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Abstract: This article deals with the techno-economic optimal sizing of a tidal stream turbine (TST)–
battery system. In this study, the TST system consists of a turbine rotor and a permanent magnet
synchronous generator (PMSG) associated with a three-phase converter coupled to a DC bus. A
battery is used within the system as an energy storage system to absorb excess produced power
or cover power deficits. To determine the optimal sizing of the system, an iterative approach was
used owing to its ease of implementation, high accuracy, and fast convergence speed, even under
environmental constraints such as swell and wave effects. This technique is based on robust energy
management, and the recursive algorithm includes the deficiency of power supply probability (DPSP)
and the relative excess power generation (REPG) as technical criteria for the system reliability study,
and the energy cost (EC) and the total net present cost (TNPC) as economic criteria for the system cost
study. As data inputs, the proposed approach used the existing data from the current speed profile,
the load, and economic parameters. The desired output is the system component optimal sizing (TST
power, and battery capacity). In this paper, the system sizing was studied during a one-year time
period to ensure a more reliable and economical system. The results are compared to well-known
methods such as genetic algorithms, particle swarm optimization, and software-based (HOMER)
approaches. The optimization results confirm the efficiency of the proposed approach in sizing the
system, which was simulated using real-world tidal velocity data from a specific deployment site.

Keywords: tidal stream turbine; battery; optimal sizing; algorithm; energy management; cost-
minimization; reliability

1. Introduction

Currently, renewable energies such as tidal energy are defined as clean, natural, and
abundant resources. These renewable energies present great importance to guarantee sustain-
able development in the near future [1]. Moreover, they are considered significant technologies
for rural areas, which are faced with the problem of limited electricity access [2,3].

Moreover, distributed energy storage devices have been added to tidal stream turbine
systems [4] to absorb excess power or cover an energy deficit [5], including electrolyzers,
super capacitors, hydrogen banks, and batteries. Indeed, in [6], the hydrogen bank was
used for a PV–TST system to meet the load during fluctuations. In [7], an islanded DC
system was studied, including tidal energy, solar energy, and wind energy, along with
battery storage. In [8], as energy storage components, a combination of an electrolyzer,
hydrogen storage, and a fuel cell stack was used for a TST system. This can increase the
system cost because of the high price of the distributed energy storage devices. Authors
in [9] studied a tidal turbine generator: they used a vanadium redox battery energy storage
system thanks to its ability to store large amounts of energy at competitive cost. In our
case, the battery was chosen because of its fast response in supplying the load demand.
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Additionally, it is more suitable for systems with long-term variations (minutes or even
hours) [5].

Nevertheless, the TST system, installed under the sea (with the existence of the swell
effect and waves), may be exposed to higher voltages and/or current transits, which may
make the output power fluctuate very much [4], causing disturbances in the load supply.
Therefore, to overcome this problem, sizing and cost studies are required.

However, before these studies, it is important to present the different evaluation
criteria, which have a great impact on the system. These criteria consist in reliability, and
economic, social and environmental indicators [10]. In fact, reliability criteria are required
because of the high effect of the weather conditions on the system power generation, which
leads to unreliable systems. They are considered for the evaluation of the system’s ability
to supply the load demand. The most used reliability indicators are the deficiency of power
supply probability (DPSP) [11], the loss of power supply probability (LPSP) [12], the loss
of load probability (LOLP) [13], the loss of load expected (LOLE) [14], and the expected
energy not supplied (EENS) [15].

Economic criteria are used in order to meet the load demand at minimum cost. Indeed,
these indicators include the energy cost (EC) [16], the total net present cost (TNPC) [17],
the annualized cost of system (ACS) [18], the life cycle cost (LCC) [14], and the total annual
cost (TAC) [19].

In order to reduce the pollution of the environment and ensure its sustainable progress,
some criteria are required, such as carbon emission (CE) [20], carbon footprint of energy
(CFOE) [21], embodied energy (EE) [22], and life cycle assessment (LCA) [23].

Social criteria have been used to estimate system social performance. Indeed, a few
indicators have been considered for system capacity optimization such as the human
development index (HDI) [24], social cost of carbon (SCC) [25], job creation (JC) [26], social
acceptance (SA) [27], and portfolio risk (PR) [28].

