed a semi-analytical solution for the static equilibrium
analysis of non-extensible cables to understand their initial configuration and tension.
The obtained results were verified by the numerical solution of static section and cable
tension. In addition, the mooring analysis program (MAP) is an open source project being
developed by the National Renewable Energy Laboratory (NREL) to support the modeling
of floating offshore wind turbines, wave energy converters, ocean current turbines, and
related research topics. The quasistatic model used in the MAP was derived from a set of
closed-form analytical solutions of a continuous cable with homogeneous properties [29].
Such models account for the effects of distributed cable mass, strain, and cable elasticity to
provide the line profile and effective forces for a cable suspended at a steady state (static
equilibrium). Forces arising from inertia, viscous drag, internal damping, bending, and
torsion are neglected [30]. Based on the nonlinear finite element formula, Wan et al. [31]
proposed a method with which to determine the equilibrium configuration and tension of
a submerged rope system in uniform flow. The standard straight rope element was used
to simulate the rope segment of the system. The formula includes rope stretching and
introduces a hydrodynamic model for the rope. When the method is applied to the long
line model, good compatibility between the numerical simulation and the experimental
behavior is shown. In applying the displacement-based finite element method to the
static structural analysis of complex catenary mooring systems, a lack of bending and
compressional stiffness leads to the ill conditioning of the tangent stiffness matrix. Shukai
Wu et al. [32] developed a new adaptive dynamic relaxation algorithm and solved the
dynamic motion equation by using the Newmark integral formula. The detailed adaptive
control program of time step, load step, damping level, and integral parameters were given.
Russell J. Smith et al. [33] solved the catenary equation of a three-component mooring
system consisting of two lines connected to a point buoy or sinker with a given water depth
and fairlead tension. The problem was transformed into an octave polynomial equation
and solved via Laguerre’s iteration. In the absence of buoys or sinkers, the equation was
simplified to a quadratic equation, which could be solved in closed form. The elongation of
the line has been proven to be equivalent to a small uncertainty of the weight per unit of
length. This method has high computational efficiency.

As of now, the static analysis methods for marine cables have become more compre-
hensive and accurate, increasingly taking into account the effects of gravity, buoyancy,
wave resistance, inertial forces, and the axial stiffness of a cable to ensure the accuracy of a
cable’s characteristics during dynamic descent.

1.2. Solution of Marine Cables

Marine cables are supple flexural elements that are commonly employed in marine
resource exploration and development. It is a common occurrence that, during the opera-
tion of the mooring cable in position, the top of the mooring fails to function due to poor
marine conditions or excessive external loading and sinks to the bottom.

The lumped mass model was utilized by Zhu and Wan. They proposed a new ele-
ment reference frame based on the orientation vectors of an element and a fluid’s relative
position. This frame addressed situations in which the Freret frame and Euler angle gen-
erate structural polarities [34]. Huan, Xing et al. [35] proposed a mathematical model
and numerical simulation for laying marine cables along a prescribed trajectory on the
seabed by using a brand new mathematical approach, Augustus et al. [36] discretized a
long cable into several segments and averaged the equivalent distributed dampings based
on the energy dissipated during one cycle. The mathematical formulations were based on
non-dimensional parameters. A comparison was made between the proposed model and
the Classification Society’s recommended practice formulation, as well as non-dimensional
parametric studies. Through the collaboration of Zhang, Bai, and Zhu from Zhejiang Uni-
versity with Zhu and Zhang from Ningbo University, an umbilical cable dynamic model
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was developed. This model was developed to study the dynamics of umbilical cords under
specific interference conditions. Based on the simulation results, different factors affect
interference occurrence, including the depth of the sea, the direction of the waves, and
pipeline length; as the umbilical cable as well as riser depth and size increase, the chan-
nel flexibility will change; and as the wave direction changes, the motion boundary and
collision form of the system changes [37]. Using the Galerkin method, Huang examined
small sagging marine cables operating in alternating taut and slack conditions. According
to the study, it was only necessary to consider the symmetric modes associated with the
mid-span [38]. A variational model formulation was proposed by Chucheepsakul et al. [39]
for analyzing the three-dimensional steady-state behavior of an extensible marine cable. It
is formulated to incorporate virtual strain energy due to cable stretching, as well as virtual
work performed by gravitational, inertial, and external drag forces. Zhu [40] presented
the fact that a new nodal position finite element method could be applied to effectively
simulate the dynamics of cable systems involving large rigid body rotations coupled with
small elastic deformations.

