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Abstract: A new control algorithm was designed to solve the problems of actuator physical failure,
remote network attack, and sudden change in trajectory curvature when a port’s artificial intelligence-
based transportation robots track transportation in a freight yard. First of all, the nonlinear, redundant,
saturated sliding surface was designed based on the redundant information of sliding mode control
caused by the finite nature of control performance; the dynamic acceleration characteristic of super-
twisted sliding mode reaching law was considered to optimize the control high frequency change
caused by trajectory mutation; and an improved super-twist reaching law was designed. Then,
a nonlinear factor was designed to construct a nonlinear, fault-tolerant filtering mechanism to
compensate for the abnormal part of the unknown input that cannot be executed by adaptive neural
network reconstruction. On this basis, the finite-time technology and parameter-event-triggered
mechanism were combined to reduce the dependence on communication resources. As a result,
the design underwent simulation verification to verify its effectiveness and superiority. In the
comparative simulation, under a consistent probability of a network attack, the tracking accuracy
of the algorithm proposed in this paper was 22.65%, 12.69% and 11.48% higher those that of the
traditional algorithms.

Keywords: nonlinear-fitting redundant sliding mode; event-triggered; abnormal input; neural
network; artificial intelligence transportation robots; track tracking

1. Introduction

With the advent of the era of Industry 4.0, artificial intelligence transportation robots
have gradually matured and have become widely used in ports, logistics, and other freight-
related situations [1]. Tianjin Port uses cutting-edge technologies, such as unmanned
driving, artificial intelligence, and big data, to replace traditional transportation equipment.
There are artificial intelligence transportation robots and a high level of automation for
terminal operations, and it serves as a reference for the construction and development of
domestic container automation terminals. In 2020, Hefei Port introduced artificial intel-
ligence transportation robots, which continuously improve and expand their perception
capabilities in a real operating environment through fusion algorithms, and realize the
trajectory prediction of surrounding traffic participants. They not only realize safe and
stable operation, but also take into account operational efficiency to ensure efficient and
smooth operation. Other port yards have gradually introduced artificial intelligence trans-
portation robots, as shown in Figure 1. However, unknown control anomalies caused by
dynamic uncertainty, control signal transmission noise, network attacks, and program

J. Mar. Sci. Eng. 2023, 11, 659. https://doi.org/10.3390/jmse11030659 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse11030659
https://doi.org/10.3390/jmse11030659
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0001-6765-930X
https://orcid.org/0000-0002-2215-3337
https://doi.org/10.3390/jmse11030659
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse11030659?type=check_update&version=1


J. Mar. Sci. Eng. 2023, 11, 659 2 of 20

faults in the real environment make it impossible for artificial intelligence transportation
robots to achieve precise control. In order to ensure the efficient operation of artificial
intelligence transportation robots in ports and terminals, high-precision trajectory tracking
control is an urgent problem to be solved.

Figure 1. Artificial intelligence transportation robots: operational diagram of the Qingdao Port
Freight Yard.

Nowadays, the robustness of mature control algorithms such as PID [2] and linear
feedback [3] cannot meet the actual needs of jobs in complex scenes. Sliding mode control [4]
is recognized by the control community more and more because of its good robustness and
simple structure. It is worth noting that how to effectively reduce the chattering effect of the
algorithm itself has become a main premise of practical engineering applications. Therefore,
under the premise of ensuring robustness, some scholars used the high-dimensional sliding
surface [5] to optimize the buffeting threshold, and others used the dynamic characteristics
of the sliding mode to design the variable-speed reaching law [6–10] to slow the speed of
the near sliding surface to reduce chattering.

It is worth noting that reducing chattering will reduce the robust performance of
sliding mode control to a certain extent. The interference caused by dynamic uncertainty
especially will mean the robustness of the algorithm cannot be fully brought into play. There-
fore, Baek et al. [11] established a stochastic stability judgment mechanism for uncertainty,
and used a time-delay estimation scheme combined with adaptive technology to achieve
good asymptotic stochastic stability. Niu et al. [12] used neural network approximation
to realize on-line robust sliding mode adaptive control. However, adaptive conservatism
will waste control resources, and intelligent algorithms require high performance of the
controller and need to be further optimized. Zhang et al. [13] proposed a high-order, fast,
non-singular, terminal sliding mode controller based on a double-disturbance observer,
which effectively weakens the chattering phenomenon of the system. Wang et al. [14]
proposed an adaptive, proportional-integral-derivative, fractional-order, non-singular, ter-
minal sliding mode control method based on time-delay estimation, which realizes timely
and accurate adjustment of the control gain of the robust term. Shao et al. [15] proposed an
adaptive, recursive terminal sliding mode controller. The fast, non-singular end sliding
function, and the recursive integral end sliding function were designed by using the recur-
sive structure, so that the sliding surface reaches continuously, which significantly improves
the tracking-error-convergence speed and the anti-interference ability speed-wise.

