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Abstract: A simple CFD-based data-driven reduced order modeling method was proposed for the
study of damaged ship motion in waves. It consists of low-order modeling of the whole concerned
parameter range and high-order modeling for selected key scenarios identified with the help of low-
order results. The difference between the low and high-order results for the whole parameter range,
where the main trend of the physics behind the problem is expected to be captured, is then modeled
by some commonly used machine learning or data regression methods based on the data from key
scenarios which is chosen as Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) in this study.
The final prediction is obtained by adding the results from the low-order model and the difference.
The low and high-order modeling were conducted through computational fluid dynamics (CFD)
simulations with coarse and refined meshes. Taking the roll Response Amplitude Operator (RAO)
of a DTMB-5415 ship model with a damaged cabin as an example, the proposed physics-informed
data-driven model was shown to have the same level of accuracy as pure high-order modeling, whilst
the computational time can be reduced by 22~55% for the studied cases. This simple reduced order
modeling approach is also expected to be applicable to other ship hydrodynamic problems.

Keywords: damaged ship motion; reduced order modeling; computational fluid dynamics;
data-driven model

1. Introduction

When a ship encounters accidents such as collision and grounding during navigation,
damage to the ship might cause flooding to the cabin which will threaten the safety of the
ship. More specifically, through the damaged part of the ship hull, water will quickly rush
into the cabin and then dramatically change the weight and buoyancy distribution. The
ship will then experience large motion and additional load due to this flooding. Excessive
flooding can eventually cause the ship to sink or capsize. Typical examples include the
accidents of the vessels ‘Costa Concordia’, ‘Herald of free enterprise’, ‘Estonia’ and the
sinking of the ‘Sewol’ South Korea [1–4]. From van den Boom’s [1] analysis of the ‘Sewol’,
it can be seen that flooding will have a great impact on a ship. For naval ships or ships
away from the shore, the damaged ships often have to continue navigation until reaching
the nearest port or safe place. Therefore, the seakeeping performance of a damaged ship
in waves is a vital part for evaluating the ship’s survivability, especially for naval ships.
Accurate and practical tools for evaluating the flow and motion of the damaged ship is
important for both academics and designers of ships.

The research into the motions of damaged ships has been conducted by theoretical, ex-
perimental and numerical methods. In terms of theoretical research, some typical examples
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include that Lee [5] established a time-domain theoretical model to predict damaged ship
motion and flooding for any ship type or arrangement; Xu [6] established the mathematical
model of instantaneous water inflow velocity and volume of the damaged cabin based
on the basic principle of hydrodynamics, and analyzed the effects of parameters such as
loading conditions; Zhang [7] solved the floating equilibrium equation of a damaged ship
in a time-domain by means of a quasi-static method.

In terms of experimental research, Lee [8] conducted free roll free decay experiments
on intact and damaged ships in still water and regular waves conditions, and analyzed
the influence of flooding on ship roll decay motion; Begovic [9] conducted experiments
on models with different scales for intact and damaged DTMB-5415 ships in different
wave conditions, and the effects of damage positions on a ship’s RAO; Domeh [10] studied
the influence of the permeability, arrangement and orifice size of the cabin on a ship’s
motion characteristics in waves; Maria Acanfora [11,12] conducted experimental research
on passenger ships, mainly about the influence of the damage location, opening size and
moving objects in the engine room on the motion characteristics of damaged ships in still
water and regular waves.

Compared with experiments, numerical methods are relatively low-cost and can con-
veniently reproduce the physics behind the process as much as possible. As a consequence,
various numerical methods have been successfully applied to many hydrodynamic prob-
lems and the research on damaged ships is no exception. Some representative works
are reviewed as follows: Bašić [13] presented the prediction of the total resistance of an
intact and damaged ship model using the CFD technique. Chan [14] proposed a nonlinear
time-domain simulation method to predict the wave load of intact and damaged RO-RO
ships in regular wave conditions; Gao conducted a series of work for the problem of
damaged ship flow by CFD methods [15,16] including developing a finite volume-type
Navier–Stokes solver based on volume of fluid (VOF) and dynamic meshing techniques,
and the systematic CFD investigations [17] for the effect of air compressibility, damaged
cabin arrangement and encountered wave height on the damaged ship motion and flooding
process. Furthermore, Gao [18] improved computational efficiency by combing the poten-
tial flow theory for global seakeeping solving and the Navier–Stokes solver for a local cabin
flooding simulation; the mesh-less-type CFD methods were also used for damaged ship
flow investigations such as the work of Ming [19] by smoothed particle hydrodynamics
(SPH) and Zhang’s [20] work by the moving particle semi-implicit (MPS) method.