A marine tethered remotely operated vehicle system with large elastic deformations
and snap loads were studied by Zhu et al. [41] using the lumped parameter model. A
linearization iteration scheme was developed by Xu and Wang [42]. A scheme for making
an FSM-based dynamics calculation was time-saving and stable, making it suitable for
predicting the shape of free-hanging marine risers or for controlling them in real time. In a
rotary bending test rig, Witz and Tan [43,44] presented a stress analysis of a marine cable or
umbilical. A mathematical model was also presented to predict the structural behavior of
flexible pipes, umbilicals, and marine cables under axial–torsional loads. Wang et al. [45]
proposed an algorithm for dealing with discrete governing equations that are aimed at the
discrete mathematical model of a towing cable. According to the simulation results, the
length change complicated the movement of the cable. During the start and end stages of
deployment and recovery, cable tension fluctuated severely. A numerical simulation was
used to examine the influence of tugboat motion in waves on the unfolding and recovery of
cables. An analysis of the three-dimensional (3D) behavior of marine cables and segmented
elastic mooring line catenaries used for floating offshore structures was presented by Vaz
and Patel [46]. The formulation and solution of the governing equations were presented.
The response of segmented elastic mooring line catenaries was investigated when subjected
to arbitrary sheared currents.

A numerical and experimental investigation of the dynamic behavior of a towed
low-tension cable applicable to a towed array sonar system for submarine detection was
conducted by Park et al. [47]. The results showed that an effective agreement was only
possible when vibrations initiated by vortices resulted in increased drag coefficients. For
numerical modeling, non-uniform element lengths are also necessary to account for the
sharp variation in tension and shear forces near the top fixed end. An experimental and
numerical study conducted by Niedzwecki and Sreekumar [48] investigated the dynamic
behavior of a towed low-tension cable applicable to the detection of submarines using a
towed array sonar system. In experiments and numerical simulations, Triantafyllou and
Mavrakos [49] also studied the dynamics of mooring lines for deep water applications with
submerged buoys attached to them at the Massachusetts Institute of Technology and the
National Technical University of Athens, respectively. Kurniawan and Mira [50] conducted
a technical study on ocean current power plants. They developed a method for determining
the cable length, dimensions of the pipe protector, stability analysis, and cable-laying
analysis for a subsea cable system. Based on a single-degree-of-freedom model, Huang [51]
examined the dynamic stability of the heave motion of marine cable-body systems op-
erating in taut and slack conditions. Through period doubling, numerical simulations
also demonstrated the transition from a periodic to a chaotic response. Huang [52], from
the University of Strathclyde, presented a numerical method for predicting the dynamic
behavior of marine cables in three dimensions. In order to demonstrate the validity of the
approach, a numerical example is provided. A semi-analytic approach was presented by



J. Mar. Sci. Eng. 2023, 11, 764 6 of 18

Huang and Vassalos to predict the static performance of marine cables. The validity of the
approach was demonstrated by several numerical examples. Ghaddimi et al. [53] used the
lumped mass discretization method to derive equations of motion for flexible risers in three
dimensions. Fluid loading on the structure was calculated using the Morison equation,
which included nodal shear forces and bending moments. Based on a comparison of the
results with experimental values, analytical solutions, and independent publications, it
appeared that the results were in good agreement. Peltzer et al. [54] presented wind tunnel
experiments that examined the effects of forced synchronized vibrations and a helically
wound cross-section of a cable on near-wake vortex shedding parameters. It was found that
the range of flow speeds over which vortex shedding was locked to the vibration frequency
varied directly with vibration amplitude. As a result of the helical cross section and the
synchronized vibration, significant changes in the near-wake development were observed,
which were directly related to the increased hydrodynamic forces associated with unforced
synchronized vibrations. Chen et al. [55] presented a numerical study on the dynamics of
marine cables that were widely used in the offshore industry.

The use of a multiscale full waveform inversion (FWI) was proposed by Bian et al. [56]
in order to improve the illumination coverage of vertical cable surveys. A multiscale FWI is
an effective model-building tool in deep-water exploration, according to synthetic results.
A study conducted by Beasley [57] demonstrated that the acquisition of slanted cables
was necessary for wave equation de-ghosting because the notch frequencies, although
attenuated, were not zero. The study found that slant cables were not advantageous for data
that were noise-free; however, when noise was introduced the slant configuration did show
improved de-ghosting and was less sensitive to noise. Peyrot et al. [58] proposed an efficient
method developed for the static and dynamic analyses of marine cable structures. These
structures are constituted of floating platforms, buoys, weights, anchors, etc., connected
by arbitrary arrangements of cables and flexible pipes. An unlimited number of nodal
points may be specified for displacements and forces, and wave or current interactions
may be simulated. Numerous applications have demonstrated the efficiency of the method.
In order to examine the effect of different types of conductor cross-sections on marine
cable conductor bent performance, Yan et al. [59] selected three types of copper conductors
with the same cross-sectional area, namely non-compressed round, compressed round,
and shaped wire conductors. The type of cross-section significantly affects the bendability
performance of marine cable conductors according to experimental results. A shaped wire
conductor exhibited the highest bending stiffness of the three types of conductors. To
compare and analyze the bending hysteresis curves, four key parameters were selected: the
bending stiffness, the maximum twisting moment, the envelope area, and the engineering
critical slip point.