In practical engineering, robot tasks are required to be timely, and most of the above
algorithms are asymptotically stable. Therefore, how to complete the tracking movement



J. Mar. Sci. Eng. 2023, 11, 659 3 of 20

within a specified time is an urgent need for the project. Therefore, finite-time technology
was proposed and applied in control systems [16–18]. Wang et al. [19] used a variable
division technique and fuzzy control. Wang et al. [20] took advantage of the approximation
of fuzzy logic systems. Fang et al. [21] gave sufficient conditions for practical fixed-time
stability, as did Ba et al. [22], with the help of a neural network and backstepping technology.
Zuo [23] carried out finite-time control design for second-order nonlinear systems with
uncertainties and disturbances. However, the convergence time of the system with finite-
time stability increases with the initial error, which greatly weakens the convergence
performance of the system. At the same time, in actual engineering, there is are artificial
intelligence transportation robots that have physical limits in the initial stage, and the
error is mostly the maximum error of the control task, but this characteristic has not been
paid attention. The use of limited control resources to complete the control an abnormal
environment has not been further considered.

When transporting in a port’s cargo yard, due to the automatic operation of multi-
frequency scanning for a long time, the equipment will be worn out, which greatly reduces
the control accuracy. Academia mainly studies problems of this kind from the point of view
of being with or without detectors [24–27]. Although sliding mode control can be passively
fault-tolerant without a detector [28], its fault-tolerant response is not sensitive enough,
and its reconstruction accuracy is not high. Therefore, it is often combined with adaptiv-
ity, an observer, and other technologies. There is also a zero-order hold mechanism for
event-triggering to compensate for faults while reducing communication resources [29,30].
In addition, the remote control signal of the robot is calculated and sent by the wireless
upper control terminal, but the host may have some problems, such as Trojan horse im-
plantation, redundant data interference, illegal attack, transmission noise, and so on. This
will lead to matching interference in the transmission information [31]. However, for when
these effects lead to abnormal control, how to better carry out the soft compensation of the
control side is the focus of this paper.

To sum up, it can be known that reducing the parameter-tuning complexity of sliding
mode reaching-law control to reduce chattering and ensure reaching efficiency is a direction
that needs to be improved in the research of super-twisted reaching laws. The physical
limitations of the robot lead to the integration-performance redundancy of unutilized resid-
ual errors on the traditional sliding mode surface, which is also challenging. In addition,
how to better compensate for the abnormal control problems caused by signal interfer-
ence, network attacks, and faults is also very important. Therefore, a new type of sliding
surface was designed. The dynamic acceleration characteristics of the sliding mode are
considered to improve the super-distortion reaching law, the nonlinear saturated filtering
fault-tolerant mechanism is used to fit the abnormal information, and the adaptive neural
network technology is used to fit and compensate. Finally, the stable control of artificial
intelligence transportation robots was realized and event-triggered. The main innovations
of this paper are as follows:

1. The integral processing easily produces the problem of stable error, but the error
state is bounded; that is, the redundant information can be said to be bounded by the state,
the reference trajectory, and information beyond the limit. The elimination of redundant
information is limited to the bounded range, which effectively reduces the problem of stable
error. Using the function of eliminating redundant information of residual error by integral
term, the integral saturation mechanism is designed. While avoiding integral saturation,
the redundant information of residual error, which can be offset by the maximum control
performance, is removed. Compared with the ordinary integral sliding mode control, it
will improve the controllable stability of sliding mode control in the case of fault tolerance
and saturation.

2. The speed of traditional super-twist near the sliding mode surface is larger than
that of the sliding mode dynamic method in this paper. From the angle of approaching
dynamics, a better approaching state can be obtained from a lower speed, so there is a better
buffeting suppression effect than traditional super-twist, and the parameter adjustment
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is also simpler. The control method overcomes the shortcomings of the traditional super-
twist reaching law, such as the complex adjustment of the parameters and the tendency
to increase the buffeting when approaching the instantaneous mutation. Considering the
acceleration dynamic characteristics of the reaching law, the nonlinear, variable damping
reaching law is designed to reduce the change rate of the switching interval between the
reaching stage and the sliding stage of the sliding mode, thereby improving the buffeting
weakening ability and the reaching efficiency.

3. When solving the problem of the control signal being attacked by data interference
and the partial failure of the actuator, the low fitting accuracy of the control abnormal infor-
mation and the difficulty of signal-data interference-attack peeling in the literature [30–32]
are overcome. The nonlinear fitting factor was designed based on the virtual hypothesis of
abnormal information, and the nonlinear saturation-fault-tolerant filtering mechanism was
designed for the dynamic information of system state.

The rest of this paper is divided into four sections: Section 2 establishes the kine-
matic and dynamic motion models of the tracked underwater vehicle and sets out the
preliminary knowledge; Section 3 contains four parts: The first part proposes a new, non-
linear, projection redundant, feedforward sliding mode surface and a new sliding mode
reaching law. It also provides the theoretical comparison and proof of the advantages
of the method. The second part describes the event-triggered mechanism. Then, in the
third part, the new nonlinear fault-tolerant subsystem is proposed, and its effectiveness
is demonstrated. In the fourth part, the kinematics and dynamics controller are designed.
In the Section 4, the Simulink simulation is compared with the control system using a
traditional sliding mode approach law to verify the effectiveness of the control scheme
proposed in this paper. Section 5 gives the conclusion of this paper.

