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Abstract: In order to study the corrosion time-varying law and fatigue properties of high-strength
steel strands used for marine environment structures, the accelerated corrosion test of steel strands
was carried out by using a climate simulation chamber, and samples with different corrosion times
were taken out for mass weighing, morphology observation, and fatigue testing. Steel strand
specimens with different corrosion times (from 1 month to 14 years) for use in the real marine
environment were developed in an indoor climate simulation test chamber. The average mass
corrosion ratio curve of the steel strands in the marine environment and the changes in the corrosion
pit size over time were obtained by performing data analysis based on weight and appearance. The
time-varying rule of the fatigue life of coastal-structure steel strands was determined by conducting a
fatigue test and fracture scanning electron microscopy (SEM) analysis of steel strands with different
corrosion degrees. The results of the experimental study show that the mass corrosion rate and
pit size of steel strands change with the service time as a piecewise function, fatigue performance
changes with the service time is as an exponential function, and fatigue performance changes with the
mass corrosion ratio are similar to a linear function. Furthermore, the corrosion pit has a significant
impact on the fatigue life of the steel strand.

Keywords: coastal structures; high-strength steel strands; corrosion model; pitting corrosion;
corrosion fatigue

1. Introduction

Stayed cables, suspenders of arch bridges, and suspenders of suspension bridges
have the same characteristics of a low weight and small damping. Under the action of
vehicles, typhoons, and other vibration loads, fatigue damage can easily occur after multiple
cycles of alternating stress [1–5]. Moreover, stayed cables and suspenders are vulnerable
components in bridge structures. High-levels of salt fog, high temperatures, and high
humidity in coastal environments accelerate the deterioration of cable materials and affect
the safety and durability of bridge structures [6–10]. Fatigue and corrosion are the two main
causes of boom fractures [11–13]. Researchers [14–16] have studied the corrosion and
fatigue properties of parallel steel wire suspenders. However, to date, only a few people
have investigated the corrosion and fatigue properties of steel strand suspenders [16].
Moreover, test samples of corroded components are prepared by accelerating corrosion
with electrochemistry, thus they are considerably differing from those in the real marine
environment. Yu used the salt fog test and neural network method to establish a stochastic
pitting corrosion model, and then they used the empirical formula to derive the stress
concentration factor and predict the fatigue life of steel strands [17]. In this study, steel
strand specimens with different corrosion times are developed in a large climate simulation
test chamber. The variation law of the steel strand corrosion rate with time is analyzed, and
the development model for corrosion pits is established by performing a statistical analysis.
A fatigue test is conducted to determine the deterioration rule of the fatigue property of the
steel strand with time.
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2. Sample Preparation

Each test sample was composed of 7 steel wires with a diameter of 5 mm made from
carbon steel containing 0.6–0.8% carbon with a nominal diameter of 15.20 mm, an elastic
modulus of 198 GPa, and an ultimate strength of 1860 MPa, and it complied with the
relevant requirements for prestressed concrete (GB/T 5224.2014). The length of the steel
strand used in this test was 75 cm. Seventy-eight steel strands were prepared and divided
into 19 batches. The corrosion times in the simulated real environment were 1 month,
3 months, 6 months, 9 months, 12 months (1 year), 18 months (1.5 years), 2 years, 3 years,
4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years, 11 years, 12 years, 13 years, and
14 years. A total of 36 steel strands were present in batches 1–12. A total of six samples
were present in batches 13–19. The total number of samples was 42. Specific information
about the samples is shown in Table 1.

Table 1. Specific information about samples.

No. Batch Experiment
Times/Years

Number of Test
Samples

1 GJX1m 1/12 3
2 GJX3m 3/12 3
3 GJX6m 6/12 3
4 GJX9m 9/12 3
5 GJX1y 1 3
6 GJX18m 1.5 3
7 GJX2y 2 3
8 GJX3y 3 3
9 GJX4y 4 3
10 GJX5y 5 3
11 GJX6y 6 3
12 GJX7y 7 3
13 GJX8y 8 6
14 GJX9y 9 6
15 GJX10y 10 6
16 GJX11y 11 6
17 GJX12y 12 6
18 GJX13y 13 6
19 GJX14y 14 6

Steel strands with different corrosion rates in this test were manufactured by con-
ducting a salt-spray-accelerated test in the loading multi-function climate simulation test
chamber (temperature 40 ◦C, humidity 95%, and NaCl 5%); the test chamber had the follow-
ing dimensions: 4500 mm × 3300 mm × 2800 mm (depth × width × height). The natural
corrosion environment spectrum of coastal areas was compiled using meteorological data
of Zhoushan Dinghai Station in 2018. Zhoushan has a monsoon marine climate in the
southern margin of the north subtropical zone, with high chloride ion content in seawater,
and its classification in terms of marine atmosphere is C5. The equivalence relationship
between the environment of the loading multi-function climate simulation test chamber
and the actual coastal operating environment was established [18]. The experiment started
on 11 November 2019. All the steel strands were placed in the climate simulation test
chamber at the same time. Then, they were taken out in batches as per the set test time.
All test samples were taken out by 17 July 2020, and the accelerated corrosion test was
completed.