The Morrison method is widely used to describe hydrodynamic coefficients in wave
conditions [60]. The dynamic behavior of submarine cables under wave and current con-
ditions is examined. A particular increase in drag and inertia phenomena is observed
when roughness is present. Chen et al. [61] developed a dynamic model of the motion
platform with end effectors installed in order to improve positioning accuracy and interfer-
ence resistance. Simulations are used to verify the validity of the method [62]. Rodríguez
Luis et al. [63] developed a numerical model with which to study the dragging action of
floating and submerged bodies. The model improved on previous models used to study
the behavior of mooring systems based on finite element methods. This was because
it considered the Rayleigh spring model, which reduced noise in the numerical results.
Casarella and Michael [64] presented a comprehensive review of research studies on the
prediction of cable system motions under hydrodynamic loads. Using a chronological and
systematic presentation of past research, the state of the art in the development of analytical
models applicable to a wide range of problems was outlined.

Attempts have been made to predict the steady-state configuration of two-dimensional
cables. Several of the most prevalent problems, which seem to be of wide practical signifi-
cance, require a three-dimensional approach. There have been limited successes with this
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approach. The hydrodynamic loading forces acting on the cable are an essential component
of an analytical model. There are discussions of the physical nature of these forces and a
review of the existing analytical models of the loading function. There are also comparisons
with the limited experimental data available. A semi-submersible autonomous underwater
vehicle has been studied via the use of a dynamical modeling approach developed by Park
and Nakwan [65]. They performed some simple numerical simulations in order to verify
the completeness of the model, and the results confirmed its physical validity. The output
feedback stabilization of a towed submarine cable was discussed by Nguyen and Olav [66].
At both ends of a towed submarine cable, a depth controller was connected. A nonlinear
partial differential equation describes the dynamics of the cable. Ordinary differential equa-
tions describe the dynamics of depth controllers. The boundary measurements are used to
design an exponentially stable observer. The observer and boundary measurements are
informationally stable controllers. Fukumoto et al. [67] proposed a method for analyzing
the nonlinear dynamic response of a marine cable structure subjected to hydrodynamic
effects caused by wave motions. As shown in the numerical examples, the procedure was
applicable to a wide range of practical situations.

To reduce the response amplitude of a marine cable affected by flow-induced vibra-
tions, Wildemann [68] conducted an analytical and experimental study. Assuming that
a cable could not withstand standing waves, the amplitude of the response would be
reduced if resonance could be prevented. Due to the lack of cable excitation generated by
Woods Hole’s currents, the experimental validation of the approach to this problem was
inconclusive. Based on an absolute nodal coordinate formulation, a finite element model
of a towed cable system was proposed by Westin et al. [69]. To study the variation in the
contact force, the model included the interaction between the cable and the pulley surface.
The simulated cable behavior was compared with small-scale experimental measurements
in order to assess the performance of the model. To gain insights into the mechanisms of the
towed seismic cable system, Guo et al. [70] proposed a time domain nonlinear numerical
model. Based on the analysis of the VIV mechanism, the response characteristics of dif-
ferent structural physical parameters and operating condition parameters were explained
reasonably well.

Kamman et al. [71] presented a procedure for studying the dynamics of variable-
length cable systems. In cable towing systems, such systems were typically used for
deployment and retrieval (put-out and take-in). Chatjigeorgiou and Mavrakos [72] stated
that the current research on cable dynamics aims to relate the dynamic aspects, linear and
nonlinear, to the most typical practical applications of cables in the marine environment,
particularly in the offshore sector. A global representation of a dynamic system was used
to accomplish this task. It is possible to effectively consider the formulation in question
as a two-point boundary value problem through using a generic analysis based on the
assumption of line dynamics. To study offshore structural mooring devices, Shin et al. [73]
used cable dynamics as a basis and developed theoretical as well as analytical models
of all nonlinear cables, including nonlinear fluid resistance, and compared the numerical
results with the results of existing experiments. According to the study of Yang et al. [74],
a three-dimensional model was developed for the tension analysis of submarine power
cables during laying operations. As in classical Euler–Bernoulli beam element theory, both
flexural rigidity and axial elasticity were considered. Numerical solutions to the governing
equations were obtained using fourth-order Runge–Kutta methods, and the derivatives of
the curvature with respect to the cable element arc length can be approximated using finite
difference methods. Prpić-Oršić et al. [75] presented a mathematical model for predicting
the motion and tension of stretchable marine cables during laying operations in rough seas.
The method was illustrated in the context of a typical cable-laying vessel. Based on two
different cable types and several cable stiffness values, the results were presented as root
mean square values and dynamic coefficients of dynamic cable tensions. The effect of axial
deformation on the maximum tension at the pulley position on-board was emphasized.
Asthisakul et al. [76] presented a model formulation for static and dynamic analyses of
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three-dimensional extensible marine risers. Based on the principle of virtual work–energy
and the theory of extensible elasticity, a variational model formulation was developed.
There are two components to the virtual work–energy function: the virtual strain energy
due to axial stretching, bending, and torsion, and the virtual work performed by external
and internal fluids. Cartesian coordinates are used to derive the equations governing
dynamic equilibrium. Numerical solutions are obtained using finite element methods.