2. Model and Preliminaries
2.1. Artificial Intelligence Transportation Robot Model

The stability and safety of artificial intelligence transportation robots in container cargo
transportation are important, so differential mobile robots are often used. On the other
hand, the differential mobile robots have the characteristic of a nonholonomic constraint.
According to reference [33], the kinematic and dynamic models of robot motion plane are
as follows:

q̇(k) = S(q(k))u(k) (1)

u̇(k) = M̄−1(q)[B̄(q)τl − Fm(q̇)− τ̄d] (2)

where M̄(q) = ST(q)M(q)S(q), τ̄d = ST(q)τd, B̄(q) = ST(q)B(q), and τmax ≥ ‖τ‖. Fm(q̇)

is dynamic uncertainty of robot model. M(q) =

 m 0 −md sin φ
0 m mdc cos φ

−md sin φ m cos φ md2 + J

;

C(q, q̇) =

 0 0 −ṁmdcosφ
0 0 −ṁmd sin φ
0 0 0

; M(q) =

 m 0 −md sin φ
0 m mdc cos φ

−md sin φ m cos φ md2 + J

;

C(q, q̇) =

 0 0 −ṁmdcosφ
0 0 −ṁmd sin φ
0 0 0

; T =

[
TL
TR

]
; B(q) =

[
cos φ

r
sin φ

r − b
r

cos φ
r

sin φ
r

b
r

]
; AT(q) =

 sin φ
− cos φ
−d

; λ = −m(ẋ cos φ + ẏ sin φ)φ̇; τd =

 Td1
Td2
Td3

. λ is the Lagrange dynamics’

dykoll coordinates to kinetic multipliers of generalized coordinates. The linear velocity
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and angular velocity matrix is u =

[
v
w

]
. The kinematic model’s coefficient matrix

s(q) =

 cos θ d sin θ
sin θ −d sin θ

0 1

.

2.2. Mathematical Model of Abnormal Control

The data transmission network from controller to actuator is vulnerable to random
noise interference and data-injection interference. In addition, the actuator of the artificial
intelligence transportation robot will have a physical saturation limitation, so it is necessary
to carry out saturation fitting in advance. Here, the input nonlinear fitting model is
introduced. From Equation (2), the true actuator input of using hyperbolic tangent function
to fit the saturation characteristics of robot actuators has the following form:

τl(k) = Aττmax tanh(τ(k) + AD) (3)

where the τ(k) is the controller-calculated online signal. Ar is an input partial fault with
coupling characteristics. AD is a kind of data interference network attack with concealment
characteristics. AD = IA=,= has the characteristics of an independently distributed
Bernoulli sequence with a value of {0} or {1}. The A= is a virtual interference data value
of the control signal caused by the attack.

2.3. RBF Neural Network Fitter

This is inspired by the paper [34]. The radial basis function neural network (RBFNN)
approximation [35] is cited. As shown in Figure 2, a RBF neural network is a three-layer
neural network because of the nonlinear characteristics of system uncertainty. If there
exists an m-dimensional compact set Ξm ⊆ Rm → R and there is an unknown nonlinear
function f (Q) with initial value 0 defined on Ξm, the RBF approximator (4) is used to fit
the dynamic values of f (Q).

f (Q) = W∗ TZ(Q) + eZ(Q), ∀Q ∈ Ξm (4)

where ez(Q) is the bounded RBF fitting error, which is defined on the compact set Ξm.
|ez(Q)| ≤ ēz, and ēz is the maximum nuclear distance. To improve the nonlinear local ap-
proximation ability, the Gaussian function Z(Q) = exp

(
(Q− κ)T(Q− κ)/− l2) is selected

as the smooth kernel function. The κ is approaching the center column distance vector.
The l is a varying constant value. ∗ is the order-m dimensional weight row vector, which is
optimally fitted: as

W∗ = arg

(
min

W̃

{
sup

Q∈Em

∣∣Ŵ−Z(Q)− f (z)
∣∣}) (5)

where Ŵ is the minimum estimate of W∗ that optimizes E f (Q).
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Figure 2. RBF neural network diagram.

The weight parameters in the online approximation process of the neural network
approximator have been identified using parameter-adaptive technology, which is different
from other neural networks [36] that generally need offline training. This method is based
on the adaptive RBF neural network method in the paper [37], combined with the minimum
parameter-learning method to perturbate the model’s parameters caused by the disturbance
and the neural network’s weight parameters for online adaptation, so the weight matrix
adjustment is automatically adjusted by the adaptive law. There are differences in the use
of control processes in other areas.

The RBF neural network used in this paper is based on the ideas in the paper [35],
and it is used as an online universal approximator, as a regression fitter, and it is fitted
online with the data, so it is different from the general neural network, and this article adds
the minimum parameter-learning method, as described in the paper [37]. The complexity
and calculation time are adjusted with adaptive changes in the control process, and there
is no need to train in advance when the uncertainty approximator of the control system,
the activation function, can be set and the weight matrix can be determined to achieve
universal approximation [35]. Therefore, taking advantage of the universal approximation
property of RBF and the absence of a need for training in advance, the uncertainty caused
by model dynamics and network attacks can be approximated nonlinearly.