Furthermore, different techniques have been proposed for optimal sizing such as
traditional techniques, artificial intelligence techniques, simulation tool-based methods,
and hybrid techniques [29,30].

Traditional methods, based on statistical calculations, need meteorological information
(wind speed, current speed, solar radiation, temperature) and a big database to take into
account the energy source uncertainties [31]. For traditional techniques, we can distin-
guish analytical, numerical, graphic construction, probabilistic, and iterative techniques.
For example, authors in [28] adopted a numerical method, based on calculations, for a
photovoltaic panel (PVP)–battery system in Oman to optimize the inclination angle and
the capacity of the PVP. In [32], an analytical method was used to solve the sizing prob-
lem. Analytical and numerical techniques are time-efficient and computationally easy [33],
although estimation of mathematical equations is difficult [30]. A graphic construction
technique was adopted in [34]. While it is easy to use and is not complex, it requires a
large amount of data, some of which can be ignored [35]. Thus, the system under study
can be either over- or under-sized. In [36], a probabilistic method, using changes in me-
teorological information [37], was adopted to reduce carbon dioxide emissions from a
wind–hydrogen system. While this approach features simple implementation, it cannot
provide dynamic performance for the system under study [35–38]. Iterative methods use
recursive algorithms to find the optimal configuration (minimum cost without deficit). An
iterative algorithm was used in [39] to reduce the cost of a wind–PVP–fuel cell–battery
system. In [40], a techno-economic algorithm was proposed for a sizing problem of a hybrid
system installed within batteries and biogas generators. Although this technique needs
a large amount of meteorological data, it features easy computation and reduced time
consumption [31].

Artificial intelligence methods, such as the genetic algorithm (GA), particle swarm
optimization (PSO) algorithm, simulated annealing (SA), cuckoo search (CS), artificial bee
colony (ABC), flower pollination algorithm (FPA), grasshopper optimization algorithm
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(GOA), tabu search (TS), and harmony search (HS) can be good solutions for nonlinear and
complex sizing problems [14].

The genetic algorithm is a heuristic search method inspired by natural selection,
evolution, and genetics, such as mutation and crossover. It uses random searches to resolve
sizing problems, and its key benefit is its capability of finding the global optimal solution,
which can be difficult to determine using other methods. In [41], GA was used for lead–acid
battery sizing, and in [42], it was applied to optimize a wind farm layout.

The particle swarm optimization algorithm, based on stochastic optimization [43],
is among the most widely used artificial intelligence approaches for sizing. It features
high accuracy and fast convergence [14–44]. The PSO algorithm uses particles that are
characterized by a space vector to represent the problem variables. Each PSO particle
solution has two properties: velocity and position. It flies through the search space to
improve its position; then, it memorizes the best experience found. Indeed, the PSO
technique was used in [19–45] to reduce energy cost (EC). This algorithm was also adopted
in [12] for wind farm sizing in Iran. In [3], the authors used genetic algorithms and particle
swarm optimization to study a wind–tidal–PV system for electricity supply on the French
island of Ouessant.

The simulated annealing algorithm is a general optimization technique that searches
for global optima by considering multiple local optima. Instead of using the energy of a
material, it uses the objective function of an optimization problem. An example of using
SA can be found in [46].

The cuckoo search algorithm is a meta-heuristic optimization method based on the
interesting breeding behavior of cuckoos [47]. It operates by maintaining a population
of eggs or nests and having each cuckoo lay an egg in a randomly selected nest. CS is
known for its reduced computation time [48] and has been applied to a PV–wind–battery
system [49]. Its superiority compared to other optimization methods like PSO and GA has
been demonstrated in [50].

The artificial bee colony algorithm is a meta-heuristic method for solving sizing prob-
lems, inspired by the intelligent foraging behavior of honeybees. It uses three components:
employed foraging bees, unemployed foraging bees, and good sources. The first two
components work to find the third. The ABC algorithm also has two modes of collective
intelligence, namely forager recruitment and poor source abandonment. In [51], the authors
proposed using ABC to determine the most reliable and cost-effective configuration for a
wind–PVP–biomass–battery system.

The flower pollination algorithm is a recent meta-heuristic method that takes inspi-
ration from the process of pollination in flowering plants [52]. This algorithm has been
utilized by authors in various studies [53,54] as a way to optimize and reduce the annual
cost in a hybrid system.