The aim of this corrosion test is to examine the damage to the external protective
sleeve of the suspenders. Therefore, the corrosion time of a bridge suspender that has been
in service for many years should be added to the damage life of the external protective
sleeve, which is generally considered to be 2 years [19].
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3. Time-Varying Model of Steel Strand Corrosion

The corrosion appearance of the samples is shown in Table 2. Steel strands with
different corrosion times were weighed and measured. Then, the test data were analyzed,
and the time-varying model of the average mass corrosion rate of the steel strand and the
corrosion pit development model were obtained.

Table 2. Corrosion of unstressed steel strands at different corrosion times.
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GJX1y GJX18m GJX2y GJX3y GJX4y

3.1. Time-Varying Model of Average Mass Corrosion Rate

The steel strands were taken out at different corrosion times and placed into a test
box with diluted glacial acetic acid solution. After soaking for 24 h, the steel strand test
samples were repeatedly rinsed with clean water, and a soft brush was used to treat the
rust until the rust deposits on the surface of the test piece were completely cleaned. The
washed steel strand was dried for 24 h at 60 ◦C. After the steel strand was completely dried,
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an electronic balance with an accuracy of 0.1 g was used to measure the mass of the steel
strand. The mass loss rate of the steel strand was calculated as η = (m0 − m1) × 100%/m0

η =
m0 − m1

m0
× 100% (1)

where η is the mass corrosion rate of a single steel strand, m0 is the initial mass of the steel
strand before corrosion, and m1 is the mass of the steel strand after rust removal.

The corrosion time in the laboratory environment was converted to the service time of
the steel strand in the real environment. The curve of the corrosion ratio of the steel strand
in the real environment versus the service time is shown in Figure 1. The time-varying
model of the average mass corrosion ratio of the steel strand is expressed in Formula (2).

η =


e−2.113+1.125t−0.077t2

t ≤ 5
8.914 − 26.682 × 0.683t 5 < t < 10
e2.720−0.137t+0.008t2

t ≥ 10
(2)
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Figure 1 shows that the corrosion of the steel strand develops considerably slowly in
the first year, relatively slowly from the first to second years, and rapidly from the second
to eighth years. The average corrosion ratio at 8–12 years remains at approximately 8.5%,
indicating that the corrosion degree is relatively stagnant at this time. At 12–15 years, the
slope of the average ratio increases. Compared with that in the previous years, the corrosion
rate significantly increases. The above piecewise rusting pattern is more intuitively shown
in Figure 2.
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3.2. Time-Varying Model of Corrosion Pit

The typical corrosion morphology of the steel strand surface includes ellipsoidal cor-
rosion pits, circular corrosion pits, crevice corrosion pits, voids and pits, massive corrosion,
and mixed coexistence. A gap exists between the steel wires owing to the special structure
of the steel strand and the continuous development of circular corrosion pits and ellipsoidal
corrosion pits. Thus, a gully-like corrosion pit called the crevice corrosion pit can be easily
formed. As the corrosion time increases and the degree of corrosion increases, the circular
and ellipsoidal corrosion pits expand, and their boundaries interlace each other, and finally,
form block corrosion pits. The block corrosion pits have clear, corrosion-shaped boundaries,
and the boundaries are uneven. When the corrosion gradually deepens, honeycombs
and pits appear, indicating that the boundary of the corrosion pit is not apparent and the
aggregation and intersection of small pits are the main reasons for voids and pits.