Generally, the complexity of the flooding flow for damaged ships often involves
violent free surface breaking, high viscosity effects, etc.; hence, the more time-consuming
CFD method instead of potential flow theory must be used to accurately capture the
physics of the flow as discussed above. However, the CFD computation efficiency can be a
problem for large-scale simulations such as the systematic simulation for effects by various
parameters, even with the rapidly developed computational power. Some kind of model
order reduction would be desirable, under the requirement that the dominant physical
process has to be included in the reduced order model. Various ideas have been proposed
for such purpose. For example, Xiao [21] developed a novel Non-Intrusive Reduced
Order Model (NIROM) for the fluid–structure interaction (FSI) based on proper orthogonal
decomposition (POD) and the radial basis function (RBF) interpolation method. This model
was applied to three coupling simulations; the calculation time is greatly reduced while
high-fidelity details were captured; Whisenant [22] combined POD and a neural network
framework for the purpose of reconstructing and predicting both the fluid and structural
fields of the Turek–Hron FSI benchmark problem in order to minimize computational effort
and time. Sufyan [23] applied the POD analysis on the pressure field data obtained from
numerical simulations of the flow past stationary and oscillating cylinders and proposed
the development of a more effective reduced-order model based on this research. Apart
from these POD-type flow modal decomposition approaches, pure data-driven machine
learning techniques have also been applied to capture the main features of complex flow
such as the work of Wu [24], where a convolutional neural network (CNN) was used to
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conduct the flow modal decomposition and then reconstruct the flow by the extracted
low-order modes. All of the above authors have conducted pioneering work, but their
methods are complex and difficult to replicate. In this paper, an even simpler yet effective
data-driven approach was proposed for reducing the modeling order of complex damaged
ship flows in waves, where the main flow feature identification was simply conducted by a
low resolution CFD simulation.

The rest of the paper is organized as follows: the basics of the reduced order modeling
and CFD methods are illustrated in Section 2. Section 3 discusses the accuracy and efficiency
of the proposed model. Finally, the conclusion is drawn in the last section.

2. Methodology
2.1. Data-Driven Reduced Order Modeling

The data-driven models have been successfully applied in many fields [25–27]. Nor-
mally, a pure data-driven model will act as a “black-box”, where the physics behind the
concerned problem is not required to be known as a priori. Although this model requires a
sufficient amount of high-quality data, this is an important advantage for many compli-
cated physical processes, especially the problems arising from industrial practice (damaged
ship motion is one of them). More specifically, the input parameters X and the system
responses Y can usually be readily obtained by either an experimental measurement or
high-fidelity simulation, but the physics behind this process could be too complicated to be
explicitly described by a compact function. The general idea of data-driven models is that
for a given set of data {Y|X}, the unknown function between input X and output Y, that is
Y = f (X), can be approximated as fD(X), i.e.,

f (X) ≈ fD(X). (1)

The specific form of fD can be obtained via various machine learning/data regression
models, e.g., artificial neural network (ANN) [28–30], deep learning (DL) [31], singular
value decomposition (SVD) [32] and support vector machine (SVM) [33]. In this paper,
a simple and commonly used data regression model called Piecewise Cubic Hermite
Interpolating Polynomial (PCHIP) is adopted. In a PCHIP interpolation, the form of fD is
chosen in the following way:

fD(X) =
n

∑
i=1

φi(X) · yi (2)

where yi ⊂ Y, n is the total number of elements for Y (X is of the same size as Y) and
φi(X) is a series of cubic polynomials that collectively guarantee that the first and second
order derivatives are continuous at each input parameter xi ⊂ X. The fitting of the data
will use the PCHIP method in the MATLAB Curve Fitting toolbox. The data interpolation
was conducted in MATLAB and more implementation details can be found in Ref. [34].
The approximated relation between X and Y, i.e., fD(X), can then be used to describe
and predict the system response for other input parameters x that are within the range of
interpolation for the training data set, i.e., x ⊂ X.

Although such models have been proven to be effective for a large variety of prob-
lems [35,36], the accuracy is largely dependent on the amount and quality of the training
data. This means a large set of scenarios of the investigated problem has to be either
simulated by high-fidelity, first-principle-based methods, such as CFD or computational
structure dynamics (CSD), or measured by carefully designed experiments. Therefore,
these kind of pure data-driven approaches cannot be very cost effective.

In this paper, the pure data-driven modeling approach is enhanced by the first-
principle-based model i.e., CFD, so the main characteristics of the physics behind the
problem can be implicitly embedded in the model. More specifically, similar to the ideas
of [37–40], a low-order model is first used to capture the system response Yl for the whole
range of parameters X. Although the precision of Yl is low, the general pattern of the
physics behind this process can still be revealed to some extent. Therefore, with the help
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from the low-order model, the input parameters Xs correspond to the key scenarios, such
as the peaks, and turning points can be identified, i.e., Xs is a subset of X. After that, the
more time-consuming high-order model can be used to re-calculate the limited number of
system responses Yhs corresponding to Xs.