The grasshopper optimization algorithm is also a recently developed optimization
method designed to size systems. It is inspired by the social interaction and food-seeking
behavior of grasshopper swarms, which are known to cause harm to agricultural produc-
tion [55]. The algorithm has been applied to a hybrid system located in Nigeria [56].

Tabu search, which was used in [57], is an iterative method that starts from an initial
solution and aims to find a better one. To prevent becoming trapped in local optima, a tabu
list and an aspiration criterion are necessary components of the TS method [58].

The harmony search method, which was adopted in [59], is based on an algorithm
that uses the pitch-adjusting rate, harmony memory consideration rate, and generation
bandwidth as parameters. These parameters are used to regulate the convergence rate of
the algorithm towards the optimal solution.

Artificial intelligence methods can lead to a reliable and cost-effective system; however,
they lack fast convergence speeds to reach optimal performance.

HOMER (Hybrid Optimization Model for Electric Renewables) is the most widely
used software-based technique for solving sizing problems and has been developed for
both on-grid and off-grid systems. It was employed in [60] to size a hybrid system for
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rural areas in Saudi Arabia, Algeria, and Ethiopia. The HOGA (Hybrid Optimization by
GA) software was used in [61] to enhance sensitivity in an autonomous system. These
software-based methods are known for their user-friendliness [62], but they do not account
for probability analysis or net measurements [63].

Hybrid techniques combining different approaches have been used to enhance the siz-
ing outcome. In [64], the authors combined simulated annealing and tabu search algorithms
for an off-grid system to decrease computational time. In [65], a non-dominated sorting
genetic algorithm (NSGA) and multi-objective particle swarm optimization (MOPSO) were
adopted to simultaneously minimize carbon dioxide emissions and system cost.

Most of the previously discussed approaches have been shown to be effective in
addressing sizing problems, especially the iterative methods. This is because they are easy
to implement, highly accurate, and have fast convergence speeds, even in challenging
environments with constraints (such as the presence of swell and waves in our case).
For these reasons, we selected to use and further advance an iterative approach in our
optimal-sizing-design study.

In this context, an off-grid tidal system with a battery is studied in this paper. In
fact, a battery is used for energy storage due to its ability to offer both energy density
and power. An iterative technique, which incorporates the DPSP and REPG as technical
criteria for reliability analysis and the EC and TNPC as economic criteria for cost analysis,
is used to address the optimal sizing issue. The simulation results are compared to those
from well-known methods such as genetic algorithms, particle swarm optimization, and
software-based (HOMER) approaches to highlight the efficiency of the proposed method in
improving reliability (with 0% DPSP) and reducing costs.

This paper is structured as follows: the proposed system model and control are
described in Sections 2.1 and 2.2, respectively. The energy management strategy is out-
lined in Section 2.3.3. The development of the sizing approach is described in Sections 2.3.2
and 2.3.3. Simulation results are analyzed in Section 3, and the paper concludes in Section 4.

2. System Study and Method Description

In order to describe the adopted iterative method, it is necessary to first establish a
model and a control system for the studied system.

2.1. Tidal Stream Turbine–Battery Modeling

The proposed system is shown in Figure 1 and includes tidal turbine as an energy
resource and a battery for storage. Power converters (AC/DC and DC/AC) are used to
support the power management strategy [66,67].

2.1.1. Tidal Current Velocity Modeling

Tidal currents result from the interactions of Earth, the sun, and the moon. The force
of the moon is much greater (68%) than that of the sun (32%). Indeed, tidal currents are
affected by the different phases of the moon. When the moon is full, tidal currents are
strong, and they are called “spring currents.” When the moon is in the first or third quarter
phases, tidal currents are weak; they are called “neap currents” [68].

The SHOM (French Navy Hydrographic and Oceanographic Service, Brest, France)
records and presents tidal current data for every coastal site. It gives the current velocities
for spring and neap tides. These data are given at hourly intervals starting at 6 hours before
high waters and ending at 6 hours after. Tidal current velocity can be presented by a simple
and practical model given by Equation (1) [5].

vt = vnt +
(C− 45)(vst − vnt)

95− 45
(1)

where C is the tide coefficient. It characterizes each tidal cycle (45 and 95 are, respectively,
the neap and the spring tide medium coefficient). vst and vnt are, respectively, the spring
and the neap tide current velocities (m/s).
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Figure 1. TST–battery system configuration.