The size of the corrosion pit on the surface of a parallel steel wire can be observed
by using a Bruker surface profile roughness tester; however, the steel strand was a spiral.
With the extension of the length direction, the height of the outer surface of the steel wire
changes. Measuring the corrosion pit becomes difficult, and the corrosion pit data cannot
be automatically obtained by the machine. For pits with a length or width less than 10 mm,
the surface size of them can be accurately measured. For pits with a length or width greater
than 10 mm, the surface sizes of these pits cannot be accurately measured by the instrument.
Thus, a ruler was used to measure the length and width of the pits. To ensure accuracy,
the readings were kept to one decimal place, and the accuracy control bit was 0.01 mm.
A micrometer with an accuracy of 0.001 mm was used to measure the difference between
the bottom and the outside of the corrosion pit, and the depth of the corrosion pit was
determined by performing calculations. The length of the corrosion pit was measured along
the length of the steel strand, and the width of the corrosion pit was measured along the
radial dimension of the steel strand. The curves of the maximum length and average length
of the corrosion pit of the steel strand versus the corrosion time are shown in Figure 3. The
curves of the maximum width and average width of the corrosion pit of the steel strand
versus the corrosion time are shown in Figure 4. The curves of the maximum depth and
average depth of the corrosion pit of the steel strand versus the corrosion time are shown
in Figure 5, which are similar to those with the earlier date [8].
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4. Experimental Study on Fatigue Performance of Corroded Steel Strand
4.1. Fatigue Test Equipment

The test equipment used was an 8802 electro-hydraulic fatigue testing machine man-
ufactured by the British INSTRON Company. As shown in Figure 6, it has a precision
positioning and a highly stiff frame, and it is used for testing fracture mechanics, steel
bars, aerospace plates, steel cables, civil components or structures, small concrete samples,
and rock mechanics. A specially designed clamp was used in this test, and a utility model
patent was applied to prevent the fracture or bending damage of the clamping end caused
by the uneven stress of the steel strand material in the clamping section. Figure 7 shows a
photograph of the clamp.

The specific test parameters were as follows: the average stress was 630 MPa, the
stress amplitude was 210 MPa, the maximum stress was 840 MPa, the minimum stress
was 420 MPa, and the stress ratio was 0.5. The sectional area of the steel strand was
140 mm2. According to stress control during loading, the average load of this test was
88.2 kN, and the load amplitude was 29.4 kN. The test was stopped when the number of
fatigue cycles reached 2 million times. The limit displacement was set at 20 mm, and the
loading frequency was 5 times/s. The test was terminated when the displacement of the
upper chuck was considerably large and the test piece was damaged. The final fatigue life
can be directly obtained from the number of cycles recorded by the control system.
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Figure 7. Assembly diagram of steel strand and clamp for fatigue test.

4.2. Analysis of Test Data

The least squares method was used to fit the fatigue test data. The change curve of
fatigue cycle times with time is shown in Figure 8, and the fitting formula is shown in
Formula (3). The change curve of fatigue cycle times with the corrosion rate is shown in
Figure 8, and the fitting formula is shown in Formula (4).

N = 67854.838 + 104547.976 × 0.74t (3)

N = −70321.12 + 216366.4 × 0.947η (4)
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The fatigue life change data of corroded steel strand specimens indicate that the
fatigue life decreases as the service life increases. Before the service life of the steel strand
reaches 8 years, number of fatigue cycles is more than 100,000 times, the steel strand has
been in service for 8–13 years, and the fatigue life is maintained at 80,000–50,000 times.
Subsequently, it rapidly decreases. The main reason is that the etch pits are connected by a
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single, long groove-type etch pit during this period, and the depth of the etch pits increases
as the corrosion rate increases. The uneven distribution of etch pits gradually reduces, and
large etch pits form, and the stress concentration is clearer.

According to the requirements of relevant specifications, the fatigue life of intact steel
strand specimens should reach 2,000,000. The fatigue life of the corroded steel strand is
significantly reduced compared with that of the intact steel strand, indicating that the local
stress concentration caused by corrosion pits is significant and the local corrosion pits
rapidly develop into cracks under the effect of fatigue loading, leading to fatigue fracture
of the steel strand.

4.3. Scanning Electron Microscopy (SEM) Fracture Analysis

During the loading process of the specimen, loud noises are produced many times
(steel wire is generally believed make a loud noise when it breaks). In the loading process,
after the first steel wire breaks, the remaining steel wire can still maintain a certain load-
bearing capacity. However, the degree of corrosion and the number of remaining fatigue
lives are different. According to the test observation, after the first wire breaks, the number
of remaining cycles varies from 500 to 2000, which is substantially smaller than the total
number of cycles. Thus, the fatigue life depends on the fracture of the first wire.

Although many studies on the fatigue mechanism have been conducted based on the
local microplasticity model [20,21], no theoretical system of fatigue mechanics is available.
At present, the prevailing interpretation of the fatigue mechanism is the microlocal plasticity
theory: plastic deformation occurs near the micro defects in the material due to stress
concentration, which further leads to the growth and generation of micro defects, resulting
in the accumulation of damage; after accumulation, local damage occurs, forming cracks
at the initial stage of fatigue [22]. Therefore, the microscopic characteristics of the fatigue
fracture surface of the corroded steel strand and the fatigue failure mechanism of the
corroded steel strand should be analyzed.

