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Abstract: Here we present a machine-learning-based method for utilizing traditional ocean-viewing
satellites to perform automated atmospheric correction of nanosatellite data. These sensor convolution
techniques are required because nanosatellites do not usually possess the wavelength combinations
required to atmospherically correct upwelling radiance data for oceanographic applications; however,
nanosatellites do provide superior ground-viewing spatial resolution (~3 m). Coincident multispectral
data from the Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite
(Suomi NPP VIIRS; referred to herein as “VIIRS”) were used to remove atmospheric contamination at
each of the nanosatellite’s visible wavelengths to yield an estimate of spectral water-leaving radiance
[Lw(l)], which is the basis for surface ocean optical products. Machine learning (ML) algorithms
(KNN, decision tree regressors) were applied to determine relationships between Lw and top-of-
atmosphere (Lt)/Rayleigh (Lr) radiances within VIIRS training data, and then applied to test cases
for (1) the Marine Optical Buoy (MOBY) in Hawaii and (2) the AErosol RObotic Network Ocean
Color (AERONET-OC), Venice, Italy. For the test cases examined, ML-based methods appeared to
improve statistical results when compared to alternative dark spectrum fitting (DSF) methods. The
results suggest that ML-based sensor convolution techniques offer a viable path forward for the
oceanographic application of nanosatellite data streams.

Keywords: ocean color remote sensing; atmospheric correction; nanosatellites; Planet; PlanetScope;
MOBY; VIIRS; water-leaving radiance; machine learning; model predictions

1. Introduction

The prevailing mission-based paradigm for ocean color remote sensing typically in-
volves high-cost satellite platforms launched and operated by government agencies such
as NASA, NOAA, ESA, and JAXA. These platforms host state-of-the-art ocean-viewing
radiometers with design and sensitivity specifications appropriate for delineating a com-
paratively weak water-leaving radiance from the total radiant signal detected at the top of
the atmosphere. The current suite of such operational ocean color sensors includes NASA’s
Moderate Resolution Imaging Spectroradiometer (MODIS; Aqua satellite), NOAA’s VIIRS
(SNPP and NOAA-20 satellites), the Ocean and Land Colour Instrument (OLCI; Sentinel-3
A/B satellites), and the Second-Generation Global Imager (SGLI) onboard the GCOM-C
satellite. All of these sensors provide multi-spectral band sets (visible, near-infrared (NIR),
and shortwave infrared (SWIR)) with daily coverage at approximately kilometer-scale spa-
tial resolution. However, even kilometer-scale spatial resolution may be unable to resolve
finer-scale features near rivers and estuaries that are critical for scientific and environmental
resource management applications.

In contrast to government-sponsored, large satellite missions, commercial entities are
now deploying low-cost cubesats with much higher spatial resolution imaging capability.
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Planet Labs currently has ~200 (as of November 2022) orbiting nanosatellites that provide
high-temporal-resolution monitoring of the Earth’s surface at a spatial resolution previously
available only by the high-cost tasking of a few specialized satellites such as WorldView
3/4 [1]. The majority of these nanosatellites (known collectively as PlanetScope (PS)) host a
multispectral digital camera with blue, green, red, and NIR bands, which image the earth at
very high spatial resolution (3.125 m ground resolution at nadir). PS data have been used to
monitor volcano activity [2], assess vegetative index [3,4], aid agriculture studies [5,6], study
lake dynamics [7], determine high-resolution topography [8], detect oil spills [9], monitor
rangeland [10], and monitor disasters [11]. PS applications for aquatic environments include
monitoring coral reefs [12] and water quality [13,14], Sargassum detection [15], detection
of river ice and water velocities [16], high-resolution bathymetry [17], and monitoring
seagrass beds [18].

Other commercial groups are also exploiting nanosatellite technology for a wide
variety of remote sensing applications [19–23]. However, there have been only a small
number of studies to assess these commercial nanosatellite data sources as a viable solution
for ocean color remote sensing, i.e., detection of the water-leaving radiant signal in the
visible bands after removal of the intervening atmospheric contamination [24]. Maciel et al.
studied the potential for cubesats to provide remote sensing reflectance over very turbid
inland lakes [25]. Vanhellemont applied the dark spectrum fitting (DSF) aerosol correction
method [26,27] to PS data [14] and also found success in the PS red bands over very turbid
waters.

More generalized ocean color applications of PS data will require removal of the
atmospheric portion of the total sensor signal at the top of the atmosphere. Nearly
30 years ago, Gordon and Wang set the standard for atmospheric correction by using
a relationship between two relatively narrow NIR or SWIR bands to estimate the aerosol
radiance contribution in a satellite’s total path radiance, Lt [28,29]. The use of two NIR
bands is still one of the primary methods used today for characterizing and removing
the aerosol radiance during atmospheric correction. However, the design of many small
satellites is focused on terrestrial observation, and these sensors do not have the NIR/SWIR
wavelengths needed for the standard method of atmospheric correction for ocean color.
This inadequacy suggests that alternative methods should be explored for atmospheric
correction [30,31]. In this paper, we present an alternative atmospheric correction method
in order to exploit PS data for ocean color applications. We selected machine learning (ML)-
based techniques as a means to convolve data from traditional ocean color sensors, which
permit a complete atmospheric correction, with PS data that are otherwise inadequate for
this purpose.