For modeling the dynamics of underwater cables, Wang et al. [77] used linear and
nonlinear methods. For a given ship motion state, they presented an analytical formulation
of the tension of the cable acting on the ship. Based on some assumptions regarding cable-
laying operations, a ship model with three degrees of freedom for surge, sway, and pitch
was developed. Considering cable tension in all three degrees of freedom, a mathematical
model of a cable ship was developed. Computer simulations were also conducted to
examine the effects of the cable model and the tension on the ship’s motion. By using these
simulations, the relationships between the cable tension on the ship and the ship speed
were analyzed, as were those of the cable tension and the laying speed as well as the cable
tension and the water depth. Additionally, the specific effects of a cable on the ship were
discussed in terms of the three degrees of freedom of motion. Delmer et al. [78] presented a
numerical method for simulating the three-dimensional geometry of a cable-towed acoustic
array system (and that of other tandem marine structures). By comparing the simulation
with laboratory and ocean experiments, the simulation was validated. Wang et al. [79]
examined and designed a structural scheme for an umbilical cable tensioner, crawling
mechanism, locking mechanism, and hydrostatic system for tension control. In this study,
the structural parameters of a hydraulic cylinder as well as the effects of displacement,
velocity, and acceleration were analyzed. A mechanical model of synchronous clamping
was developed, along with the clamping law of the crawling mechanism. A control strategy
based on proportional–integral–derivative control, including a fast-moving stage, working
stage, and pressurizing stage, was proposed, and synchronized gripping control charac-
teristics were examined by building a laboratory-scale gripping experimental platform.
Based on the experimental results, the hydraulic cylinder of the stretcher had excellent
synchronous clamping performance, and the theoretical analysis appeared to be feasible.
Wu et al. [80] used a laboratory-scale gripping experiment platform, and a control strategy
based on proportional–integral–derivative control for fast-moving stages, working stages,
and pressurizing stages was proposed. In accordance with the experimental results, the
hydraulic cylinder of the stretcher provides excellent synchronous clamping performance,
and the theoretical analysis appeared to be feasible. To simulate the dynamic behavior of
floating structures in the ocean, Zhu and Wan-Suk [81] developed a numerical model of a
spar platform attached to a mooring cable with a spherical joint. Based on the numerical
model, the displacement–load relationship was analyzed and the simulation results of the
numerical model were compared with those of the commercial simulation code Proteus-DS.
Based on the comparison results, it was concluded that the numerical model of the spar
platform tethered by the mooring cable was a well-established model. Using two alterna-
tive sets of dimensionless parameters, Bergdahl et al. [82] explored the optimal scaling of
the dynamic response of a mooring cable for a marine structure. As a consequence of the
experimental results, the newly developed cable dynamics code MooDy was validated,
which utilized the discontinuous Galerkin finite element formulation.

Thus, the study of marine cables focuses on numerical solving, discrete ropes, and the
effects of external load variation on cable dynamics at home and abroad; however, there has
been no qualitative research on the influence of changing the static equilibrium calculation
method to dynamic simulation on marine slender flexural elements. Dynamic analysis
begins with the static equilibrium stage; therefore, the results of the stationary phase greatly
influence the development of the dynamic analysis. The purpose of this paper is to discuss
three different static equilibrium calculation methods (the fast static equilibrium calculation
method, the analytic catenary calculation method, and the catenary calculation method).
Our study analyzed the impact of the dynamic of the release process of mooring cables.
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The aim of this study was to investigate the effect of changing static equilibrium calculation
methods on the dynamic simulation process of slender flexural elements. As a result, we
are able to provide some references for the dynamic simulation modeling of marine cables.

During the static equilibrium stage, only the gravity factor and the axial stiffness of
a cable are considered in the fast static equilibrium calculation method, and the cable’s
gravity, buoyancy, and axial stiffness are considered in the analytical catenary calculation
method; these two methods do not take into account drag and inertia forces. The gravity,
buoyancy, wave–current drag, inertial forces, and axial stiffness of the cable were taken into
account in the catenary calculation method. Additionally, the theory is given in Section 2.

2. Theory and Computation Modeling

To obtain the dynamic response of a marine cable, theory and computation modeling
are needed, which are shown in the following sections.

2.1. Theory

For the dynamic effects of the mooring cable release process, this paper focuses on
three static equilibrium calculation methods (the fast static equilibrium calculation method,
the analytical suspension line method, and the suspension line method), all of which have
been applied to engineering problems, but they take into account different influencing
factors and have different calculation efficiencies. In all three methods the suspension line
theory is used, although there are some tradeoffs based on the traditional suspension line
theory. Our comparison of the three methods will begin with the derivation process and
initial assumptions of the suspension line theory. As the industry is already familiar with
the classical suspension line method, only those portions of the classical suspension line
theory related to the following contents are included here, just as shown in Figure 2.