Next, as a key step of the proposed model, the pattern of the difference between
low- and high-order model predictions for input data Xs is then modeled by some data
regression model. That is, if the sub-set of the low-order prediction data corresponding
to Xs is denoted as Yls, i.e., Yls ⊂ Yl , the machine learning or data regression methods are
applied to approximate the relation fDl between Xs and the difference Yds = Yhs −Yls, i.e.,

Yds = fDl(Xs) (3)

As a result, the difference between low- and high-order models for the whole range of
input variables X can be readily interpolated from the approximated function fDl as

Yd = fDl(X). (4)

Finally, the system response Y for the whole parameter range X can be approximated
as the addition of Yd and Yl :

Y ≈ Y = Yd + Yl . (5)

If the system response prediction for the whole parameter range X by a pure high-
order model is denoted as Yh, it is expected that Y has the same level of accuracy as Yh, since
we assume that the main physics can be captured by the data from low-order model (which
is proven to be reasonable as shown in the discussion of Section 3). In the meanwhile, the
computation time for the proposed model, i.e., the low-order model computation for the
whole parameter range and high-order model for a limited number of key scenarios, can be
considerably lower compared to the approach using a pure high-order model for the whole
parameter range. This will be discussed in detail later in Section 3. It is worth emphasizing
that the convenience of a pure data-driven model is still kept in this approach, i.e., only
low and high-order simulation data are needed and the explicit expression of the physics
behind the concerned system is not required as a priori. Figure 1 shows the main flow of
our proposed model.

Figure 1. Workflow of the proposed model.
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The low- and high-order models can be chosen from various commonly used first-
principle-based models. In this paper they are chosen to be CFD simulations with coarse
and refined meshes, which will be called coarse and refined CFD, respectively. The details
of the CFD model will be provided in the next section.

2.2. First-Principle-Based Model-CFD
2.2.1. CFD Model and Ship Geometry

The CFD simulation was conducted using the commercial software STAR-CCM+,
where the Reynolds Averaged Navier–Stokes (RANS) equation is solved. The turbulence
of the flow was modeled through SST K-Epsilon and the VOF model was used for the free
surface modeling. A Eulerian multi-phase flow solver was chosen for the computation.
The Semi-Implicit Method for Pressure Linked Equations (SIMPLE) algorithm was used
for coupling the pressure and velocity field. We have used second-order convection and
first-order time-discrete formats. More details of the software implementation can be found
in Ref. [41].

The ship model used in this study is DTMB-5415, which is shown in Figure 2. The
details of the geometry are listed in Table 1. The size and location information of the
damaged cabin were obtained from the experiment of Begovic [42], which can be seen from
Figure 2 as well.

Figure 2. Geometry of the ship model.

Table 1. The main geometry parameters of the DTMB-5415 ship.

Parameters Real Ship Scale Model Scale

Scale 1 51
Length (LOA) 153.3 m 3.0 m
Breadth (BOA) 20.540 m 0.403 m
Draft (T) 6.150 m 0.120 m
Displacement (∆) 8423.3 ton 63.5 kg
Initial stability height (GM) 1.938 m 0.038 m
Center of gravity (KG) 7.555 m 0.148 m
Longitudinal position of center of gravity (LCG) 70.137 m 1.375 m
Roll radius of gyration (Kxx) 6.932 m 0.136 m

The roll motion under beam sea conditions was investigated and the wave conditions,
which includes wave periods Tw, wave length λw, and wave height Hw, used in the
computation are listed in Table 2.
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Table 2. The wave conditions used in the computation.

Tw (s)
Model Scale

ΛW (M)
Model Scale

Hw (m)
Model Scale

1.12 1.958 0.039
1.26 2.477 0.050
1.33 2.760 0.055
1.40 3.058 0.061
1.47 3.370 0.067
1.54 3.696 0.074
1.68 4.386 0.088
1.82 5.117 0.102
1.96 5.878 0.118

The mesh and boundary conditions of the computational domain is shown in
Figures 3 and 4. The grid base size is 0.024 m and the grid has been refined for areas with
a complex flow or geometry, including free surfaces and hull boundaries. The use of
overlapping meshing techniques allows for a better simulation of the hull’s movements.
Pressure outlet and wall boundary conditions were enforced on the top and bottom of the
computational domain, respectively, whilst the velocity inlet conditions were imposed on
the four sides of the computational domain. Wave damping was imposed around the four
sides of the computational domain as well.