2.4. Preliminaries

Lemma 1. For the system (1), when x∗ ∈ R and x∗ 6= 0, if Lyapunov function V(x∗) > 0 exists,
Lyapunov condition of the finite-time stability can be given as [30]

V̇(x∗) + β1V(x∗) + β2V∗(x∗) ≤ 0 (6)

where β1 > 0, β2 > 0, and 0 < κ < 1, so the system is globally finite-time stable, and the stable
time depending on the initial state e0 is given as

TV = ln
((

β2 ·V1−κ(e0) + β
)

/β2

)
/(β1 − β1κ) (7)

The relevant proof is shown in reference [30].

Lemma 2. According to the Cauchy–Schwarz inequality, for any number ai and bi(i = 1, 2, . . . , n),
we can know (

n

∑
i=1

aibi

)2

≤
(

n

∑
i=1

a2
i

)(
n

∑
i=1

b2
i

)
(8)
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and any 0 < l < 1, there exists (
n

∑
i=1
|ai|
)t

≤
n

∑
i=1
|ai|t (9)

Lemma 3. For any bc > 0 and zt ∈ R, tanh(·) has the following property:

0 ≤ |zt| − zt tanh(zt/bc) ≤ 0.2785bc (10)

Assumption 1. The unknown bounded low frequency time-varying disturbance τ̄d is ‖τ̄d‖ ≤ τ̂d.
The initial system state errors, ue(0) and qe(0), are defined on a compact set, and it is assumed as
‖ue(t)‖ ≤ ūe and ‖qe(t)‖ ≤ q̂e.

Assumption 2. To the limited range of the freight yard, the range of motion and the desirably refer-
ence trajectory of the robot are bounded . The desirably reference trajectory qr =

[
xr yr θr

]T ,

and reference positive scalar speed ur =
[

vr wr
]T . Their derivatives are smooth and bounded.

Assumption 3. The system (6) is a controllable system that satisfies Lemma 2. For facilitate matrix
operation, all constant terms are in the form of a diagonal matrix.

3. Controller Design

The virtual kinematic subsystem is designed to analyze velocity state in this section.
It can obtain tracking position of artificial intelligence transportation robots. Based on
characteristics of contaminated velocity state signals, the fault-tolerant filtering subsystem
is designed. Then, the nonlinear sliding mode surface is designed to improve the robustness
of the controller by establishing a nonlinear bounded state space and combined with the
reaching law to reduce the vulnerability of faults and contaminated communications.
Figure 3 is the schematic diagram of artificial intelligence transportation robot trajectory-
tracking control flow.

ART
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working

Figure 3. Schematic diagram of artificial intelligence transportation robots with a trajectory-tracking
control flow.

3.1. Nonlinear Saturation Fault-Tolerant Filtering Mechanism

According to the system (1), the kinematic position error is defined as

qe =

 xe
ye
θe

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 ·
 xr − x

yr − y
θr − θ

 (11)



J. Mar. Sci. Eng. 2023, 11, 659 8 of 20

According to the characteristics of virtual backstepping and kinematic spatial, the method
of velocity motion control at low latitudes of dynamics is used to design a virtual-kinematics
control law as the dynamic desire value (12).

ud =

[
vr cos θe − wθe + λ2(xe − d + d cos θe)

wr + λ−1
1 vr(ϑ1(ye + θe) + (dϑ1 + λ1ϑ2) sin θe)

]
(12)

where ur = [vr, wr]
T is the velocity of the reference trajectory.

Combined with the system state information, the error is designed as

Ue =

[
ve
θe

]
= ud − u (13)

Remark 1. The system input is contaminated by GPS sensor failure, unreliable signal, and
actuator failure in the system, which will result in an unknown input. After this kind of in-
put is executed, it will not be able to achieve stability control. Therefore, the nonlinear factor
ητ = Aτ

1+tanh(τ) tanh(Ad)
is involved in constructing the saturation-fault-tolerant mechanism.

The nonlinear saturation-fault-tolerant filtering mechanism η f (k) = 1− ητ + ητ tanh(Ad) de-
notes that the decoupling form about the unknown influence of the signal is dealt with nonlin-
early. According to error Equation (2), the fault-tolerant saturation filtering dynamic subsystem
is designed as u̇ = M̄−1(q(k))[B̄(q(k))τl(k)− F̄m(q̇(k))− τ̄d(k)] + η f (k). The F̄m(q̇(k)) =
Fm(q̇(k)) + τmaxM̄(q(k))η f (k).

This mechanism makes use of unknown information of attack and fault loss to form a nonlinear
virtual hypothesis. According to this hypothesis, signal attack and fault features can be extracted
better, and the fault-tolerant and adaptive ability can be improved further according to saturation
analysis method in the literature [32]. The filtering dynamic error is

ĖR(k) = u̇d(k)−
(

M̄−1(q(k))[B̄(q(k))τl − F̄m(q̇(k))− τ̄d]
)
− η f (k) (14)

3.2. Design of Nonlinear-Fitting, Redundant, Sliding Mode, Event-Trigger Fault-Tolerant Control

Step 1. A new type of a nonlinear, saturated, redundant sliding surface (NSRSMS).
The NSRSMS is denoted as:

SR(k) = ĖR(k) + γaER(k) + B0(ER(k))− Bl(ER(k)) (15)

where Bl(ER(k)) =
∫

tanh(ER(t)) ln
[

Bψ(ER(l)) exp(1)+1
1+exp(1)

]
dl, and Bψ(ER(k)) = βaER(k) tanh

(ER(k)).
The βa = diag{βa1, βa2} is positive permanent diagonal function. The B0(ER(k)) =

−[γaER(0)− l(ER(k))] is initial global approach term to ensure the global mode of SMC.