The fatigue fracture surface of materials consists of three parts: the crack source
area, the crack propagation area, and the transient fracture area [23]. Corresponding to
the three parts of the fatigue fracture surface, there are three stages of fatigue failure:
fatigue crack formation (initiation), fatigue crack growth, and the final fracture when
the crack growth reaches the critical size. A digital SEM (JSM-6390A) was used to scan
the fatigue fracture surface of the corroded steel strand, as shown in Figure 8. After
being magnified 18 times by SEM, the characteristics of the fatigue fracture surface were
statistically analyzed, as shown in Table 3.

Table 3 shows that the fatigue fracture morphologies of the broken wire of the corroded
steel strand are similar and composed of a smooth and flat fatigue crack growth zone and a
rough and step-shaped, transient fracture zone. No shell grain line is found in the fatigue
growth zone of the fracture morphology. The brittleness of the material is increased, and
the corroded steel strand rapidly develops after the appearance of fatigue macrocracks
under the application of cyclic loads and breaks in the test. The fracture surface of the
transient fracture zone is rough, and distinctive shear lips and radial fibers can be observed.
The outer edge of the steel wire fracture gradually presents a concave–convex tooth shape.
The more fatigue sources there are, the shorter the fatigue life is. The existence of multiple
fatigue sources causes the fatigue crack growth zone to expand in different directions,
making the growth occur faster and reducing the fatigue life.

The micromorphology of the fatigue source, fatigue propagation zone, and transient
fracture zone of the sample fracture surface were observed by using a local scanning
electron microscope, as shown in Figures 9–13.
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Table 3. Analysis of fatigue fracture characteristics of rusted steel strands.

Fatigue Fracture Characterization
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The results of the SEM indicate that on the fatigue fracture surface of each steel strand,
the fatigue source is at the location of the corrosion pit; thus, the corrosion pit is the source
of fatigue crack growth. The crack starts at the bottom or inner wall of the corrosion pit
and expands until it becomes a smooth area, including the corrosion pit. The fatigue source
etch pits have various shapes, and the surface etch pits on the steel strand have different
shapes. Determining the location where the stress concentration effect is most obvious is
challenging. Multiple etch pits can initiate cracks in a single area, and a single etch pit
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can initiate cracks in multiple areas. After the micro defects of the fatigue source were
examined, the depth of the defects ranged from 15.62 to 133.3, indicating micro defects.
Therefore, even if it is slightly rusted, as long as micro defects are formed on the surface of
the steel strand, fatigue crack growth sources will be formed, and the probability of crack
initiation at the defects will increase.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 12 of 14 
 

 

  

(a) Fatigue source. (b) Instantaneous fault zone. 

Figure 12. GJX3y fatigue fracture morphology. 

  

(a) Fatigue source. (b) Instantaneous fault zone. 

Figure 13. GJX6y fatigue fracture morphology. 

The results of the SEM indicate that on the fatigue fracture surface of each steel 
strand, the fatigue source is at the location of the corrosion pit; thus, the corrosion pit is 
the source of fatigue crack growth. The crack starts at the bottom or inner wall of the cor-
rosion pit and expands until it becomes a smooth area, including the corrosion pit. The 
fatigue source etch pits have various shapes, and the surface etch pits on the steel strand 
have different shapes. Determining the location where the stress concentration effect is 
most obvious is challenging. Multiple etch pits can initiate cracks in a single area, and a 
single etch pit can initiate cracks in multiple areas. After the micro defects of the fatigue 
source were examined, the depth of the defects ranged from 15.62 to 133.3, indicating mi-
cro defects. Therefore, even if it is slightly rusted, as long as micro defects are formed on 
the surface of the steel strand, fatigue crack growth sources will be formed, and the prob-
ability of crack initiation at the defects will increase. 

The morphology of the fatigue growth zone is flat, the pearlite lamellar transgranular 
fracture is visible, and individual fracture pits exist. Plastic deformation occurs during the 
process of crack growth, which reflects the characteristics of fatigue fracture under com-
plex stress cases. The fatigue transient fracture zone is the area where the fatigue crack 
grows to a critical size. Figures 9–13 reveal that the torn edge of the fatigue strip is clearly 
visible. The crystal is torn owing to a high level of stress, resulting in distinctive cracks. 
Because of the existence of many dislocations and twins, the lattice is severely distorted, 
and the crack cannot expand inside the crystal. Relatively large plastic deformation con-
nected by tearing occurs at the adjacent boundaries when crack growth is present inside 

Figure 12. GJX3y fatigue fracture morphology.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 12 of 14 
 

 

  

(a) Fatigue source. (b) Instantaneous fault zone. 