Figure 3. Mesh and boundary conditions (front view).

Figure 4. Mesh and boundary conditions (side view).
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2.2.2. Model Validation

The mesh and time step dependencies of the CFD model were first checked through
the wave propagation problem [43]. We used fifth order Stokes waves as a wave model. For
the mesh size, within the scope of one wave height, the free surface area was discretized
by 8, 12, and 16 layers, respectively. For the time step, the values of 0.001 s, 0.002 s, and
0.004 s were chosen for the checking. The performances are shown in Figures 5 and 6.
It can be seen that the results with 12- and 16-layer meshes around the free surface are
very close and both of them match with the theoretical prediction very well. Similarly,
the results with time steps of 0.001 s and 0.002 s also show better accuracy. Therefore, the
12-layer free surface meshing strategy and the time step of 0.002 s were finally chosen
for the following computation as a result of the trade-off between efficiency and accuracy.
Figure 7 shows the free liquid surface calculation cloud for a wave height of 0.118 m and a
wave period of 1.47 s.

Figure 5. Time histories of wave elevations obtained by the numerical simulation and theory (Tw = 1.4 s).

Figure 6. Time histories of wave elevations obtained by the numerical simulation and theory (Tw = 1.4 s).
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Figure 7. Plot at the free surface with a wave period of 1.47 s and a wave height of 0.118 m.
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In the calculations, we used the wall function and to ensure the accuracy of the
calculations the y+ value of the hull surface always does not exceed 50. Figure 8 shows the
y+ values on the hull surface. The accuracy of the whole computation model was validated
against Begovic’s [42] experimental result of the roll RAO of the DTMB-5415 model with a
damaged cabin (Figure 2). The roll angle φ of the ship is dimensionless and was scaled with
KA by the wave number K = 2π/λw and wave amplitude A = Hw/2 and shown in Figure 9.

Figure 8. Y + values on the hull surface.

Figure 9. Comparison of the pure refined CFD and reference results [18,42].

The numerical results by the adopted model are generally in good agreement with the
experiments. Table 3 shows the comparison between refined CFD and the experimental
data. The average error compared with experimental results is 8%. The results obtained
from the adopted CFD model also show generally better performance than the simulation
results reported by Gao [18]. However, the numerically predicted response for the wave
period of 1.47 s is higher than the experimental value. The numerical result of Gao [18] also
shows an overestimation at this wave period. This could be caused by the slight deviation
of the shape of the cabin, which is not clearly provided in the paper of Begovic [42]. This
shape difference may have a greater influence around resonances. Nevertheless, the main
purpose of this paper is to show the data-driven model enhanced by the combination of
high- and low-order simulation results can be as reliable as the time-consuming prediction
by a pure high-order simulation.
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Table 3. The wave conditions used in the computation.

Incident Wave Periods (s) φ/KA Exp. (Begovic [42]) Error

1.12 0.564 0.456 23.58%
1.26 1.104 1.228 10.08%
1.33 2.148 2.000 7.40%
1.4 4.730 4.772 0.88%

1.47 4.807 4.333 10.94%
1.54 4.386 4.228 3.75%
1.68 3.628 3.543 2.41%
1.82 2.761 2.842 2.85%
1.96 2.310 2.158 7.07%

Average error 7.66%

3. Results and Discussion
3.1. The Accuracy of the Proposed Model

The accuracy of the predictions was measured by the mean absolute error (MAE) as
defined in Equation (6):

E =
1
n

n

∑
i=1
|ỹi − ŷi|. (6)

where n is the number of the cases (i.e., the incident waves periods) used for the comparison,
i.e., the number of testing points; ỹi is the predicted system responses; and ŷi means the
reference values, which are chosen as the experimental results by Begovic [42].

As stated in Section 2.1, the proposed model includes a coarse CFD simulation on
the whole parameter range and a refined CFD simulation for some limited parameters.
The performance of the proposed model with different choices of the high-order model
data is an important factor that affects the robustness of the method. In sections 4, 5, and
6, incident wave periods among a total of nine periods were simulated by refined CFD
(which will be called training data). Correspondingly, the data of 5, 4, and 3 incident wave
periods were then left for checking the performance of the proposed models (which will be
called testing data). For each number of wave periods, eight different ways of choosing the
specific periods were investigated. The general principle of incident wave periods selection
is that the first and last one within the whole range were always included, then at least one
period close to the RAO peak was also chosen. Apart from that, the periods were chosen
randomly. This is because if the values at key parameters are missing, the pattern revealed
by the low-order model (rough CFD) will certainly be expected to be problematic, whilst it
would be desirable that the position of other data should not have a significant effect on the
overall performance. The details of incident wave periods selection are listed in Tables 4–6.