2. Materials and Methods

The lack of NIR/SWIR bands in PS data, as well as most other small satellites launched
primarily to monitor land, represents a challenge in performing atmospheric correction.
Roughly 90% of the total Lt recorded by the satellite represents atmospheric radiance
and must be removed prior to calculating Lw, and ultimately the follow-on products,
whichinclude bio-optical water properties. The atmospheric signal consists of Rayleigh
scattering (Lr, scattering by molecules, calculated from sensor viewing geometry) and
aerosol scattering (La, modeled from radiances in two NIR/SWIR bands). Typical coarse-
resolution ocean color sensors such as MODIS, VIIRS, SGLI, and Sentinel-3 OLCI have 9, 11,
and 21 bands, respectively, two or more of which are at NIR or SWIR wavelengths needed
to atmospherically correct the visible bands. These types of sensors are equipped with
bands that are fairly narrow, roughly 15–20 nm in bandwidth. For the PS nanosatellites,
however, there are typically only 4–5 bands available, with broader bandwidths (60–90 nm)
and only one NIR band. Planet has started to launch flocks of “Super Dove” nanosatellites
equipped with an additional red-edge band (705 nm) that could potentially aid in improved
atmospheric correction, at least in open ocean areas where the signal is dominated by
water. Thus, while it is promising that PlanetScope nanosatellites and other small satellites
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typically have 1 NIR band and current and future “Super Dove” nanosatellites possess a
red-edge band, scientific challenges exist due to the lack of additional bands required for
correction routines.

The Hyperspectral Imager for the Coastal Ocean (HICO) was a sensor developed
by the Naval Research Laboratory (NRL) and housed on the International Space Station
from late 2009 to 2014 [32]. It measured Lt from 352 to 1079 nm at a bandwidth of about
5 nm. In order to atmospherically correct HICO using the standard Gordon and Wang
atmospheric correction, Rayleigh coefficient and aerosol model coefficient look up tables
(LUTs) were developed for HICO by NASA’s Ocean Biology Processing Group (OBPG).
In addition, values for other required parameters for processing Planet nanosatellite data,
such as solar irradiance, Rayleigh optical depth, and the absorption and backscatter of
pure water, were available at 1 nm intervals. These LUT coefficients and values were
convolved against the Planet Relative Spectral Response (RSR) functions to generate the
Rayleigh and aerosol model tables and other coefficients representative of the Planet bands’
wavelength characteristics. Additionally, not every Planet nanosatellite has the same RSR.
The RSR varies depending on the flock (group of nanosatellites that are built and launched
together), which can lead to different center wavelengths during the convolving process
(e.g., red wavelength centered at 635 nm for the PlanetScope “0F” Series and 644 nm for the
PlanetScope “E” Series).

There is a difference between the wavelength centers of the closest Planet and VIIRS
bands. Table 1 shows that the Planet nanosatellite center wavelengths are within 4–8 nm
(when compared to VIIRS) for the blue band, 6 nm for the green band, and 27–36 nm for
the red band. The variation in the blue and red bands represents the range of wavelengths
in the 4 different series of the initial Planet sensors. The blue and green bands are close
enough to the VIIRS center wavelengths to use coincident VIIRS imagery in building a
model to atmospherically correct the nanosatellites, but the red band is likely too distant to
be reliably used for this approach. All of the imagery from the nanosatellites used in this
study were from the PlanetScope “10”, “0E”, and “0F” series. All three of these series have
the blue band centered at 494 nm, but the “10” and “0F” series have the red band centered
at 635 nm while the “0E” series is centered at 644 nm.

Table 1. Blue, green, and red Center Wavelengths for VIIRS and Planet’s PlanetScope Nanosatellites.

Color VIIRS Center Wavelength Nanosatellite Center Wavelength

Blue 486 nm “0C” and “0D” series: 490 nm (not in this study)
“10”, “0E”, and “0F” series: 494 nm

Green 551 nm All series: 545 nm

Red 671 nm
“10” and “0F” series: 635 nm
“0E” series: 644 nm
“0C and “0D” series: 649 nm (not in this study)