Figure 2. Diagram of cable micro-element force.

In Figure 2, we illustrate the study of a specific micro-element, ds, on the cable. D and
F represent the fluid force along the vertical and tangential directions of the cable element,
respectively. The tension of the cable is T. The angle, ϕ, between the cable element and the
water flow is the cable angle. The tensions dT and dϕ are the small increments of tension
on the cable element, ds, and the cable angle, ϕ, respectively. w is defined as the weight in
water per unit of length of the cable, which is the importance of the line after deducting
buoyancy. da is not subject to fluid pressure as it is situated at the two ends of the element.
In order to calculate the buoyancy of the cable element based on its drainage volume, the
fluid pressure at both ends has been considered. This correct term should be included in
the force analysis of the cable element. The tension at the upper and lower ends of the
cable element is deducted from ρgA(h − z − dz) and ρgA(h − z), where A is the cable’s
cross-sectional area, ρ is the fluid density, g is the gravity of the cable micro-element, h is
the water depth, and z is the seabed depth.

Figure 2 shows that, when these forces are in static equilibrium, the following equation
relationship occurs:
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In the normal direction of the cable element:

Tdϕ − ρgA(h − z)dϕ = (wcosϕ + D)ds (1)

In the tangent direction of the cable element:

dT − ρgAdz = (wsinϕ − F)ds (2)

When the apparent tension T* = T − ρgA(h − z) is introduced, the above equations
can be written as follows:

T∗dϕ = (wcosϕ + D)ds (3)

dT∗ = (wsinϕ − F)ds (4)

For the sake of brevity, the apostrophe * on the T is omitted.
The above two cable balancing equations are nonlinear, and analytical solutions are

difficult to discover. Under certain conditions, it is possible to seek a simpler analytical
solution. If a cable is heavy or the current velocity is small, the force acting on it is mostly
gravity, and the fluid force may be neglected. Equations (3) and (4) can be simplified
as follows:

Tdϕ = wcosϕds (5)

dT = wsinϕds (6)

Divide Equations (5) and (6):

ln
T
T0

=

ϕ∫
ϕ0

tanϕdϕ = lnsecϕ =ln
cosϕ0

cosϕ
(7)

Hence:
T = T0

cosϕ0

cosϕ
(8)

where T is the tension of the cable when the cable angle, ϕ0, is 0.
By substituting Equation (8) into Equation (5), measuring from the origin point, and

integrating from cable length s0 to cable length s (set the cable angles at the two places to
be ϕ0 and ϕ, respectively), the following equation can be obtained:

s − s0 =

ϕ∫
ϕ0

T0cosϕ0

wcos2 ϕ
dϕ =

T0cosϕ0

w
(tanϕ − tanϕ0) (9)

Let Th = T0cos ϕ0, hence:

s − s0 =

ϕ∫
ϕ0

T0cosϕ0

wcos2 ϕ
dϕ =

Th
w
(tanϕ − tanϕ0) (10)

The following equation can be obtained by substituting dx = dscos ϕ into Equation (5):

x − x0 =

ϕ∫
ϕ0

T0cosϕ0

wcosϕ
dϕ =

Th
w
[ln(

1
cosϕ

+ tanϕ)− ln(
1

cosϕ0
+ tanϕ0)] (11)

Similarly, Equation (12) can be obtained by substituting dz = dssinϕ into Equation (5):
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z − z0 =

ϕ∫
ϕ0

T0cosϕ0sinϕ

wcos2 ϕ
dϕ =

Th
w
(

1
cosϕ

− 1
cosϕ0

) (12)

Equations (11) and (12) are expressions between the cable length, the horizontal
distance, and the vertical distance at any two points in the static equilibrium stage of a
cable. If the lower limit of the integral is taken at the origin point, then the following is
the case:

w
Th

x = ln(
1 + sinϕ

cosϕ
) (13)

If a = Th/w, then the following is the case:

x
a
= ln(

1 + sinφ

cosφ
) (14)

We can conclude the following:

sinh
x
a
= tanφ (15)

cosh
x
a
=

1
cosφ

(16)

Thus, Equations (10) and (12) can be written as follows:

s = asinh
x
a

(17)

z = a(cosh
x
a
− 1) (18)

Equations (17) and (18) are catenary equations.
From Equations (17) and (18), we can obtain the following:

(z + a)2 = s2 + a2 (19)

s =
√

z(z + 2 a) (20)

x = acosh−1(
z
a
+ 1) (21)

Based on the fact that gravitational force is negligible when compared to fluid pressure,
the above process derives from the traditional suspension line method. Using this method,
a definite analytical solution can be obtained; therefore, the conventional suspension line
method can be referred to as the analytical suspension line method.

The method considers gravitational and buoyancy forces as well as a cable’s axial
elasticity, while overlooking a cable’s inertia force, drag force, additional mass force,
bending stiffness, and torsional stiffness, in addition to end-point connection stiffness
and pressure effects.