Table 4. Arrangement of training and testing data (6 training data points).

Case No. Incident Wave Periods for Training Data/s Incident Wave Periods for Testing Data/s

1 1.12 s, 1.33 s, 1.40 s, 1.54 s, 1.68 s, 1.96 s 1.26 s, 1.47 s, 1.82 s
2 1.12 s, 1.26 s, 1.40 s, 1.54 s, 1.68 s, 1.96 s 1.33 s, 1.47 s, 1.82 s
3 1.12 s, 1.33 s, 1.40 s, 1.54 s, 1.82 s, 1.96 s 1.26 s, 1.47 s, 1.68 s
4 1.12 s, 1.33 s, 1.47 s, 1.54 s, 1.68 s, 1.96 s 1.26 s, 1.40 s, 1.82 s
5 1.12 s, 1.33 s, 1.47 s, 1.68 s, 1.82 s, 1.96 s 1.26 s, 1.40 s, 1.54 s
6 1.12 s, 1.26 s, 1.40 s, 1.54 s, 1.82 s, 1.96 s 1.33 s, 1.47 s, 1.68 s
7 1.12 s, 1.33 s, 1.40 s, 1.47 s, 1.68 s, 1.96 s 1.26 s, 1.54 s, 1.82 s
8 1.12 s, 1.26 s, 1.33 s, 1.47 s, 1.68 s, 1.96 s 1.40 s, 1.54 s, 1.82 s

For the refined and coarse CFD simulation, the mesh number used for each incident
wave period is shown in Table 7. It can be seen that the mesh numbers are significantly
less for the coarse CFD simulations. It also should be mentioned that the time steps for the
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wave periods of 1.40 s and 1.47 s were chosen to be 0.015 s instead of 0.02 s for the rest of
the cases, since the results were more sensitive to the choice of time step around resonance.

Table 5. Arrangement of training and testing data (5 training data points).

Case No. Incident Wave Periods for Training Data/s Incident Wave Periods for Testing Data/s

1 1.12 s, 1.33 s, 1.47 s, 1.68 s, 1.96 s 1.26 s, 1.40 s, 1.54 s, 1.82 s
2 1.12 s, 1.26 s, 1.47 s, 1.68 s, 1.96 s 1.33 s, 1.40 s, 1.54 s, 1.82 s
3 1.12 s, 1.33 s, 1.47 s, 1.82 s, 1.96 s 1.26 s, 1.40 s, 1.54 s, 1.68 s
4 1.12 s, 1.26 s, 1.47 s, 1.82 s, 1.96 s 1.33 s, 1.40 s, 1.54 s, 1.68 s
5 1.12 s, 1.26 s, 1.40 s, 1.82 s, 1.96 s 1.26 s, 1.47 s, 1.54 s, 1.82 s
6 1.12 s, 1.33 s, 1.54 s, 1.68 s, 1.96 s 1.26 s, 1.40 s, 1.47 s, 1.82 s
7 1.12 s, 1.26 s, 1.40 s, 1.68 s, 1.96 s 1.33 s, 1.47 s, 1.54 s, 1.82 s
8 1.12 s, 1.33 s, 1.54 s, 1.82 s, 1.96 s 1.26 s, 1.40 s, 1.47 s, 1.68 s

Table 6. Arrangement of training and testing data (4 training data points).

Case No. Incident Wave Periods for Training Data/s Incident Wave Periods for Testing Data/s

1 1.12 s, 1.33 s, 1.47 s, 1.96 s 1.26 s, 1.40 s, 1.54 s, 1.68 s, 1.82 s
2 1.12 s, 1.47 s, 1.68 s, 1.96 s 1.26 s, 1.33 s, 1.40 s, 1.54 s, 1.82 s
3 1.12 s, 1.40 s, 1.54 s, 1.96 s 1.26 s, 1.33 s, 1.47 s, 1.68 s, 1.82 s
4 1.12 s, 1.40 s, 1.68 s, 1.96 s 1.26 s, 1.33 s, 1.47 s, 1.54 s, 1.82 s
5 1.12 s, 1.33 s, 1.54 s, 1.96 s 1.26 s, 1.40 s, 1.47 s, 1.54 s, 1.82 s
6 1.12 s, 1.40 s, 1.47 s, 1.96 s 1.26 s, 1.33 s, 1.54 s, 1.68 s, 1.82 s
7 1.12 s, 1.47 s, 1.54 s, 1.96 s 1.26 s, 1.33 s, 1.40 s, 1.68 s, 1.82 s
8 1.12 s, 1.54 s, 1.82 s, 1.96 s 1.26 s, 1.33 s, 1.40 s, 1.47 s, 1.68 s

Table 7. Mesh numbers for different cases.