During this study, we demonstrate how we can atmospherically correct satellite
sources, such as Planet nanosatellites, that are not primarily designed for ocean color
remote sensing. We use two different methods and assess the result of each method. The
first method uses the nanosatellites’ red and NIR bands to automatically select a pair of
bounding aerosol models to remove the aerosol contribution from Lt within the visible
bands. This method uses the traditional Gordon–Wang approach for aerosol model selection
and the convoluted LUTs and parameters mentioned prior. The impact of using a red band
as the first NIR band in data processing is that the signal in the red band is interpreted as
aerosol radiance. As a result, if there is valid non-aerosol water leaving radiance such as in
sediment-laden waters, the estimation of the aerosol component can be artificially high and
the Lw estimates in the visible bands will be negatively impacted. This is more evident in
the locations where the red band has higher signal, for example in turbid coastal waters.
However, there is another artifact of this approach. During the Gordon–Wang atmospheric
correction process, the signal in the second NIR band identified as “aer_wave_long” within
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the atmospheric correction module and red band in the cast of Planet data is iteratively
reduced towards 0 during the execution of the algorithm. When using two true NIR bands,
after atmospheric correction, the values in the two NIR bands will already be close to 0
even in turbid waters. This is irrelevant in further processing since those NIR bands are
not used in ocean color bio-optical algorithms. However, in the case of the Planet datasets,
this is a significant drawback since the red band, used as the “aer_wave_short” band, is
needed for bio-optical algorithms. Therefore, this other artifact of using a red band as
the “aer_wave_short” band in processing is that after processing there is almost no signal
remaining in the red band to use in bio-optical ocean color algorithms.

In order to address the negative impact on the red band’s nLw value caused by using
the red band as “aer_wave_short” in the atmospheric correction process, the red band in
the Planet L1B file was duplicated, allowing one of the duplicated bands to participate as
the “aer_wave_short” band and the other to participate as the visible red band to be used
in ocean color bio-optical algorithms. The creation of the Planet standard L1B data files was
adjusted to duplicate the red band. This resulted in a 5-band Planet L1B file with the 4th
band being a duplication of the 3rd band. All supporting sensor data files were adjusted
to accommodate for this duplication. The computation in processing then used the 4th
and 5th bands as the “aer_wave_short” and “aer_wave_long” bands, leaving the 3rd band
as a visible red band. The atmospheric correction process reduced the nLw values in the
4th and 5th bands towards 0 as it selected an aerosol model used to compute the aerosol
radiance (La) estimate. Then, the La and Lr estimates were subtracted from the visible
bands’ Lt measurements to compute their Lw and ultimately their nLw values. The 3rd
band was treated as the visible red band in this process and its nLw values were computed
along with the nLw estimates for the other two visible bands.

This solution yields a “baseline” for an automated solution to atmospherically cor-
rect imagery from satellites that do not have the required bands needed for atmospheric
correction. The Gordon–Wang aerosol model selection process using two bands in the
NIR/SWIR is very sensitive, so using the red band where the water-leaving radiance is
greater than 0 leads to higher uncertainties in the derived water-leaving radiances. The
second method for atmospherically correcting these datasets is to develop models that
determine relationships between Lt, Lr, and nLw for each of the VIIRS’ visible bands that
closely coincide with those from Planet’s nanosatellites. Once an atmospheric correction
model was developed from VIIRS training values and evaluated against VIIRS values
not within the training set, it was applied to the nanosatellite Lt and Lr values to predict
nLw at any given pixel location within the scene that was geographically coincident to
the training locations (MOBY and AERONET-OC Venice in situ locations). Finally, we
compared our results to those produced from ACOLITE, which uses the dark spectrum
fitting (DSF) atmospheric correction approach.

The first study area was the MOBY in situ mooring off the island of Lanai in Hawaii,
which records hyperspectral nLw measurements. The second study was the AERONET-OC
platform off the coast of Venice, Italy yielding multi-spectral above water nLw measure-
ments. Throughout the remainder of this text, we refer to those two locations as MOBY
and Venice. We downloaded historical radiometric and geometric corrected Level 1B SNPP
VIIRS data sets from 1 January 2017 through 31 December 2019 for both study sites. We
also downloaded historical PlanetScope scenes within the same time period with valid in
situ nLw measurements on the same day within a 3 h time period. Level 1B (Scientific Data
Records—SDR) VIIRS datasets were downloaded from NOAA’s Comprehensive Large
Array-data Stewardship System (CLASS, www.class.noaa.gov). We processed the Level 1B
VIIRS datasets, composed of scientific data records (raw radiance + calibration) to Level
3 (fully calibrated, atmospherically corrected, and mapped) using the NRL’s Automated
Processing System (APS). APS, which is built on the NASA SeaDAS level 1 to level 2 (l2gen)
processing code, is used to ingest multi- and hyperspectral remote sensing data from contin-
uously imaging ocean color sensors. APS produces numerous products of interest to Navy
operations, some of which can be used as inputs to bio-optical forecasting models [33]. All
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VIIRS datasets were processed using the standard Gordon–Wang atmospheric correction
routines (Figure 1), utilizing multi-scattering and iterative NIR correction [34].
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Figure 1. Standard atmospheric correction process implemented within NRL’s APS, built upon
NASA’s SeaDAS processing code.