2.1.2. Tidal Power Modeling

The tidal power extracted from marine currents is expressed by Equation (2) [69].

Pt =


0 if vcut−out < vt < vcut−in

1
2ρπr2Cpv3

t if vcut−in < vt < vr

Pr−tt if vr < vt < vcut−out

(2)

where vr is the rated velocity (m/s); vcut-in is the cut-in velocity (m/s); vcut-out is the cut-out
velocity (m/s); vt is the tidal velocity (m/s); Pr-tt is the rated output power (W); ρ is the fluid
density (1027 kg/m3); r is the turbine radius (m); and Cp is the turbine power coefficient,
which allows calculating the produced power from tidal energy using a tidal stream turbine
(typical values are between 0.3 and 0.5). In order to enhance reliability, a non-pitchable
TST was selected [70,71]. This means that the Cp can only depend on the tip speed ratio
(λ). Figure 2 shows the Cp curve adopted for simulations. The maximum value Cpmax = 0.4,
which corresponds to the optimal tip speed ratio λopt = 6.8.

2.1.3. Generator Modeling

A direct-drive PMSG-based tidal stream turbine configuration was adopted thanks to
its high efficiency, high dynamic performances, and increased reliability (no gearbox) [72].

The PMSG dynamic modeling is given by Equation (3) [73].

did
dt = −Rs

Ls
id + pΩiq +

Vd
Ls

diq
dt = −Rs

Ls
iq − pΩiq − pψm

Ls
Ω +

Vq
Ls

dΩ
dt =

p
J Tm − p

J Tem − p
J fΩ

Tem = 3
2 pψmiq

(3)

where Rs, Ls, and ψm are the stator resistance (Ω), self-inductance (H), and permanent
magnet flux (Wb), respectively. Ω is the rotor turbine speed (rad/s); p is the number of
pole pairs; J is the total inertia (kgm2); f is the viscosity coefficient (Nm/s); and Tm and Tem
are the mechanical and the electromagnetic torque (Nm), respectively.
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2.1.4. Battery Modeling

The use of a battery is necessary to meet the energy demand when the tidal stream
energy output is deficient. The battery capacity and its stored energy are described by
Equation (4) and Equation (5), respectively [74].

CBat =
LDDaut

DODmaxVBatηBat
(4)

Eb(t) =



Eb(t− 1)(1− σ) +
[
Et(t)− EL(t)

ηinv

]
ηBat

during battery charging

Eb(t− 1)(1− σ)−
[

EL(t)
ηinv
− Et(t)

]
during battery discharging

(5)

where LD is the daily electricity usage; Daut is the autonomy day; DODmax is the maximum
depth of discharge; and VBat and ηBat are the battery voltage (V) and efficiency, respectively.
Et is the produced tidal energy (W); EL is the load power demand (W); σ is the hourly
self-discharge rate of the battery; and ηinv is the inverter efficiency.

The battery state of charge is given by Equation (6)

SOCmin(t) ≤ SOC(t) ≤ SOCmax(t) (6)

where {
SOCmax = CBatVBat

SOCmin = CBatVBat(1− DODmax)
(7)
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2.1.5. Inverter Modeling

The inverter is modeled by its efficiency, which is expressed by Equation (8) [74].

ηinv = P1
P1+P0+mP2

1

P0 = 1− 99( 10
η10
− 1
η100
− 9)2

P1 = Pout
Pn−inv

m = 1
η100
− P0

(8)

where Pout is the output inverter power (W); Pn-inv is the inverter rated power (W); and η10
and η100 are the efficiency at 10% and at 100% of the inverter rated power, respectively.