Incident Wave Periods/s Refined CFD Mesh Number/10 k Rough CFD Mesh Number/10 k

1.12 483 204
1.26 631 163
1.33 356 161
1.40 375 114
1.47 384 144
1.54 391 149
1.68 462 135
1.82 528 127
1.96 485 112

In order to illustrate the detailed implementation steps of the proposed model, the
case no. 2 in Table 4 will be taken as an example for detailed discussion and the results are
shown in Figure 10. The black line represents the final result obtained through the model,
the red line represents the result of the coarse CFD simulation, the pink line represents
the difference result between the refined and coarse CFD simulations, the blue dotted line
represents the result obtained by direct fitting of the training data (black star), the black
star represents the result of the refined CFD simulation corresponding to the training wave
period, the red star represents the result of the refined CFD simulation corresponding to
the verification wave period, and the red dot represents the experimental data. In this case,
the responses for six incident wave periods were selected as the training data. The coarse
CFD simulation on all nine incident wave periods was first conducted as marked by the red
dot-line. The difference between the refined and coarse CFD simulation on the positions
of the training data (black star) were then interpolated by PCHIP as marked by the pink
dot-line. After that, the responses (black line) for the whole range of wave periods can
be obtained by adding the coarse CFD results (red line) and the interpolated difference
(pink line).
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Figure 10. The performance of the proposed model for case no. 2 in Table 3.

As shown in Figure 10, the approximation by the proposed model (i.e., the black line)
is very close to the direct refined CFD simulation results (black and red stars), especially at
the testing data points (red stars). The MAE for the refined CFD results and the results by
the proposed model are 0.1525 and 0.1552, respectively, which shows that the proposed
model has the same level of accuracy as the refined CFD.

On the other hand, if we directly use the training data to approximate the response on
the whole wave period range (also by PCHIP), the results can be problematic. As shown by
the blue line in Figure 10, this approximation considerably deviates from the refined CFD
results, especially at the wave periods of 1.33 s and 1.47 s (testing points). The MAE for the
direct PCHIP interpolation approximation by the training data is 0.2319, which is about
1.5 times the error by the proposed model.

Moreover, the direct interpolation by the training data shows a very strong dependency
on the way of data selection, which can be clearly shown by comparing the blue lines in
Figures 10 and 11. More specifically, although for both cases the first, last, and one point
around the peaks of the refined CFD results were all included in the training data set, the
position of the interpolation peaks and the curve trend were very different, whilst the
proposed model shows very consistent prediction results for these two sets of training
data as shown by black lines in Figures 10 and 11. In terms of error, the MAE for the
proposed model is only 0.16 (in the same level of the results in Figure 10), whilst the MAE
for direct interpolation by the training data is 0.2775, which is about 1.7 times the error by
the proposed model.

The MAEs for all 24 sets of training data by the proposed model, direct interpolation
by the training data, and the pure refined CFD for the whole parameter range are shown
in Figure 12. It can be seen that the proposed method gives the same level of accuracy as
the pure refined CFD method for all the 24 sets of training data and more data included
in the training data set will generally improve the performance. More specifically, for
the proposed model, the mean value of MAEs by using 4, 5, and 6 wave periods training
data are 0.1814, 0.1586, and 0.1604, whilst the MAE of the pure refined CFD is 0.1524. The
accuracies are generally considerably lower than the proposed model results for the same
training data set, i.e., the corresponding MAEs for direct interpolation from the training
data are 0.6157, 0.2934, and 0.2171.
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Figure 11. The performance of the proposed model for case no. 4 in Table 4.

Figure 12. The MAE for the proposed method and direct PCHIP interpolation by different training
data sets (i.e., 4, 5, and 6 wave periods) and pure refined CFD (i.e., 9 wave periods).

For the data dependency, the proposed model is minor as well, especially for cases
with more training data. On the contrary, the direct interpolation by the training data
shows a strong variation for different data sets and data numbers. The standard deviation
(SD) can be a good measure of data variation, which is used for evaluating the level of
data dependency of the proposed model. For each number of training data, i.e., 4, 5, and 6,
the SDs for the eight different ways of selecting data were calculated. The results for the
proposed model with the 4, 5, and 6 training data are 0.0066, 0.0199, and 0.0434, whilst the
direct interpolation of the training data give 0.0654, 0.0497, and 0.0998.