Remark 2. When the error is designed on a SMS, the maximum error that can be eliminated at
a single time has the characteristic of saturation because of the physical limitation of the control
ability of the controlled robot. Therefore, the redundant information of saturation is used to give
full play to the control performance, prevent the control performance from overshoot, and design a
nonlinear mechanism Bl(ER(k)) to improve the integral saturation. The characteristics of NSRSMS
and linear SMS SI(k) = ĖR(k) +

∫
ER(l)dl + ER(k) + B0(ER(k)) are shown in Figure 4, where∫

ER(l)dl is y-axis and ER(k) is the x-axis.
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NSRSMS

Linear SMS

Figure 4. Comparison of NSRSMS and linear sliding mode surface.

Remark 3. The control performance error struggles to meet the error overshoot when the error is
large; that is to say, the error of the expected performance is relatively easy to control, and if the
error exceeds a certain expected region, it will need to be compensated step by step. It can be seen
in Figure 4 that the saturation term is designed and applied to the sliding surface, the saturated
information is regarded as redundant information, the filtered saturated information is filtered
directly, and the expectation of a certain error is used as the fault-tolerant information control
point. It will be more conducive to the realization of fault tolerant control and reduce the waste of
control performance.

In addition, to avoid control instability caused by singularity in practical engineering, the sin-
gularity of the sliding surface is verified through Equation (16).

ṠR = ËR(k) + γaĖR(k) + Ḃ0(ER(k))− Bγ (16)

where Bγ = tanh(ER(t))
[
ln
(

Bψ(ER(t)) exp(1) + 1
)
+ ln(1 + exp(1))

]
, and we can know that

NSRSMS does not contain singularities in the control process.

Step 2. Nonlinear-damping, super-twisting reaching law (NDSTRL) considering ac-
celeration.

Although the redundant information of the integral saturated sliding mode surface
can be used to improve the control accuracy and reduce the residual error, if there is a
sudden instantaneous error, the buffeting problem can not be ignored, so the NDSTRL is
designed according to the traditional STRL. The NSTRL is denoted as

Ṡr = −γrχ(k) sign
(

ST
R

)
− γkSR (17)

where χ(k) = tanh
(
‖SR(k)‖

3
2
)
‖SR(k)‖

1
2 shows nonlinear time-varying gain. The STRL de-

notes Ṡs = −γrs‖SR(k)‖
1
2 sign

(
ST

R
)
− γksSR, and ERL is defined as ṠE = −γrE sign

(
ST

R
)
−

γkESR. Figure 5 shows NDSTRL, STRL, and ERL with coefficients equal to one.
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NDSTRL
STRL
ERL

(a)

Figure 5. Comparison of NDSTRL and STRL.

Remark 4. From Figure 5, we can see that the STRL can effectively regulate the reaching speed
according to the system state value. When the reaching speed reaches the SMS, the reaching speed
will be decelerated smoothly. The sudden deceleration at the break point of ERL (see the ERL in
Figure 5a), which can not avoid chattering, will increase the chattering amplitude. Figure 5a shows
that the acceleration of the NDSTRL decreases gradually, and the speed is adjusted gradually.
The acceleration of SMC reaching dynamics are better controlled, which is more conducive to
reducing buffeting. Additionally, even better, in the case of a large error, the speed of sliding mode
will not be reduced.

Remark 5. In addition, we can see in Figure 6 that the NDSTRL acceleration gain has the effect of
adjusting the acceleration trend. The status is closer to that of the SMS; the gain is more, which
will slow down the velocity trend (see Figure 6a). Moreover, the reaching speed can be dynamically
accelerated when the error is large, and speed gain does not need to be adjusted (see Figure 6b).

NDSTRL (
r
=1,

k
=1)

NDSTRL (
r
=1,

k
=1.5)

NDSTRL (
r
=1.5,

k
=1)

(a)

(b)

Figure 6. Comparison of NSTRL and STRL.
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Step 3. Controller based on event-triggered memory input mechanism.
Under the influence of unexpected situations such as network attacks and faults,

saving communication resources can reduce the instability of network control to a certain
extent, so an online memory input event-triggered mechanism was designed (shown in
Equation (18)). This mechanism allows the controlled robot to complete stable control
without achieving the ideal control precision, which can also help to achieve stable control
with a certain level of precision under network attacks.

‖Tl(k)‖ > λ‖τl(kl)‖ (18)

where ϑ|τl(tk)| is the memory input with trigger weight gain, and τl(tk) is the input that
meets the trigger condition. Tl(k) = τl(k) − τl(kl) shows the dynamic characteristics
and the input, and contains the state information of the robot affected by faults and attacks.
When the input value of online calculation satisfies Equation (18), τl(k) = τl(kl), ∀k ∈
[kl , kl+1), it denotes the input affected by the zero-order retention effect of the robot installed
in advance.

Using Equation (17) and Equations (21)–(39), one can obtain the control law (Equation
(19)) and adaptive law (Equation (20)).