2.2. Tidal Stream TurbineBattery Control

The tidal stream turbine control system, depicted in Figure 3, is primarily ensured by
PI controllers and consists of two current controllers and a speed controller.
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Sw itching state S j1 S j2 S j3 S j4 Leg voltage aj bj
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0 O ff O n O n O ff 0 0 0
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The PM SG m odelin the rotating reference fram e is given
by:

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

vd1 = R sid1 + L d1
did1
dt

− np ! rL q1iq1

vq1 = R siq1 + L q1
diq1
dt
+ np ! r

⇣
L d1id1 +

q
5
2
λ1stm

⌘

vd3 = R sid3 + L d3
did3
dt
+ 3np ! rL q3iq3

vq3 = R siq3 + L q3
diq3
dt

− 3np ! r
⇣
L d3id3 +

q
5
2
λ3rdm

⌘

(7)

w here

⇢
L d1 = L q1 = L + 2 [M 1cos(2⇡ /5)− M 2cos(⇡ /5)]
L d3 = L q3 = L − 2 [M 1cos(⇡ /5)+ M 2cos(3⇡ /5)]

The electrom agnetic torque is expressed as follow s:

Tem =

r
5

2
np(λ

1st
m iq1 − 3λ

3rd
m iq3) (8)

The m echanical equation is presented in the follow ing
equation:

J
d! r
dt
= Tm − Tem − fB ! r (9)
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differentvoltage vectors [23].
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êabcde(k + 2)
R eference

C urrent

C alculation

i⇤s− dq13(k + 2)

T ⇤em

P I-
+

!r

!⇤r
M P P TV

G rid-side

D elay

C om pensation
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III. C O N TR O L STR ATEG Y

The proposed controlstrategy is illustrated in Fig.8.The PI
algorithm is used to controlthe rotor speed w ith its reference
generated by the M PPT algorithm . The five-phase PM SG
currents are controlled by FCS-M PC approach.The detailed
controlalgorithm s are described as follow s:

A. Reference Speed Calculation

The reference speed is calculated from the m arine current
speed by the conventionalM PPT algorithm :

! ⇤
r =

λoptV

R
(10)

Generator-side  

converter 

Ia Ib 

Clarke/Park  

transform 

Encoder 
θ 

MPPT 

vtide 

Inverse 

Clarke/Park  

transform 

Decoupling 

– 
+
 
 

PI 

PI PI 

Isd
* 

Ω 

Ω* 
Tem

* 
Isq

* 
Isq 

Isd 

vsq
* vsd

* 

vs1 vs2 vs3 

np 

1

n
p aF

Ω 

dt

du

– 

– 

+
 
 

+
 
 

Permanent magnet  

generator 

Tidal turbine 

Figure 3. TST control.

The control system is expressed by Equation (9){
isd = 1

Rs+Lss (vsd +ωψsq)

isq = 1
Rs+Lss (vsq −ωψsd)

(9)

where {
ψsd = Lsisd + Φa

ψsq = Lsisq
(10)

The control system for the tidal stream turbine in this study uses an MPPT-based
variable speed technique. The optimal tip speed ratio is fixed to maximize tidal power
extraction, and the turbine speed, expressed by Equation (11) [75,76], is regulated to operate
around the maximum power. If the tidal velocity exceeds 3.2 m/s, the extracted power will
be limited to its maximum capacity [75].

Ωre f =
vtλopt

r
(11)
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2.3. Method Description

The technique that was adopted involves a recursive algorithm that integrates both
technical and economic criteria, with a focus on implementing robust energy management.

2.3.1. Energy Management Strategy

An energy management strategy is vital in meeting energy demand [4]. It takes into
account energy consumption at any time of the year. Tidal velocity and system component
parameters (TST, battery, load, and inverter) are the input data. Two cases can be considered:

• Charging process: When the tidal energy exceeds the load demand ( Et(t) > EL(t)),
the TST will therefore supply the load, while the energy surplus will charge the battery
until EBT(t) > EBTMax(t).

• Discharging process: When the TST energy is insufficient to cover the load demand
(Et(t) ≤ EL(t)), whilst the battery is properly charged (E BT(t) < EBTMin(t)), the
energy deficit is covered by the battery.

2.3.2. Optimal Sizing Approach

The objective function of the optimal sizing technique is to minimize system cost
while improving system reliability. The used indexes of reliability are the deficiency of
power supply probability (DPSP) and the relative excess power generated (REPG). For
cost reduction, the energy cost (EC) and the total net present cost (TNPC) are used as
economic indexes.

Reliability Indexes

To ensure the TST–battery system reliability, the deficiency of power supply probability
and the relative excess power generated are required.