3.2. Efficiency of the Proposed Model

The computational efficiency of the proposed model is discussed in this part. Since
the data interpolation procedure by PCHIP is very fast and takes negligible computational
time compared to the refined and coarse CFD simulations, the following comparison of
the computational time will only include the coarse and refined CFD simulation time.
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All the computations were conducted on computers with Inter (R) Xeon (R) GOLD 6152
CPU@2.10Ghz. For each incident wave period, the CFD computation (rough or refined)
will at least be conducted for 15–30 wave periods (smaller wave periods will normally take
a longer time to arrive at a stable solution). The data from the first 10–25 periods will be
excluded for calculating the roll motion since the system response is not stable yet. However,
the computational time of the whole simulation was included for the computational time
comparison (i.e., the whole 15–30 wave periods). As discussed above, the number of refined
CFD simulations for the proposed models were chosen to be 6, 5, and 4, respectively; the
comparison of the computational time between the pure refined CFD and proposed model
for each of these situations are shown in Tables 8–10.

Table 8. Comparison of the computational time for pure refined CFD and the proposed model
(6 training data points).

Case No.
Pure Refined CFD
Simulation Time
(CPU Hours)

Proposed Model
Simulation Time
(CPU Hours)

Reduction Rate of
Computational Time (%)

1

27,257

20,655 24
2 19,947 27
3 21,275 22
4 19,770 27
5 19,062 30
6 20,567 25
7 19,770 27
8 18,885 31

Table 9. Comparison of the computational time for pure refined CFD and the proposed model
(5 training data points).

Case No.
Pure Refined CFD
Simulation Time
(CPU Hours)

Proposed Model
Simulation Time
(CPU Hours)

Reduction Rate of
Computational Time (%)

1

27,257

16,231 40
2 15,523 43
3 16,850 38
4 16,142 41
5 17,027 38
6 17,116 37
7 16,408 40
8 17,735 35

Table 10. Comparison of the computational time for pure refined CFD and the proposed model
(4 training data points).

Case No.
Pure Refined CFD
Simulation Time
(CPU Hours)

Proposed Model
Simulation Time
(CPU Hours)

Reduction Rate of
Computational Time
(%)

1

27,257

14,018 51
2 12,868 47
3 15,080 55
4 13,753 50
5 14,903 555
6 14,195 52
7 14,195 52
8 14,372 53

It can be seen that the reduction rate of computational time is from 22~55%. This
shows that although the number of computations is significantly increased in the proposed
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model compared the pure refined CFD (i.e., 9 coarse + 4/5/6 refined vs 9 refined), and due
to the mesh number in the coarse CFD simulation being considerably less than its refined
counterpart, the overall computational time can be significantly less. Take the wave period
of 1.4 s for example; the mesh number for the coarse and refined CFD models are 1,140,000
and 3,750,000, respectively, the computational time of these two cases are 5 and 88.5 CPU
hours. The computational time decreases more rapidly compared with the mesh numbers
reduction, which is the main reason for the higher efficiency of the proposed model.

4. Conclusions

In this paper, the reduced order modeling of the complex flow problem for damaged
ship motion in waves was realized through a simple physics-informed data-driven model,
in which low- and high-order modeling was combined. In this study, the low- and high-
order models were chosen to be CFD simulations with coarse and refined meshes, which is
called coarse and refined CFD, respectively. In the proposed model, the low-order model
(rough CFD) was first used to simulate the whole parameter range, then the more time
consuming high-order model (refined CFD) was only conducted for selected key scenarios.
The identification of the key scenarios such as peaks or turning points can be based on the
preliminary results from the low-order model, because the general pattern of the physical
process is still expected to be recognizable from this low precision data. The difference
between low- and high-order models on the whole parameter range is then modeled by
some commonly used machine learning or data regression models. The PCHIP method
is chosen in this paper for such purpose. Finally, the prediction of the system response is
obtained through the addition of the low-order model results and the difference modeled
by PCHIP. In the follow-up work, we will try more data fitting methods to compare the
effects, such as ANN, SVM, and other machine learning algorithms.

The accuracy and efficiency were investigated through the computation of roll RAO
of a DTMB-5415 ship model with a damaged cabin. The adopted CFD model was first
validated by comparing the refined CFD results with the experimental results in the
literature. Based on that, by systematically comparing different numbers and ways of
selecting the parameters for high-order simulation, it is shown that the proposed model
has the same level of accuracy as pure high-order models, whilst the computation time can
be reduced by 22~55% for the studied cases.