τl(k) = τc(k) + τς(k) (19)

˙̂ΘR =
1

4rs
tanh

(
SR
D

)
SR − bΘ̂R + rsrΘ‖SR‖2 ϕ4(ZR) (20)

where τζ(k) denotes an adaptive nonlinear fault-tolerant filter control mechanism, and τc(k) is the

NDSTRL distance. τc(k) = −
(
γaτmaxB̃

)−1GcṠr + γau̇d and τς(k) =
(
γaτmaxB̃

)−1
(

1
4rs

tanh(
SR
D

)
+ rsrΘSR ϕ4(ZR)

)
Θ̂R. rΘ > 0, rs > 0, Z1 =

[
HT

1 , u̇T
d , ςT]T, ΘR = max{‖τmaxEr‖,∥∥ψT

∥∥,
∥∥∥τmaxE f

∥∥∥, ‖τ̄D‖
}

, H1 = ËR(k)+ Ḃ0(ER(k)), and ϕ(ZR) = ‖Dr‖
(
2
∥∥B̃T(q)

∥∥+ ∥∥B̃T(q)

τmaxφ(u)‖+ ‖Dr‖−1∥∥ËR(k) + Ḃ0(ER(k))
∥∥).

3.3. Theoretical Proof

To verify the stability of the controller, the effectiveness of the kinematic virtual
controller, dynamic controller and event-triggered controller will be verified theoretically.

Proof. Theoretical proof of the virtual-kinematics control law.
Next, take the Lyapunov function to prove its stability:

Vq =
1
2

Sx
2 +

1
2

Sy
2 + Sθ (21)

where Sx = xe + d cos θe + d, Sy = ye + d sin θe + θe, Sθ = k1(1− cos θe), k1 and k2 are
positive parameters. After the first order guidance, one can obtain

V̇q = SxṠx + SyṠy + Ṡθ (22)

so we obtain

V̇q = −λ2(xe − d + d cos θe)
2 − α

vr

λ1
(ye + d sin θe + θe)

2 ≤ 0 (23)

As (23) is negative, the system tends to be stable, and it is also proved in [26].

ud =

[
vr cos θe − wθe + λ2(xe − d + d cos θe)

wr + λ−1
1 vr(ϑ1(ye + θe) + (dϑ1 + λ1ϑ2) sin θe)

]
(24)
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Proof. Theoretical proof of the dynamic controller.
The Lyapunov function VR1 = 1

2 ST
RSR is designed, and the first derivative of VR1 with

sampling time can be obtained:

V̇R1 = ST
RṠR

= ST
R
[
Dr
(
u̇d − B̃(q)ηττmax(tanh(τ) + tanh(AD))

+M̄−1(q)F̄m(q̇)− η f + τ̄D

)
+ ËR(k) + Ḃ0(ER(k))− Bγ

] (25)

where γa = Dr, B̃(q) = M̄−1(q)B̄(q), τ̄D = M̄1(q)τ̄d.
By using the saturation analysis mechanism (see Remark 1), the multiplicative fault is

nonlinearized and projected, and one can obtain:

V̇R1 ≤ ST
R
[
Dr
(
u̇d − B̃(q)τmax(tanh(τ) + (1− ητ + ητ tanh(AD)))

+M̄−1(q)F̄m(q̇)− η f + τ̄D

)
+ ËR(k) + Ḃ0(ER(k))− Bγ

] (26)

According to η f = 1− ητ + ητ tanh(Ad), the nonlinear fitting characteristics of neural
network are used to fit the fault, attack, and dynamic nonlinearity. One can obtain

V̇R1 ≤ ST
R
[
Dr
(
u̇d − B̃(q)τmax(τ − Eτ) + Ḃ0(ER(k))− Bγ

+τmaxB̃T(q)
(

ψTφ(u) + E f

)
+ τ̄D

)
+ ËR(k)

] (27)

where Eτ = τ − tanh(τ), FD(q̇) = τ−1
maxB̄−1(q)Fm(q̇) + η f . According to the above formula,

we can obtain:∥∥∥ST
R

∥∥∥(‖τmaxEτ‖
∥∥∥Dr B̃T(q)

∥∥∥+ ∥∥∥ψT
∥∥∥∥∥∥Dr B̃T(q)τmaxφ(u)

∥∥∥+ ∥∥∥τmaxE f

∥∥∥∥∥∥Dr B̃T(q)
∥∥∥

+ ‖τ̄D‖‖Dr‖+
∥∥ËR(k) + Ḃ0(ER(k)‖) ≤

∥∥ST
R‖ΘR ϕ(ZR)

(28)

From this, we can obtain

V̇R1 ≤
∥∥∥ST

R

∥∥∥ΘR ϕ(ZR)− ST
RDr

[
u̇d − B̃(q)τmaxτ

]
(29)

The global Lyapunov function is denoted as

VR = VR1 +
1
2

Θ̃2
R (30)

where Θ̃R = ΘR − Θ̂R, and Θ̇R = −Θ̇R. The time derivative of Vu is

V̇u = V̇R1 − Θ̃T
RΘ̇R ≤

∥∥∥ST
R

∥∥∥ΘR ϕ(ZR)− ST
RDrτma B̃T(q)

(
τc(k) + τξ(k)

)
− Θ̃T

R
˙̂ΘR (31)