However, as discussed in the derivation process above, if fluid forces play a significant
role in Equations (3) and (4) of the cable equilibrium then the derivation process is not valid.
As a result, Equations (5) and (6) cannot be derived. Numerical integration is necessary in
this case in order to take into account fluid forces at each time step.

This paper presents a suspension line method based on the traditional suspension line
theory. In the expression above, it is similar to the conventional suspension line method,
that is, the analytical suspension line method, in that both ignore the bending and torsional
stiffness of a cable; however, the suspension method using numerical integration proposed
in this paper considers gravity, buoyancy, wave as well as current resistance, inertia, and
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cable axial stiffness. Currently, this method is the primary method for static calculations
of marine cables. In order to facilitate the distinction between the suspension line method
described in the following description and the analytical suspension line method, it is
clarified here that the suspension line method refers to this method.

2.2. Computation Modeling

The lumped mass method is a more general method of modeling and discretizing
slender flexible components, such as marine pipelines, whose accuracy has been generally
verified; hence, a mooring cable is modeled by using the lumped mass method in this paper.
Initially, a cable is moored to a ship at its top. The top of the cable is initially attached to
the bow of the vessel, and once static equilibrium is achieved it is removed from the bow.
In terms of characteristics, the mooring cable has a length of 220 m, an outer diameter of
0.35 m, an inner diameter of 0.25 m, the modulus of elasticity is infinite, the linear density
is 0.18 t/m, the Poisson’s ratio is 0.5, the bending stiffness is 120 kN/m2, the torsional
stiffness is 80 kN/m2, and the axial stiffness is 700 MN. Cables have a mass coefficient of 1,
a drag force coefficient of 1.2, and an inertial force coefficient of 0.008. As the discrete unit
of this paper is 2 m, the mooring cable is discretized into 110 points of condensed mass.

This particular seabed has a depth of 100 m, a flat seabed, and a normal as well
as tangential stiffness of 1000 kN/m/m2. We can obtain an approximate solution to this
problem by combining the micro-amplitude wave theory and the Stokes wave theory. Many
complex algebraic calculations are required, and the sea current cannot be considered when
determining wave characteristics. Accordingly, Dean expressed wave motion as a stream
function in 1965 and established the stream function theory. Based on the assumption
that fluid is incompressible and that motion has potential, the following idea is proposed:
Two boundary conditions govern the motion and dynamics of a fluctuating free water
surface. Thus, the flow function applies to waves in any state of the sea. If other wave
theories are used, they should be compared to the flow function theory in order to examine
their validity. Consequently, to improve the accuracy of wave loading in this paper, the
wave type has been chosen as the stream function. This means that the wave direction is
180 degrees, the wave height is 7 m, and the wave period is 8 s.

The OrcaFlex software [83] is used to conduct the analysis of three different methods.
In OrcaFlex there are two temporal discretization schemes: explicit and implicit integra-
tion. The explicit time integration takes a constant time step to integrate forward. At the
beginning of the simulation, after a preliminary static analysis, the initial positions and
orientations of all of the nodes in the model are known. The forces and moments of all
free bodies and nodes are calculated, including gravity, buoyancy, hydrodynamic force,
hydrodynamic added mass, tension and shear, bending and moment, seabed friction, etc.
For implicit integration, the generalized-α method is used. Forces, moments, damping,
and weight are calculated in the same manner as explicit integration. Since the forces,
displacements, velocities, and accelerations are unknown at the last time step, an iterative
approach is required. To improve computational efficiency, a pre-simulation stage is usually
preset in OrcaFlex. The simulation time at this stage is set to be no less than one wave
period. In the modeling preparation stage, the wave dynamic parameters, ship motion,
and current parameters are increased from 0 to a fixed value. In this way, the simulation
can have a smooth start, reduce transient responses, and avoid long simulation runs.

3. Calculation Results

The configurations of a cable with different equilibrium calculation methods are shown
in Figures 3–5.

3.1. Fast Static Equilibrium Calculation Method

By ignoring the buoyancy, fluid drag forces, gravitational force per unit of length,
and axial elasticity of the cable, as well as the bending, torsion, and joint contact forces
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between the cable and the seabed, the fast-counting static equilibrium algorithm improves
convergence and saves computational time.

According to the fast static equilibrium calculation method, the following phenomena
can be observed in the spatial morphology of the cable release process, which is shown
in Figure 3.

Figure 3. Configuration of a cable with the fast static equilibrium calculation method.