We used VIIRS historical L1B images at the two study sites to train our atmospheric
correction models to predict nLw at the blue, green, and red wavelengths. To begin this
process, we extracted Lt, Lr, and nLw from the VIIRS visible bands at cloud and glint-free
box domains around the MOBY and AERONET-OC Venice in situ locations (Figure 2).
The satellite data were constrained by default to exclude any pixels that had the following
quality flags: cloud contamination, high top of atmosphere radiance, land, glint, and
atmospheric correction failure. Once the processing algorithms determined if one of these
conditions existed, a bad data value was set for that pixel, and no nLw or other derived
products were made available. In addition, high satellite angles were excluded. The solar
zenith flag was set for pixels above 75 degrees, while the sensor zenith was set for above 60
degrees. The cloud albedo was the default value used for VIIRS processing (0.027) [35,36].
Despite the quality control process, some pixels around cloud edges or haze were still
processed, resulting in errors. Additional filtering methods were required and are discussed
within this paper.

Once we processed and obtained the Lt, Lr, and nLw values used to train our mod-
els, we started developing the models for predicting nLw when only Lt and Lr are
available. Our efforts focused on obtaining the most correlated answer using the multi-
variate regression analysis tools available in the Python scikit-learn toolkit. Scikit-learn
(https://scikit-learn.org/stable) is an open-source machine learning library that supports
a multitude of solutions that support all aspects of machine learning ranging from data
processing to model selection and fitting, evaluation, and post-analysis functions. Attempts
to utilize TensorFlow for this effort yielded a performance response that fared no better
than scikit-learn, which came with lower overhead and general system requirements, thus
leaving our team to focus on the scikit-learn API alone.

The overall methodology used was as follows: (1) data extraction and initial prepa-
ration; (2) data cleaning and versioning; (3) neural training; (4) prediction; (5) analysis
and results. Each step of the process was designed to be efficient, informative (collating
results into easily understood and parsed output), and repeatable. Data extraction and
initial preparation focused on marshaling the data from the traditional sensor’s domain of
wavelengths and performing initial quality assurance and concatenation of temporal data
into a Pandas Data-frame. Data cleansing and versioning focused on applying geospatial

https://scikit-learn.org/stable
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minimum/maximum boundaries for each wavelength using the Satellite Validation Navy
Tool (SAVANT) in situ data capture, as well as the removal of incomplete records, NaN’s,
and similar “bad data” artifacts [37]. With Steps 1 and 2 complete, the neural training
could begin.
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Figure 2. Left Image: VIIRS True Color Image, 16 March 2019. The red box is centered around the
MOBY hyperspectral nLw in situ mooring, located off the Hawaiian island of Lanai. Right Image:
VIIRS True Color Image, 28 February 2021. The red box is centered around the AERONET-OC
multispectral nLw in situ platform, located off the coast of Venice, Italy. All valid pixels within the
red box were used for training the atmospheric correction models to be used for atmospherically
correcting the nanosatellite imagery.

Our solution utilized linear models, support vector machines, nearest neighbors, deci-
sion trees, and ensemble methods combined with multiple perturbations of those models
when available. Our dependent variable selection of nLw was supported by combinations
of “Lt_ λ”, “Lr_λ”, and “(Lt_ λ—Lr_ λ)/Lt_ λ”, for each of the target wavelengths (repre-
sented as λ) matching between the PlanetScope nanosatellite domain to the more readily
available and operational VIIRS sensor.

The domain of explicit models utilized in training were as follows: Lasso, Ridge,
Elastic Net, Huber Regressor, Lars, Lasso Lars, Passive Aggressive Regressor, RANSAC
Regressor, SGC Regressor, Theil Regressor, K Nearest Neighbors Regressor, Decision Tree
Regressor, Extra Tree Regressor, SVR, SVMR, Ada Boot Regressor, Bagging Regressor,
Random Forest Regressor, and Gradient Boosting Regressor.

Training was performed using an 80/20 train/test split using k-fold cross validation
on five splits. The total effort resulted in 188 combinations of the aforementioned models
for a total of 4701 total potential neural layers evaluated. This approach allowed for two
desired outcomes: (1) each wavelength could potentially have a unique set of data that
would not yield the most optimal result given single-use model approaches; (2) by selecting
the top-performing models, further refinements to the prediction could be achieved by
combining models into a more robust ensemble. This methodology afforded the team
the most flexible approach towards potential end-user solutions; however, models were
not combined during this analysis. The resulting neural layers selected per region per
wavelength were then loaded and applied to the Planet nanosatellite datasets. A NetCDF
of original and predicted values was then created for each model, region, and wavelength
in question.

Once the models were established for each visible band to predict nLw for each visible
band, our next step was to verify the accuracy of our nLw predictive model by applying
it to the 20% of the dataset that was withheld from training. Once we ensured model
accuracy of our nLw predictions for VIIRS by comparing predicted VIIRS nLw values to
“actual” APS atmospherically corrected nLw values (using the Gordon–Wang standard), we
applied our model to the nanosatellite datasets and compared those results to the MOBY
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and AERONET-OC in situ nLw measurements. Figure 3 depicts an example of a linear
regression model created during this study.
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scikit-learn API, the value shown in a visual depiction of a subject tree is the value that 
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ples represent the number of sample data points that are used for each leaf of the tree in 
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Decision trees are a popular supervised learning method for a variety of reasons.
Benefits of decision trees include that they can be used for both regression and classification,
they do not require feature scaling, and they are relatively easy to interpret through
visualization. The goal is to create a model that predicts the value of a target variable
by learning simple decision rules inferred from the data features. A tree can be seen as
a piecewise constant approximation. This type of non-parametric supervised algorithm
utilizes a binary tree graph to assign a target value for each data sample.