By substituting Equations (19)–(20) into Equation (31), one can obtain

V̇R ≤
∥∥∥ST

R

∥∥∥Θ1 ϕ(ZR) + ST
RṠr + ST

R

[
− 1

4rs
tanh

(
SR
D

)
Θ̂R

−rsrΘSRΘ̂1 ϕ4(ZR)
]
− Θ̃T

1

[
1

4rs
tanh

(
Su

D

)
Su − bΘ̂R

+rsrΘ‖SR‖2 ϕ4(ZR)
] (32)
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According to Young’s inequality, we can obtain the following:

∥∥∥ST
R

∥∥∥ΘR ϕ(ZR) ≤ rs

∥∥∥ST
R

∥∥∥ΘR ϕ2(ZR) +

∥∥ST
R
∥∥ΘR

4rs
(33)

Substitute Equation (33) into Equation (32) as

V̇R ≤ ST
RṠr −

1
4rs

ST
R tanh

(
SR
D

)
ΘR + rs

∥∥∥ST
R

∥∥∥ΘR ϕ2(ZR)

− Θ̃T
R

(
−bΘ̂R + rsrΘ‖SR‖2 ϕ4(ZR)

)
+

∥∥ST
R
∥∥ΘR

4rs

− rsrΘ‖SR‖2Θ̂R ϕ4(ZR)

(34)

Using Young’s inequality, we can obtain

rsΘR

∥∥∥ST
R

∥∥∥ϕ2(ZR) ≤ rsrΘΘR

∥∥∥ST
R

∥∥∥2
ϕ4(ZR) +

rsΘR
4rΘ

(35)

Further, using Equation (35), Θ̃1 = Θ1 − Θ̂1 can be rewritten as

V̇R ≤ ST
RṠr −

1
4rs

ST
R tanh

(
SR
D

)
ΘR +

ΘR
4rs

∥∥∥ST
R

∥∥∥+ bΘ̃T
RΘ̂R +

rsΘR
4rΘ

(36)

According to Lemma 3 and Θ̃T
RΘ̂R ≤ Θ̃T

R
(
ΘR − Θ̃R

)
≤ 1

2 Θ2
R −

1
2 Θ̃T

RΘ̃R, we have the
following inequality:

V̇R ≤ ST
RṠr −

1
4rs

ST
R tanh

(
SR
D

)
ΘR +

ΘR
4rs

∥∥∥ST
R

∥∥∥+ bΘ̃T
RΘ̂R +

rsΘR
4rΘ

≤ ST
RṠr −

b
2

Θ̃T
RΘ̃R +

1
4rs

0.2785DΘR +
rsΘR
4rΘ

+
b
2

Θ2
R

(37)

Using 1
4

∥∥Θ̃R
∥∥ ≤ b

4

∥∥Θ̃R
∥∥2

+ 1
16b , we can obtain

V̇R ≤ST
RṠr −

1
4

(
Θ̃T

RΘ̃R

) 1
2 − b

4
Θ̃T

RΘ̃R +
1

4rs
0.2785DΘR

+
rsΘR
4rΘ

+
b
2

Θ2
R +

1
16b

(38)

According to Equation (38), we can obtain

V̇R ≤ −
(

ST
R

(√
2γr(gs − IE)

)2
SR

) 1
2
− ST

R

(
γr + γk −

1
2

IE

)
SR

− 1
4

(
Θ̃T

RΘ̃R

) 1
2 − b

4
Θ̃T

RΘ̃R+ �

≤ −η1VR − η2V
1
2

R + �

(39)

where η1

{
λmin

(
γr + γk − 1

2 IE

)
, λmin(b)

4

}
, η2 =

{
λmin

(√
2γr(gs − IE)

)
, 1

4

}
, and �= 1

4rs

0.2785DΘR + rsΘR
4rΘ

+ b
2 Θ2

R + 1
16b .
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4. Simulation Results and Analysis

To verify the effectiveness and superiority of this control algorithm, a comparative sim-
ulation, SISMAEFC, was established by using a conventional integral SMC combined with
the super-twisted sliding mode reaching law [38], and the algorithm was verified and ana-
lyzed by error-simulation results, sliding surface simulation results, and double-actuator-
input simulation results (see Figures 7–10). In addition, because SISMAEFC does not use the
improved nonlinear fault tolerance mechanism and does not reconstruct faults and attacks,
it is compensated directly by adaptive algorithms, which is demonstrated by adaptive laws
(Figure 11). All simulations in this section adopt control parameters as: γa = diag{45, 15.5},
βa = diag{0.01, 0.01}, Gc = diag{1, 1}, τmax = diag{10, 10}, γr = diag{10, 40}, γk =
diag{0.01, 0.1}, rs = diag{0.02, 0.04}, rΘ = diag{0.01, 0.01}, b = diag{10.5, 10.5}, D =
diag{1, 1}. According to the experimental model of the nonholonomic underactuated robot
in the laboratory as the controlled object, the relevant parameters are: m = 15 kg, r =
0.05 m, b = 0.5 m, J = 5 kg ·m2, d = 0.05 m, r = 0.05 m. The RBF ·NNs for H(Z) contain
15 nodes with centers evenly spaced in the range [−3, 3]× . . .× [−3, 3] and widths ωl =
1.8(l = 1, . . . , 15). The simulation interval is designed according to the sampling rate
100hz of the main control chip of the experimental robot. The total simulation time was
150 s. To verify the tracking control performances on different trajectories and the control
stability under attack, the expected trajectory used a trapezoidal line with a combination of
a straight line and a curve [39].