As the mooring cable falls vertically in the static equilibrium stage due to gravity
alone, the upper part of the cable does not undergo repeated S-shaped bending. Due to the
overlap in the length of a wide range, S-shaped repeated bending is primarily observed
when the cable approaches the seabed. The bending occurs initially to one side, then
in the opposite direction of the previous bending direction. Following a small range of
sliding in the time domain and with low conduction, the final repeated bending area at
the bottom of the seabed eventually exhibits the shape of an eight bow. Additionally, the
initial touchdown area of the cable maintains a flat state parallel to the seabed throughout
the dynamic simulation process. According to our analysis of this phenomenon, since the
static equilibrium stage only takes into account the gravity of the towing cable and does not
take into account the buoyancy and the dragging effects of the water, the cable is directly
affected by gravity in its natural sagging state. After release, the cable will fall vertically.
Once we have entered the dynamic simulation stage, the dragging force of the current and
the wave force begin to exert an effect. Consequently, the cable begins to bend and twist
repeatedly as a result of these combined forces.

3.2. Analytical Catenary Calculation Method

In contrast to the fast static equilibrium calculation method, the analytical catenary
calculation method accounts for buoyancy in the static equilibrium calculation stage and
the dynamic phase of the cable drop process, which is shown in Figure 4.

Figure 4. Configuration of a cable with the analytic catenary calculation method.

From the viewpoint of morphological changes, after considering the movement of
buoyancy in arriving at the static equilibrium, as opposed to numerical calculation meth-
ods that use the fast static equilibrium, the bottom of the cable will form eightfold half-
horizontal angles at the beginning of the dynamic phase, whereas the numerical solution
using the short equilibrium does not show this phenomenon as soon as the cable reaches
the static equilibrium. Under the fast static equilibrium algorithm, the subsequent active
descent phase is similar to the dynamic descent of the cable. As the cable approaches the
seabed, it undergoes repeated bending in an S-shaped pattern due to its large overlap in
length. Initially, the cable is bent to one side, and then to the opposite side from the previous
bending step. They are transmitted sequentially down in the time domain. After bottoming
out, the area of the final repeated bend slides into a small area on the seabed, assuming
the shape of a figure eight. As a result of the half-horizontal eightfold angle formed in
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the leftmost part of the bottoming section, the cable eventually landed in a pattern that
combined half-horizontal eightfolds and horizontal eightfolds.

It is found that the effect of the wave force in the dynamic simulation of the cable is
not fully reflected following entry into the dynamic stage. This is regardless of whether the
static equilibrium calculation method or the analytic catenary calculation method is used.
These two methods do not take into account the drag and inertia forces.

3.3. Catenary Calculation Method

The catenary calculation method takes into account a cable’s gravity, buoyancy, wave
drag, inertia, and axial stiffness when calculating the static equilibrium. In the stationary
equilibrium phase, the wave force is composed of wave drag and inertia. This means that,
in comparison with the first two methods of calculating the static equilibrium of the cable,
the effect of waves on the change in the cable form during the static equilibrium stage is
considered in the catenary calculation method. In the static equilibrium stage, the dynamic
morphology of the cable is considerably different from the dynamic morphology of the
other two methods. At the beginning of the fall, the upper part of the cable is stretched
and bent considerably. This is after the calculation of the static equilibrium stage with the
catenary calculation method. Aside from the repeated S-shaped bends of the cable in the
descending stage, there will be vertical motion and repeated left as well as right swings.
Upon consideration of the dragging force and inertia force of the wave, this vertical motion
and repeated left-to-right oscillations were caused by the wave heave. These movements
occurred throughout the entire release process, which is shown in Figure 5.

Figure 5. Configuration of a cable with the catenary calculation method.

As a result of the combination of vertical motion and lateral oscillation, the trajectory
of the cable in the falling process becomes very complex; additionally, as a result of this
complex trajectory, the changes in cable morphology become very complex. The S-bending
process involves looping the cable back to create a zero-shaped slewing knot that is laterally
elongated. With repeated S-bends, three horizontal eights were eventually formed. These
three horizontal eights overlap in height on the left side, while the right-side slides are
staggered. It is likely that the cable will eventually form a complex form with three
horizontal eights overlapping and a transversely elongated zero-shaped slewing knot at
the joint of the diagonal eights.

Due to the different static equilibrium calculation methods, the dynamic lowering stage
of the cable has very different characteristics depending on the static balance calculation
method. It is unlikely that the cable will respond effectively to the wave and current load
during the dynamic lowering process if only the gravity factor and the axial stiffness of
the cable are considered during the static equilibrium stage (the fast static equilibrium
calculation method). As long as the cable’s gravity, buoyancy, and axial stiffness are
considered only in the static equilibrium stage (the analytical catenary method), then the
effect of the cable on the sea current will be reflected in the dynamic balance lowering
process; however, the dynamic characteristics will still be weakened as a result of wave
loading. The characteristics of the cable during dynamic descent are closest to what they
would be if gravity, buoyancy, wave–current drag, inertial forces, and the axial stiffness of
the cable were taken into account when calculating the static equilibrium of the cable (the
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catenary method); however, although the cable release process is dynamic, the simulation
and analysis of the dynamic approach are only possible once the static equilibrium has
been achieved.