• Deficiency of Power Supply Probability

The DPSP, chosen as a reliability index, is a statistical parameter that indicates the
power supply deficiency probability due to technical failure or low power given by the TST
system [67]. It allows us to determine the configuration that presents a DPSP = 0% [74].
The DPSP is calculated using Equation (12). DPSP(%) = ∑T

t=1 D(t)
∑T

t=1 EL(t)
× 100

D(t) = EL(t)− [Et(t) + EBT(t− 1)− EBTMin]× ηinv

(12)

where T is the period during which the data were used (8760 h); EBT(t− 1) is the battery
energy capacity at (t− 1); EBTMin is the battery minimum energy capacity; and D(t) is the
deficiency energy supply at hour t.

• Relative Excess Power Generated

The REPG is the ratio of the energy surplus to the sum of the load energy demands. It
is expressed by Equation (13) [77].

REPG = ∑T
t=1 R(t)

∑T
t=1 EL(t)

R(t) =
(

Et(t)−
[

EL(t)
ηinv

+ (EBTMax−EBT(t−1))
ηBat

]) (13)

where EBTMax is the battery maximum energy capacity, and R(t) is the energy surplus at
for every hour t.

Economic Indexes

To minimize cost, the total net present cost and energy cost of the TST–battery system
are considered.
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• Total Net Present Cost The TNPC includes CT (capital cost), CO&M (operation and
maintenance cost), and CRep (replacement cost) [78]:

1. Capital cost: It represents the used component procurement cost sum (TST,
battery, and inverter) [79];

2. Operation and maintenance cost: It represents all the system component opera-
tion and maintenance costs during the year. It depends on the system lifetime
and the interest rate [79];

3. Replacement cost: It depends on some component replacement.

The total net present cost can be finally calculated using Equation (14).

TNPC($) = CT + CO&M + CRep

CT = CTST
T + CBat

T + Cinvr
T

CO&M = (C TST
O&M + CBat

O&M

)
× γ

CRep =
(

CBat
Rep × µ1

)
+
(

Cinv
Rep × µ2

)
γ = (1+k)τ−1

k(1+k)τ

µ1 = ∑
( τ
τBat
−1)

p=1 (1 + 1
(1+k)pτBat )

µ2 = ∑
( τ
τinv
−1)

p=1 (1 + 1
(1+k)pτinv )

(14)

where CTST
T is the TST investment cost; CBat

T is the battery investment cost; Cinv
T is the

inverter investment cost; CMCT
O&M is the TST maintenance cost; CBat

O&M is the battery mainte-
nance cost; CBat

Rep is the battery replacement cost; Cinv
Rep is the inverter replacement cost; τ

is the system lifetime; k is the interest rate (8%); τBat is the battery lifetime; and τinv is the
inverter lifetime.

• Energy Cost

The energy cost (per-unit produced energy cost) is calculated using Equation (15) [62].
EC($/KWh) = TNPC

∑8760
t=1 EWT(t)

×ψ(k, τ)

ψ(k, τ) = k(1+k)τ

(1+k)τ−1

(15)

where Ψ is the capital recovery factor.

2.3.3. Proposed Sizing Approach

The proposed algorithm for the optimal sizing of the TST–battery system is shown in
Figure 4. As input data, the tidal speed and the system component parameters (load, TST,
battery, and inverter) are given throughout a year (365 × 24 h = 8760 h). This algorithm
has two objectives. The first one is to improve the system reliability using the DPSP and
the REPG concepts. The second objective is to reduce the produced energy cost through
the TNPC and EC criteria. Consequently, the sizing approach consists in determining
the optimal configuration (TST power and battery capacity) that ensures a well-designed
system with minimal costs. The following steps describe the proposed algorithm flow:

1. Input the following over a year: the load power, the tidal velocity, and the battery
minimal and maximal states of charge;

2. If the energy obtained from the tidal source exceeds the current load, the surplus of
energy is stored in the battery. Then, the new state of charge is determined using
Equation (5);
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3. If the load demand exceeds the energy produced by tidal source, the battery will
be used to meet the load demand. Then, the new state of charge is obtained using
Equation (5);

4. Size the system’s different components that ensure system reliability (DPSP = 0) over
a year with minimal EC and TNPC, and EC;

5. Stop when cost is minimal, with zero DPSP;
6. Save the obtained (TST power, battery capacity) configuration.
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3. Results and Discussion

The parameters of the studied TST–battery system are given in Table 1. The first-order
model (Equation (1)) was used for each hour of the year (1 January 2007 to 31 December 2007)
to calculate the tidal current velocity (Figure 5) in the Raz de Sein in the Bretagne (France).
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Figures 6 and 7 show, respectively, the annual power generated by the TST and the annual
load demand.