The position error and angular velocity error of the robot under the two algorithms
change over time, and the position error under the algorithm designed in this paper can
converge to zero quickly. From Figure 7, it can be observed that xe stabilized after about
4 s at the earliest stage, and φe stabilized at the latest at around 13 s. The whole system’s
position error could converge in about 15 s, and the stability of the curve was smooth
relatively after the change in curvature after convergence. Although the error curve of
SISMAEFC can converge, the curve shows obvious jitter, and SISMAEFC recovered to a
stable state slowly when numerical fluctuation occurred, which was affected greatly by
model uncertainty, and the convergence was not as good as that of the algorithm designed
in this paper. Additionally, due to the network attack (the attack frequency is 30%), it can
be seen from the local detail diagram that the SISMAEFC jitter is more obvious and the
attack has a greater impact. It is worth noting that the error state under the NRSMEFC
attack and affected by the fault is better, so we can see the attack and fault in this paper.

As shown in Table 1, the two parameters of the algorithm in this paper are smaller,
and the MIAC is 18% lower than the minimum value and 45% lower than the maximum
value of the comparison algorithm. The MISE is 22.6% lower than the minimum value and
11.4% lower than the maximum value of the comparison algorithm. Additionally, under
the same attack, we can see from Figures 9 and 10 that the proposed algorithm is better.

Table 1. Quantitative analysis of the controller’s control effect.

Evaluation Criteria MIAC MISE

Algorithm in this paper [0.90, 2.03] [8.307, 8.844, 3.16]
Comparison algorithm [1.107, 3.75] [10.74, 10.13, 3.57]
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Figure 7. Comparison of system error.

Figure 8. Sliding surface SR comparison.

As shown in Figure 8, when the surface of the traditional sliding surface changes
abruptly, the influence of nonlinear terms will increase significantly near the sliding surface.
The system’s response changes, and the system’s buffeting changes significantly. Due to
the accelerated dynamic characteristics of the reaching law, the residual redundancy will
appear when the system’s error reaches the sliding mode surface. In this paper, the sliding
surface is designed to make up for the deficiency of the traditional sliding surface under
the integral saturation mechanism and nonlinear variable damping reaching law. It reduces
the sharp change in the curvature of the sliding surface, thereby reducing the probability of
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surface mutation. Thus, it eliminates the chattering phenomenon, makes up for the error
redundancy, and improves the stability rate.

Figure 9. Differential coupling input τv comparison.

Figure 10. Differential coupling input τw comparison.
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Figure 11. Comparison of compensation values of adaptive law.

From Figures 9 and 10, we can see that the control input of the algorithm designed in
this paper does not fluctuate obviously under the attack and continues to be stable over
time, but the control scheme shows severe chattering when the attack occurs. In Figure 11,
we can see that the system cannot read the input signal correctly, which will affect the
control effect. It can be seen in trigger times that the dynamic effect is better for the scheme
of nonlinear fitting, followed by adaptive compensation by the controller in this paper. As
the system’s input may be subject to data errors, security attacks, system failures, and other
problems, the system’s input accuracy cannot be guaranteed. As can be seen in Figure 10,
under the algorithm in this paper, the effect of event trigger is obviously better. The active
transmission frequencies of the dual controller output channel of the proposed method and
the comparison method are (8671, 6563) and (10,287, 11,733), respectively, which shows
that the method in this paper has better control performance and is more stable state in
cases of attacks and failures.

5. Conclusions

In this paper, a neural network, nonlinear-fitting, redundant, sliding mode event-
trigger control system affected by abnormal input was designed. Firstly, according to
the dynamic saturation input characteristics, the nonlinear redundant sliding surface was
designed by using the nonlinear fitting function. Then, to reduce the chattering problem
caused by the system, improve the input, and improve the approaching efficiency of a
sliding mode surface with a large error, a nonlinear-damping, super-torsion reaching law
was designed to improve the robust response efficiency of a system with a large error.
For the problem of matching input interference and signal noise in the process of cable-
based signal transmission, the input anomaly is non-linearly fitted by the fault-tolerant
mechanism of the saturation filter, then stripped by saturation analysis, and then fitted by
the nonlinear neural network. A set of nonlinear fault-tolerant subsystems was designed,
which is controlled by an event-trigger mechanism. It improves the tracking accuracy of an
intelligent robot in the cases of physical failure of the actuator, remote network attacks, and
trajectory curvature mutation. In the comparison of simulation experiments, the pose error
of this algorithm was improved by 11.48% at least. It can effectively improve the work
efficiency of the freight yard and save on work costs. It has certain application prospects for
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engineering. In addition, with the development of artificial intelligence research, a class of
algorithms for recognition of human activities has emerged. These include semi-supervised
recurrent convolutional attention model algorithms [40], adaptive semi-supervised feature
analysis algorithms [41], and convolutional neural network and recurrent neural network
algorithms [42]. Consider applying such algorithms to artificial intelligence transport
robots. The algorithm proposed in this paper needs to be improved, and the next step will
be to investigate this problem.
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