The target values are presented in the tree leaves. To reach the leaf, the sample is
propagated through nodes, starting at the root node. In each node a decision is made as to
which descendant node it should go. A decision is made based on the selected sample’s
features. Decision tree learning is a process of finding the optimal rules in each internal
tree node according to the selected metric. In a DecisionTreeRegressor as designed in the
scikit-learn API, the value shown in a visual depiction of a subject tree is the value that
the tree would predict for a new example falling in that node. If the criterion is mean
standard error (MSE), the value is an average measure of the samples in that node. Samples
represent the number of sample data points that are used for each leaf of the tree in the
decision-making progress. Figure 4 is an example schematic of a decision tree model
created during this study.
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Figure 4. Example decision tree regressor nLw predictive model at 486 nm, built from VIIRS training
datasets at the MOBY nLw in situ mooring.

3. Results

Here we assess the accuracy of two methods for atmospherically correcting small
satellite imagery that do not have the desired NIR/SWIR bands required for atmospheric
correction. Both methods apply initial atmospheric corrections by removing the Rayleigh
radiance contribution (Lr) from Lt at the blue, green, and red Planet channels. Both methods
select a group of 11 × 11 neighboring pixels (resulting in 121 possible pixel extractions per
nanosatellite scene) centered on the MOBY and Venice locations within the nanosatellite
image. These values are averaged to determine the nLw value to match against the in situ
nLw value. Additionally, we determined a range of valid nLw values for each wavelength
determined by the full range of nLw values observed at the in situ locations from 2014
to 2019.

3.1. Standard Atmospheric Correction Approach

The first method to atmospherically correct Planet’s nanosatellites was the standard
approach for operational processing: using Planet’s nanosatellites’ red and NIR bands to
automatically select a pair of bounding aerosol models to remove the aerosol contribution



J. Mar. Sci. Eng. 2023, 11, 660 9 of 22

from Lt in the visible bands. As expected, this method produced poor matchups when
spectral nLw was compared to coincidental in situ nLw measurements at the MOBY
location. The mooring at the MOBY location was hyperspectral, so nLw could be convolved
to the sensor’s RSR and comparisons could be made at the satellite sensor’s precise center
wavelengths. However, the Venice AERONET-OC in situ platform was multi-spectral, so
only the closest wavelength could be used in comparisons. This was impactful for the
green and red bands, where the closest Venice AERONET-OC wavelengths were 555 nm
and 668 nm, respectively.

The results at the Venice AERONET-OC location were considerably better than the
open ocean MOBY site, but the Venice AERONET-OC results (Figure 5) did not include
scenes where atmospheric correction failed. (Note: nLw_635/644 represents nLw_635 or
nLw_644, depending on the nanosatellite flock.) Several scenes could not produce nLw
values, and this result skewed the comparisons unless filtering methods were also applied
during the model predictions discussed later within this paper. The results shown only
encompassed a subset of the entire nanosatellite dataset. However, for the scenes that
passed corrections, good correlations and relatively low errors were observed for the blue
and green bands at the Venice AERONET-OC location (Figure 5).
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Figure 5. Gordon–Wang automated atmospheric correction using Planet PlanetScope’s duplicated
red band and NIR band. Top left: MOBY nLw_494. Top right: MOBY nLw_545. Middle left: MOBY
nLw_635/644. Middle right: Venice nLw_494. Bottom left: Venice nLw_545. Bottom right: Venice
nLw_635/644.

As an additional filtering method for our predictive models, we observed the natural
variability at the in situ locations by looking at the entire climatological records at these
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locations. To avoid any potential data gaps, we used 5-day averages centered on the day of
interest (e.g., Julian day 2 included Julian days 365, 1, 2, 3, and 4). In the event of a leap
year, February 29 measurements were combined with February 28. Since some processed
pixels were on cloud edges or consisted of haze that was not flagged during processing,
having a climatology to determine if values are realistic could be used to filter erroneous
results. We used this information (Figure 6) to constrain realistic nLw model predictions
for an accurate evaluation of the results. For the MOBY red in situ values, we focused on
nLw_640, rather than having separate plots for both nLw_635 and nLw_644.
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Figure 6. MOBY and Venice AERONET-OC in situ nLw climatologies. Top left: MOBY in
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Middle right: Venice AERONET-OC in situ nLw_490. Bottom left: Venice AERONET-OC in situ
nLw_555. Bottom right: Venice AERONET-OC in situ nLw_668.
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3.2. Building Models to Predict nLw