Figure 12. GJX3y fatigue fracture morphology. 

  

(a) Fatigue source. (b) Instantaneous fault zone. 

Figure 13. GJX6y fatigue fracture morphology. 

The results of the SEM indicate that on the fatigue fracture surface of each steel 
strand, the fatigue source is at the location of the corrosion pit; thus, the corrosion pit is 
the source of fatigue crack growth. The crack starts at the bottom or inner wall of the cor-
rosion pit and expands until it becomes a smooth area, including the corrosion pit. The 
fatigue source etch pits have various shapes, and the surface etch pits on the steel strand 
have different shapes. Determining the location where the stress concentration effect is 
most obvious is challenging. Multiple etch pits can initiate cracks in a single area, and a 
single etch pit can initiate cracks in multiple areas. After the micro defects of the fatigue 
source were examined, the depth of the defects ranged from 15.62 to 133.3, indicating mi-
cro defects. Therefore, even if it is slightly rusted, as long as micro defects are formed on 
the surface of the steel strand, fatigue crack growth sources will be formed, and the prob-
ability of crack initiation at the defects will increase. 

The morphology of the fatigue growth zone is flat, the pearlite lamellar transgranular 
fracture is visible, and individual fracture pits exist. Plastic deformation occurs during the 
process of crack growth, which reflects the characteristics of fatigue fracture under com-
plex stress cases. The fatigue transient fracture zone is the area where the fatigue crack 
grows to a critical size. Figures 9–13 reveal that the torn edge of the fatigue strip is clearly 
visible. The crystal is torn owing to a high level of stress, resulting in distinctive cracks. 
Because of the existence of many dislocations and twins, the lattice is severely distorted, 
and the crack cannot expand inside the crystal. Relatively large plastic deformation con-
nected by tearing occurs at the adjacent boundaries when crack growth is present inside 

Figure 13. GJX6y fatigue fracture morphology.

The morphology of the fatigue growth zone is flat, the pearlite lamellar transgranular
fracture is visible, and individual fracture pits exist. Plastic deformation occurs during the
process of crack growth, which reflects the characteristics of fatigue fracture under complex
stress cases. The fatigue transient fracture zone is the area where the fatigue crack grows to
a critical size. Figures 9–13 reveal that the torn edge of the fatigue strip is clearly visible.
The crystal is torn owing to a high level of stress, resulting in distinctive cracks. Because of
the existence of many dislocations and twins, the lattice is severely distorted, and the crack
cannot expand inside the crystal. Relatively large plastic deformation connected by tearing
occurs at the adjacent boundaries when crack growth is present inside the crystal, with
a severely distorted lattice, forming microporous polymerization dimples or torn edges.
The appearance of dimples and torn edges indicates that the brittleness of the corroded
steel strands gradually increases, resulting in greater plastic deformation, and ultimately,
fatigue failure.
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5. Conclusions

(1) The fitting curve of the corrosion of steel strands in coastal environments is a piecewise
function that can be used to predict the corrosion degree of exposed steel strands in
the suspender after 15 years.

(2) The size development of corrosion pits on the surface of steel strands has a certain
relevance, but the corrosion development trend in three directions may be different at
different time periods. With the increase in corrosion time, the corrosion time stops
radially increasing at 8 years, and the depth and length of corrosion pits exhibit a
nonlinear growth trend with time.

(3) Fitting the fatigue life and service life of steel strands shows that the decline function
of the fatigue performance with respect to the corrosion time is N = 67854.838 +
104547.976 × 0.74t. The fitting curve for the corrosion degree is N = −70321.12 +
216366.4 × 0.947η .

(4) The higher the corrosion rate is, the lower the number of fatigue cycle times of the
steel strand specimen is, indicating that the corrosion pit has a significant impact on
the fatigue life of the steel strand. The existence of the corrosion pit will cause the
fatigue life of the steel strand to drop compared with that of the intact steel strand.

(5) The SEM results of fatigue ports show that multiple etch pits can initiate cracks in
a single area, and a single etch pit can initiate cracks in multiple areas. Even if it is
slightly rusted, as long as microscopic defects are formed on the surface of the steel
strand, fatigue crack growth sources will be formed, and the probability of crack
initiation at the defects will increase. With the gradual increase in the brittleness of
the corroded steel strand, the plastic deformation increases and fatigue failure occurs.

(6) In this study, fatigue fracturing was not analyzed by energy dispersive X-ray (EDAX),
and there were no deep mechanistic studies. Therefore, the mechanism of fatigue
fracture will be studied in the future.
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