This approach is only applied for the roll RAO of the damaged ship, but it is expected
to be applicable for other motions and also other ship hydrodynamic problems such as the
seakeeping of an intact ship and a ship with sloshing tanks inside, which is planned in the
near future.
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29. Martić, I.; Degiuli, N.; Majetić, D.; Farkas, A. Artificial Neural Network Model for the Evaluation of Added Resistance of

Container Ships in Head Waves. J. Mar. Sci. Eng. 2021, 9, 826. [CrossRef]
30. Yildiz, B. Prediction of Residual Resistance of a Trimaran Vessel by Using an Artificial Neural Network. Brodogradnja 2022, 73,

127–140. [CrossRef]
31. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
32. Golub, G.H.; Reinsch, C. Singular value decomposition and least squares solutions. Numer. Math. 1970, 14, 403. [CrossRef]
33. Cortes, C.; Vapnik, V. SUPPORT-VECTOR NETWORKS. Mach. Learn. 1995, 20, 273–297. [CrossRef]
34. MathWorks. MATLAB User’s Manual; MathWorks: Portola Valley, CA, USA, 2020.
35. Hawkins, D.M. The Problem of Overfitting. J. Chem. Inf. Comput. Sci. 2004, 44, 1–12. [CrossRef] [PubMed]

http://doi.org/10.1016/j.isprsjprs.2015.12.001
http://doi.org/10.1016/j.engfailanal.2014.03.016
http://doi.org/10.4031/MTSJ.46.6.6
http://doi.org/10.1016/j.oceaneng.2006.02.002
http://doi.org/10.2478/IJNAOE-2013-0088
http://doi.org/10.1016/j.oceaneng.2013.06.024
http://doi.org/10.1016/j.apor.2015.05.001
http://doi.org/10.1016/j.apor.2016.03.003
http://doi.org/10.1016/j.apor.2017.11.002
http://doi.org/10.1016/j.oceaneng.2016.11.034
http://doi.org/10.1016/S0951-8339(03)00002-9
http://doi.org/10.1016/j.oceaneng.2011.07.020
http://doi.org/10.1016/j.oceaneng.2012.12.038
http://doi.org/10.1016/j.oceaneng.2017.10.035
http://doi.org/10.1016/j.apor.2019.102047
http://doi.org/10.1016/j.oceaneng.2018.07.048
http://doi.org/10.1016/j.apor.2020.102207
http://doi.org/10.1016/j.cma.2015.12.029
http://doi.org/10.1007/s12206-020-1214-0
http://doi.org/10.1063/5.0051155
http://doi.org/10.1061/(ASCE)CF.1943-5509.0000346
http://doi.org/10.1098/rsta.2014.0075
http://www.ncbi.nlm.nih.gov/pubmed/25583864
http://doi.org/10.1177/1475921716651809
http://doi.org/10.3390/jmse9080826
http://doi.org/10.21278/brod73107
http://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://doi.org/10.1007/BF02163027
http://doi.org/10.1007/BF00994018
http://doi.org/10.1021/ci0342472
http://www.ncbi.nlm.nih.gov/pubmed/14741005


J. Mar. Sci. Eng. 2023, 11, 686 17 of 17

36. Bishop, C.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006.
37. Wood, S. Fast Stable Direct Fitting and Smoothness Selection for Generalized Additive Models. J. R. Stat. Soc. Ser. B 2008, 70,

495–518. [CrossRef]
38. Schölkopf, B.; Smola, A.J.; Smola, A. Learning with Kernels—Support Vector Machines, Regularization, Optimization and Beyond; MIT

Press: Cambridge, MA, USA, 2001; Volume 98.
39. Weymouth, G.D.; Yue, D.K.P. Physics-Based Learning Models for Ship Hydrodynamics. J. Ship Res. 2013, 57, 1–12. [CrossRef]
40. Pitchforth, D.J.; Rogers, T.J.; Tygesen, U.T.; Cross, E.J. Grey-box models for wave loading prediction. Mech. Syst. Signal Process.

2021, 159, 107741. [CrossRef]
41. Siemens Digital Industries Software. Simcenter STAR-CCM+ User’s Manual; Siemens Digital Industries Software: Plano, TX, USA, 2020.
42. Begovic, E.; Day, A.H.; Incecik, A. An experimental study of hull girder loads on an intact and damaged naval ship. Ocean Eng.

2017, 133, 47–65. [CrossRef]
43. Martic, I.; Degiuli, N.; Farkas, A.; Basic, J. Mesh Sensitivity Analysis for Numerical Simulation of a Damaged Ship Model. In Proceedings

of the Twenty-seventh (2017) International Ocean and Polar Engineering Conference, San Francisco, CA, USA, 25–30 June 2017.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1111/j.1467-9868.2007.00646.x
http://doi.org/10.5957/jsr.2013.57.1.1
http://doi.org/10.1016/j.ymssp.2021.107741
http://doi.org/10.1016/j.oceaneng.2017.02.001

	Introduction 
	Methodology 
	Data-Driven Reduced Order Modeling 
	First-Principle-Based Model-CFD 
	CFD Model and Ship Geometry 
	Model Validation 


	Results and Discussion 
	The Accuracy of the Proposed Model 
	Efficiency of the Proposed Model 

	Conclusions 
	References