4. Conclusions

Marine composite mooring and towing lines are usually composed of lines, chains,
buoys, and underwater objects. They are subject to wave, current, and other interactions,
so it is necessary to predict their static configuration under different conditions from the
early stages of the design process. So far, the static equilibrium calculation of marine cables
has been developed to a high degree of accuracy and comprehensiveness; more and more
methods take into account the effects of gravity, buoyancy, wave resistance, inertial forces,
and the axial stiffness of the cable to ensure the accuracy of the characteristics of the cable
during dynamic descent. Numerical integration based on the finite element method is the
main method used in this study, which in this case is the suspension line method.

It should be noted that the consideration of too many factors in the static equilibrium
stage will almost certainly increase the difficulty of convergence. Therefore, specific static
equilibrium methods can be selected for specific marine engineering situations in order
to simultaneously save calculation time and improve calculation accuracy. For example,
when laying down marine pipelines in the sea without waves, the speed of laying down
marine pipelines is slow and the dragging effect of currents is weak. Therefore, in order to
reduce the calculation time as well as the difficulty of convergence of the model, one could
choose the analytical suspension chain method in the static equilibrium stage. Moreover,
this method ensures the relative realism of dynamic characteristics throughout the entire
process by taking buoyancy into account. Furthermore, it improves the accuracy of the
calculation while saving a considerable amount of time.

The conclusions obtained in this paper have certain reference value for guiding the
dynamic simulation of pipelines in specific offshore engineering fields. The emphases
of pipeline dynamic simulation are different in different marine engineering scenarios.
Some focus on the mechanical properties of pipelines, while others focus on the spatial
morphological changes in pipelines. These are all related to the calculation method of the
pipeline static equilibrium stage, which is the precise value of the reviewed literature and
present case study.
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75. Prpić-Oršić, J.; Nabergoj, R. Nonlinear dynamics of an elastic cable during laying operations in rough sea. Appl. Ocean Res. 2005,

27, 255–264. [CrossRef]
76. Athisakul, C.; Monprapussorn, T.; Chucheepsakul, S. A variational formulation for three-dimensional analysis of extensible

marine riser transporting fluid. Ocean Eng. 2011, 38, 609–620. [CrossRef]
77. Wang, Y.; Bian, X.; Zhang, X.; Xie, W. A study on the influence of cable tension on the movement of cable laying ship. In

Proceedings of the OCEANS 2010 MTS/IEEE SEATTLE, Seattle, WA, USA, 20–23 September 2010; pp. 1–8.
78. Delmer, T.N.; Stephens, T.C.; Tremills, J.A. Numerical simulation of cable-towed acoustic arrays. Ocean Eng. 1988, 15, 511–548.

[CrossRef]
79. Wang, W.; Zhang, S.; Wang, D.; Lin, L.; Zhu, X. Synchronous clamping control of marine umbilical cable tensioner. Proc. Inst.

Mech. Eng. Part C J. Mech. Eng. Sci. 2013, 227, 2328–2336. [CrossRef]
80. Wu, W.; Zhao, Y.; Gou, Y.; Lyu, B.C.; Lu, Q.Z.; Lu, Z.K.; Yan, J. An overview of structural design, analysis and common monitoring

technologies for floating platform and flexible cable and riser. China Ocean Eng. 2022, 36, 511–531. [CrossRef]
81. Zhu, X.; Yoo, W.S. Numerical modeling of a spar platform tethered by a mooring cable. Chin. J. Mech. Eng. 2015, 28, 785–792.

[CrossRef]
82. Bergdahl, L.; Palm, J.; Eskilsson, C.; Lindahl, J. Dynamically scaled model experiment of a mooring cable. J. Mar. Sci. Eng. 2016,

4, 5. [CrossRef]
83. Orcina. OrcaFlex Manual. 2015. Available online: http://www.orcina.com/SoftwareProducts/OrcaFlex/Validation/index/.pdf

(accessed on 1 January 2015).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1515/ijnaoe-2015-0029
http://doi.org/10.2208/jscej.1985.356_455
http://doi.org/10.1016/j.marstruc.2021.102960
http://doi.org/10.1016/j.oceaneng.2021.110007
http://doi.org/10.1023/A:1011489801339
http://doi.org/10.1016/j.apor.2006.03.002
http://doi.org/10.1016/j.oceaneng.2010.12.012
http://doi.org/10.1016/0029-8018(88)90001-7
http://doi.org/10.1177/0954406212471104
http://doi.org/10.1007/s13344-022-0044-5
http://doi.org/10.3901/CJME.2015.0206.054
http://doi.org/10.3390/jmse4010005
http://www.orcina.com/SoftwareProducts/OrcaFlex/Validation/index/.pdf

	Review of Calculation Methods 
	Static Equilibrium Calculation of a Marine Cable 
	Solution of Marine Cables 

	Theory and Computation Modeling 
	Theory 
	Computation Modeling 

	Calculation Results 
	Fast Static Equilibrium Calculation Method 
	Analytical Catenary Calculation Method 
	Catenary Calculation Method 

	Conclusions 
	References