Table 1. System parameters.

Parameter Value

TST

Rated power 50 kW
Tidal velocity 3 m/s

Cut-in tidal velocity 1 m/s
Cut-out tidal velocity 3.8 m/s

Radius 8 m
Rated speed 25 rpm

Stator resistance 0.0081 Ω
d-axis inductance 1.2 mH
q-axis inductance 1.2 mH

Permanent magnet flux 2.458 Wb
System total inertia 1.3131 × 106 kg·m2

Viscosity coefficient 8.5 × 10−3 Nm/s
Capital cost 5000 USD/kW

Operation and maintenance costs 150 USD/kW
Lifetime 20 years

Battery

Capacity
Voltage

800 Ah
240 V

Efficiency 0.85
DOD 0.7

Lifetime 5 years
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Figure 7. Load annual demand.

The simulation results achieved by the proposed sizing algorithm are summarized in
Figure 8 and Table 2. They both show the optimal sizing results for different combinations
of TST and battery. Indeed, to determine the configuration that ensures a DPSP = 0%, a
battery capacity and a TST power less than 800 Ah and 43.8 kW, respectively, are rejected.
Therefore, a battery with a capacity of 800 Ah or more with a TST of 43.8 kW or more
is recommended. Hence, to minimize the cost of the system, the authors have chosen
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the smallest battery capacity (800 Ah). To this end, a 47.8 kW–800 Ah configuration was
selected. With this configuration, the TNPC is USD 28,647, and the EC is USD 1.164/kWh.
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Figure 8. Annual DPSP for different TST power and battery capacity configurations.

Table 2. DPSP for different combinations.

TST Power (kW) Battery Capacity (Ah) DPSP (%) Decision

Whatever 600 6=0 Rejected
Whatever 700 6=0 Rejected

<43.8 Whatever 6=0 Rejected
<47.8 800 6=0 Rejected
≥47.8 800 0 Accepted
<45.8 900 6=0 Rejected
≥45.8 900 0 Accepted
≥43.8 1000 0 Accepted

Figure 9 and Table 3 propose a comparison of the proposed approach to other tech-
niques (genetic algorithm, particle swarm optimization, and HOMER software) at 0% DPSP.
The achieved results clearly confirm the effectiveness of the proposed techno-economic
optimization approach in obtaining a reliable and cost-effective TST–battery system. In this
context, the particle swarm optimization technique achieves the second-best ranking, with
a TNPC of USD 30,200 and an EC of 1.296 USD/kWh. In contrast, the genetic algorithm
technique is ranked the lowest, with a TNPC of USD 59,042 and a CE of 1.761 USD/kWh.
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Table 3. Comparative evaluation of the proposed optimal sizing approach.

Approach TST Power (kW) Battery Capacity (Ah) DPSP (%) TNPC
(USD)

EC
(USD/kWh)

Genetic algorithm 98.52 2235 0 59042 1.761
Particle swarm optimization 53.4 1040 0 30200 1.296

HOMER 62.3 1100 0 32888 1.325
Proposed approach 47.8 47.8 0 28647 1.164

4. Conclusions

This paper presented an in-depth examination of an iterative optimal sizing method
for a tidal stream turbine–battery system. The proposed approach used yearly tidal stream
velocity and load demand as key input information for the optimization process. The results
obtained from the application of this method clearly demonstrate its effectiveness in im-
proving reliability (DPSP = 0%) and minimizing the overall cost of the system. The chosen
configuration, at 47.8kW–800Ah, was found to have the most favorable techno-economic
performance, with TNPC and EC values of USD 28,647 and 1.164 USD/kWh, respectively.
The proposed approach has also been compared to well-established approaches, namely
genetic algorithm, particle swarm optimization, and HOMER software. The achieved re-
sults clearly show that the iterative optimal sizing methodology allows obtaining a reliable
and cost-effective TST–battery system.

The significance of this study lies in the ability to confirm the validity of the theoret-
ical results through experimental study, providing a strong foundation for the practical
implementation of this approach in the future.
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