Next, we assessed the second method for atmospherically correcting these datasets.
We developed atmospheric correction models from a VIIRS training set and used them to
atmospherically correct the nanosatellite data. Our first step for testing the accuracy of the
atmospheric correction models was to test against VIIRS imagery outside of the training
set. We used VIIRS imagery at or around the MOBY and Venice locations to train and test
our atmospheric correction models, using the 80/20 test/train split. We determined the
APS atmospherically processed VIIRS imagery outside of our training set to be the “actual”
nLw values that we used to evaluate our nLw model predictions. Figure 7 shows the Top
10 (based on RMSE) atmospheric correction model predictive results compared to the real
VIIRS values. For each subfigure within Figure 7, the top 10 models used are listed to the
right of each plot, with the 10th best model listed first (top) and the best model listed last
(bottom). Each color/shape is representative of a single predictive model.

The same atmospheric correction model did not necessarily produce the best results
across all wavelengths and for each study area. However, K Neighbors regressors (with
varying neighbors and folds) had the most reliable performance, producing the best model
three times and having a top-three finish seven times. The Extra Tree and Random Forest
regressors also achieved good results. Table 2 summarizes the results from Figure 7a–f.

After verifying model accuracy by observing good correlation and low errors when
applied to VIIRS in the red, green, and blue bands, we applied the best model for each
wavelength to the nanosatellite datasets to predict nLw for those bands. For example,
the second fold of the K neighbors regressor with two neighbors performed the best for
Venice nLw_545 predictions, so that model was used only for that wavelength at that study
area. Only the top model for each wavelength/study area was used for the remainder of
this assessment.

Once the nanosatellite nLw predictions were made, we compared them to coincidental
(same day, within 3 h) MOBY and Venice AERONET-OC in situ nLw measurements to
determine accuracy. Figure 8 displays Planet PlanetScope nanosatellite nLw predictions
plotted along the MOBY and Venice AERONET-OC in situ nLw climatologies. The nLw
predictions that fell outside of two standard deviations from the mean were usually due to
scenes and/or pixels that would normally be flagged as contaminated during the standard
atmospheric correction process. These scenes coincide with the VIIRS scenes that failed
atmospheric corrections during the standard process (Figure 5) and were excluded from the
results. Our prediction code that applies the models to the Planet images did not currently
filter these pixels like the standard atmospheric correction code within APS, but future
efforts aim to combine these approaches. Figure 8 overlays the PlanetScope nLw model
predictions onto the climatological datasets displayed in Figure 6.

For the MOBY location, the majority of the blue (71%), green (92%), and red (96%)
nanosatellite predictions fall within two standard deviations of the in situ mean for that
corresponding day. There are some seasonal biases for the nLw_494 predictions, where
the values tend to be elevated in the winter months. For the Venice location, the majority
of the green (71%) and red (95%) nanosatellite nLw predictions fall within two standard
deviations of the in situ mean for that corresponding day, but the nLw blue (49%; 494 nm
nanosatellite; 490 nm in situ) predictions are routinely overestimated, especially in the
non-winter months. This is the opposite bias we observed at the MOBY location, potentially
indicating that a secondary correction can be applied to these datasets to adjust the nLw
values more towards observations.

Figures 9 and 10 plot the nLw model predictions vs. in situ nLw values for both the
MOBY and Venice AERONET-OC study areas. Matchups that likely fall outside of reality
(beyond two standard deviations from the mean), mostly due to pixel contamination that
is currently unfiltered, can be filtered from the final nLw predictions. The nanosatellite
nLw predictions at the MOBY site had higher Pearson R correlation coefficients in the blue
(0.22) and green (0.36) than in the red (0.08). A large factor in the inconsistencies observed
between the predicted nanosatellite nLw values and the in situ nLw values for the red band
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is that the VIIRS training model is centered at 671 nm, while the Planet nanosatellites are
centered at 635 and 644 nm, depending on which flock is being analyzed. This is a very
large difference in center spectral wavelength, which has a large influence on predicted nLw.
The nLw in red is typically higher at the 635 and 644 nm wavelengths than it is at 671 nm.
This, combined with the fact that MOBY resides in a deep blue open ocean water location
with relatively little red signal led to the inconsistent results. Despite not having strong
correlations, the RMSE for the blue, green, and red nanosatellite nLw predictions is low
compared to using the red and NIR bands for atmospheric correction, as seen in Figure 5.
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Figure 7. (a). VIIRS top 10 nLw predictive models compared to the real (APS-processed) nLw_494 at
the MOBY study area. (b). VIIRS top 10 nLw predictive models compared to the real (APS-processed)
nLw_545 at the MOBY study area. (c). VIIRS top 10 nLw predictive models compared to the real
(APS-processed) nLw_636/644 at the MOBY study area. (d). VIIRS top 10 nLw predictive models
compared to the real (APS-processed) nLw_494 at the Venice study area. (e). VIIRS top 10 nLw
predictive models compared to the real (APS-processed) nLw_545 at the Venice study area. (f). VIIRS
top 10 nLw predictive models compared to the real (APS-processed) nLw_635/644 at the Venice
study area.
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Table 2. Predictive model performance for various models based on Top 10 finishes as observed in
Figure 7a–f. The numbers at the top of this table indicate which rank a model achieved if found
within the Top 10 in any results observed within Figure 7a–f.

Predictive Model Name 1 2 3 4 5 6 7 8 9 10
Elastic Net 1 1
Linear Regression 1
RANSAC Regressor 1 1 1 1 1
Huber Regressor 1 1
Theil Sen Regressor 1 2 2
Bagging Regressor 1 1 1 1 1 1
K Neighbors Regressor 3 2 2 2 2 1 3 2
Decision Tree Regressor 1 1 1 1
Extra Tree Regressor 1 1 1 2 3 1 2 1
Random Forest Regressor 1 1 1 1 1
Gradient Boosting Regressor 1
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Figure 8. MOBY and Venice AERONET-OC in situ nLw climatologies with Planet nanosatellite nLw
predictions. Top left: MOBY in situ nLw_494. Top right: MOBY in situ nLw_545. Middle left:
MOBY in situ nLw_635/644. Middle right: Venice AERONET-OC in situ nLw_490. Bottom left:
Venice AERONET-OC in situ nLw_555. Bottom right: Venice AERONET-OC in situ nLw_668. The
orange ‘x’ indicates a nanosatellite nLw predicted value.

Figure 9. Planet PlanetScope predicted nLw vs. MOBY in situ nLw. Top left: nLw_494 unfiltered.
Top right: nLw_494 filtered. Middle left: nLw_545 unfiltered. Middle right: nLw_545 filtered.
Lower left: nLw_635/644 unfiltered. Lower right: nLw_635/644 filtered.
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nLw_545 filtered. Lower left: nLw_635/644 unfiltered. Lower right: nLw_635/644 filtered. 
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Figure 10. Planet PlanetScope predicted nLw vs. Venice AERONET-OC in situ nLw. Top left:
nLw_494 unfiltered. Top right: nLw_494 filtered. Middle left: nLw_545 unfiltered. Middle right:
nLw_545 filtered. Lower left: nLw_635/644 unfiltered. Lower right: nLw_635/644 filtered.

The nanosatellite nLw predictions at the Venice site had larger correlation coefficients
in the blue (0.70) and green (0.55) bands when compared to the results at MOBY. The
correlation in the red (0.17) is indicative of a positive trend and is larger than the red
matchup at the MOBY site. The RMSE values in the blue (0.57), green (0.51), and red (0.13)
were low and were reduced where outliers were filtered.

For the same nanosatellite dataset illustrated in Figures 9 and 10 (within two standard
deviations only), we processed those scenes through the ACOLITE software package.
The ACOLITE software package atmospherically corrected the PlanetScope nanosatellite
imagery by using dark spectrum fitting (DSF) and produced remote sensing reflectance
(Rrs) for the blue, green, and red bands. This method worked well in coastal waters but
overestimated Rrs in the visible bands at the deep blue water, open-ocean MOBY in situ
location. We converted the Rrs values to nLw using the equation nLw = Rrs * F0, where F0
is the hyperspectral exo-atmospheric solar irradiance (mW/(cm2um)), convolved to the
PlanetScope spectral relative spectral response functions [35]. Table 3 displays these F0
coefficients, along with their respective Planet series.
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Table 3. PlanetScope series identifiers, center wavelengths based on relative spectral response
functions, and F0 constants for each wavelength.

Planet Series Wavelength F0

“0C” and “0D” (490, 545, 649, 820) (195,46, 183.82, 163.57, 108.21)
“0E” (494, 545, 644, 824) (189.05, 181.07, 160.77, 108.27)

“10” and “0F” (494, 545, 635, 819) (192.29, 182.73, 163.16, 108.74)

After converting Rrs to nLw, we compared the results to the MOBY and AERONET-OC
in situ nLw values in the same manner as we did for our previous comparisons. ACOLITE
lists slightly different center wavelengths for each visible band, so we referred to each
visible band simply as blue, green, and red in this analysis (Figure 11).

Figure 11. Cont.



J. Mar. Sci. Eng. 2023, 11, 660 19 of 22

Figure 11. Planet model predicted nLw and ACOLITE nLw compared to MOBY and Venice
AERONET-OC in situ nLw. Top left: MOBY blue nLw. Top right: MOBY green nLw. Middle
left: MOBY red nLw. Middle right: Venice AERONET-OC blue nLw. Lower left: Venice AERONET-
OC green nLw. Lower right: Venice AERONET-OC red nLw.

Our nLw predictions at the MOBY in situ site consistently outperformed the ACOLITE
software package, which was to be expected since ACOLITE’s dark spectrum fitting is
not built for open ocean atmospheric correction. For the coastal Venice in situ location,
our predicted nLw values had a significantly smaller RMSE than ACOLITE for the blue,
green, and red wavelengths. However, ACOLITE had a stronger correlation in the green
and red bands. Table 4 details a summary of all atmospheric correction methods described
throughout this text. The best performance at each location (MOBY and Venice), for each
wavelength (blue, green, and red), for each statistical metric (Pearson R and RMSE) is
highlighted. Overall, our model predictions have the best correlation for each wavelength
at MOBY and for the blue wavelength at Venice. Our model predictions have the best
RMSE for each wavelength at MOBY and Venice, outperforming any automated correction
that could be achieved using the Red/NIR combination of bands, as well as the DSF
implemented with ACOLITE.

Table 4. Summary containing nLw correlation (Pearson R) and error (RMSE) for MOBY and Venice
standard, model prediction, and ACOLITE atmospheric corrections. The best results per wavelength
are highlighted.

MOBY Pearson R Correlation
Standard Model Prediction ACOLITE

nLw_Blue −0.34 0.22 0.02
nLw_Green −0.07 0.36 0.33
nLw_Red 0.00 0.08 −0.31

Venice Pearson R Correlation
Standard Model Prediction ACOLITE

nLw_Blue 0.61 0.70 0.58
nLw_Green 0.63 0.55 0.62
nLw_Red 0.61 0.17 0.37
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Table 4. Cont.

MOBY RMSE
Standard Model Prediction ACOLITE

nLw_Blue 0.51 0.13 0.81
nLw_Green 0.27 0.02 1.02
nLw_Red 0.01 0.00 0.34

Venice RMSE
Standard Model Prediction ACOLITE

nLw_Blue 0.86 0.58 1.00
nLw_Green 0.67 0.51 0.84
nLw_Red 0.20 0.13 0.56

4. Discussion

Here we performed two methods for automating atmospheric correction on data
obtained from Planet’s nanosatellites, which do not possess wavelength combinations
required for the standard Gordon and Wang atmospheric correction process. Aside from
the DSF method used by ACOLITE and using the red band in combination with the NIR
band, no accurate method for automated atmospheric correction of these types of satellite
sources currently exists. The best choice for our first training/testing location was the
area covering MOBY, a buoy that collects hyperspectral in situ nLw measurements. We
developed ML-based atmospheric correction models from VIIRS coincident climatological
datasets to predict nLw when only Lt and Lr were available. We observed encouraging
results, therefore demonstrating that models can be developed from coincident ocean color
satellite imagery and be used to atmospherically correct these unconventional satellite
sources. This approach was conducted in open ocean waters as well as a more turbid,
coastal domain that exhibits faster-changing biology. For the open-ocean observations
(MOBY), our approach was shown to improve correlation and RMSE for all wavelengths
compared to ACOLITE and using the red/NIR combination for automated atmospheric
correction. For the coastal observations (Venice), our approach was shown to improve
RMSE for all wavelengths, but our approach had a stronger correlation in only one of the
three wavelengths (blue).

Factors not included in this study will be included in future efforts to improve accuracy
in training the models to atmospherically correct nanosatellite images. Satellite and solar
angles were not accounted for within this study. For example, the VIIRS satellite angles
were not as close to nadir as the nanosatellites, which had an impact on Lt and Lr, and
subsequently, nLw. Signal-to-noise Ratio (SNR) is also a concern. Planet’s nanosatellites no
longer publish the SNR for their nanosatellites, but it is very likely smaller than that of a
sensor such as VIIRS. This can lead to uncertainties, especially in the red signal at a domain
such as MOBY, where most, if not all, of Lt is noise. Additionally, Planet nanosatellites’
broader wavelengths produce an extra layer of uncertainties within a single wavelength’s
Lt. Another factor to consider is how sun glint contamination can require additional
filtering methods (beyond what is performed for more coarse spatial resolution sensors)
due to Planet’s nanosatellites’ high spatial resolution

Since this project focuses on using data from the 150+ PlanetScope nanosatellites,
vicarious calibration of these individual sensors will be a priority moving forward to
improve spectral shape and reduce uncertainty between the satellite-derived and in situ
nLw values. Even though PlanetScope’s nanosatellites are well calibrated prior to launch,
most Earth-orbiting sensors require on-orbit calibration adjustments due to sensor drift
and/or degradation, and it will be necessary to apply our own vicarious calibration routines.
Traditionally, earth-observing and orbiting sensors are vicariously calibrated using in situ
data from sensors such as MOBY and the AERONET-OC. The vicarious calibration process
adjusts the prelaunch laboratory calibration to improve the accuracy of the actual in-orbit
measurement of the water leaving radiances. During this process, the vicariously calibrated
gain set is multiplied by an individual sensor’s spectral Lt values so that the derived
spectral nLw values are more accurate.
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In summary, ML-based approaches were tested using a calibrated and dedicated
ocean color sensor to develop models that derive nLw from Lr and Lt input variables. We
observed potential in using this methodology as a means to automatically atmospherically
correct ocean color satellite sources that do not possess the wavelengths required by existing,
traditional methodologies.
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