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Abstract: In the computer vision field, underwater object detection has been a challenging task. Due
to the attenuation of light in a medium and the scattering of light by suspended particles in water,
underwater optical images often face the problems of color distortion and target feature blurring,
which greatly affect the detection accuracy of underwater object detection. Although deep learning-
based algorithms have achieved state-of-the-art results in the field of object detection, most of them
cannot be applied to practice because of the limited computing capacity of a low-power processor
embedded in unmanned underwater vehicles. This paper proposes a lightweight underwater
object detection network based on the YOLOX model called LUO-YOLOX. A novel weighted ghost-
CSPDarknet and simplified PANet were used in LUO-YOLOX to reduce the parameters of the whole
model. Moreover, aiming to solve the problems of color distortion and unclear features of targets in
underwater images, this paper proposes an efficient self-supervised pre-training joint framework
based on underwater auto-encoder transformation (UAET). After the end-to-end pre-training process
with the self-supervised pre-training joint framework, the backbone of the object detection network
can extract more essential and robust features from degradation images when retrained on underwater
datasets. Numerous experiments on the URPC2021 and detecting underwater objects (DUO) datasets
verify the performance of our proposed method. Our work can assist unmanned underwater vehicles
to perform underwater object detection tasks more accurately.

Keywords: underwater object detection; self-supervised learning; lightweight detection network;
deep learning

1. Introduction

Due to the shortage of land resources, the exploitation of the marine field has been
paid more attention to recently. As an essential part of many underwater tasks, underwater
object detection technology plays an important role in various fields, including marine
resource exploitation, marine biological fishing and breeding, and underwater human–
robot interaction [1,2]. A lightweight and accurate underwater object detection algorithm
is also of great significance to the intelligence of unmanned underwater vehicles (UUVs). It
is the key for UUVs to explore the ocean autonomously. Object detection networks (ODNs)
have made rapid development with the application of deep learning (DL) technology
to the computer vision field in recent years. However, underwater object detection has
been a challenging task. First, the underwater environment is more complex than the
terrestrial environment. Compared with blue and green lights with a shorter wavelength,
red light has a longer wavelength and decays faster in the water, which causes the color
of underwater images to tend to be blue-green. Due to the scattering of incident light by
suspended particles and microorganisms in water, as well as the interference of artificial
light sources, the contrast in underwater images is low, and targets in the images are not
clear. All mentioned greatly affect the detection accuracy of underwater object detection
models. Second, in practical industrial applications, underwater object detection networks
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often need to be deployed on UUVs with limited power for their intelligence and flexibility
in the exploration of the ocean environment [3]. This means that most ODNs based on DL
with a large number of parameters and high computational complexity are not applicable to
these applications. Therefore, how to design a high-precision lightweight ODN that can be
deployed on low-power processors has been one of the main problems in underwater object
detection. Finally, there have been no large universal underwater datasets to support the
research of underwater object detection, such as COCO [4] and PASCAL VOC [5] datasets.

Most of the existing methods use image enhancement technology to correct the color
of underwater images and enhance the clarity of these images before underwater object
detection [6–10]. Unfortunately, some of the image enhancement algorithms cannot be
applied to underwater object detection tasks based on UUVs. Image enhancement algo-
rithms aim to generate underwater images suitable for viewing with human eyes, and the
evaluation criteria typically include the peak signal-to-noise ratio (PSNR) and structural
similarity (SSIM). However, the common metric in underwater object detection is aver-
age precision (AP), indicating a gap between the two tasks. In addition, the application
of image enhancement algorithms can increase the complexity of the entire underwater
object detection task, which is also not beneficial to their deployment on low-power pro-
cessors. Aiming at the requirement that an underwater ODN needs to be deployed on
a low-power processor of UUVs, this paper proposes a lightweight ODN based on the
YOLOX model [11] called LUO-YOLOX. The object detection network achieves an accuracy
of 80.7% on the URPC2021 dataset and 80.9% on the DUO dataset [12], having 5.31 million
(5.31 M) parameters and 3.81 giga floating-point operations (3.81GFLOPs). This indicates
that a good trade-off between the lightweight network structure and the detection accuracy
is achieved.

Different from the methods that use image enhancement algorithms before object
detection, this paper proposes a self-supervised pre-training joint framework (SPJF) based
on the underwater auto-encoder transformation (UAET) to solve the problems of poor
image quality and scarce datasets. In the proposed framework, a simple and efficient
underwater image degradation method was designed. Given random degradation parame-
ters, an image from the land dataset PASCAL VOC2012 was randomly degraded into an
underwater image using the underwater degradation pipeline. Then, the LUO-YOLOX’s
backbone was used to extract features from the image and the corresponding degraded
image. Further, the UAET was used to decode the features to predict random degradation
parameters. With the help of the UAET, the backbone of the proposed ODN can learn
the intrinsic characteristics of targets from degraded underwater images. It should be
noted that the UAET module can be applied to different ODNs. In this paper, this module
was used to assist the proposed lightweight LUO-YOLOX. Many experiments have been
conducted to prove that the proposed object detection network can achieve a good trade-off
between the lightweight design and the detection accuracy and to demonstrate the high
effectiveness of the proposed joint framework for self-supervised pre-training.

In summary, the main contributions to this study are as follows:

(1) A lightweight ODN based on the YOLOX model called LUO-YOLOX is proposed.
The LUO-YOLOX network meets the requirement of lightweight design and can be
deployed on an underwater robot, maintaining a high detection accuracy;

(2) An improved SPJF is introduced in order to handle several issues, i.e., underwater
image color distortion, inconspicuous target features, and scarce underwater datasets.
This framework uses the UAET module to guide the backbone of ODNs to learn more
essential and robust features of a target from underwater degradation images using
self-supervised learning. The UAET module is not contained in the forward inference
process of the ODN, unlike in the image enhancement algorithms, so the parameter
number and computation complexity of the entire ODN are not high.

The rest of this article is organized as follows. Section 2 reviews the related work in
the underwater object detection field. Section 3 introduces the proposed lightweight ODN
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and SPJF. Section 4 presents and analyzes the experimental results. Finally, Section 5 draws
the main conclusions and presents future work.

2. Related Work

This section briefly reviews the current research on ODN based on DL and introduces
some of the related studies on underwater object detection.

2.1. Object Detection Based on DL

As a basic task in computer vision, object detection has a wide range of industrial ap-
plications. With the help of DL, object detection has been developed rapidly in recent years.
Due to the powerful feature extraction capability of convolutional neural networks (CNNs),
the object detection algorithms have been greatly improved—by employing CNNs—in
terms of both detection speed and detection accuracy compared to the traditional object
detection methods, such as histograms of oriented gradients (HOG) [13] and a deformable
part-based model (DPM) [14].

ODN based on DL can be roughly divided into two categories. The first category
includes two-stage ODNs represented by the Fast-RCNN and Faster-RCNN [15] series.
They select the candidate region of a target first and then detect the target in the candidate
region. The second category includes the one-stage ODNs represented by the YOLO
series [16–19]. The one-stage networks do not require the generation of candidate regions
but can directly detect the target. Each of the two types of detection networks has certain
advantages. For instance, the two-stage ODNs have high detection accuracy, while the one-
stage ODNs have a fast detection speed. However, with the advent of one-stage detection
networks, such as RetinaNet [20] and YOLOX [11], in recent years, they have surpassed
the two-stage networks in terms of detection accuracy in some of their application areas.
Namely, the one-stage ODNs have been more favored in industrial applications than the
two-stage networks.

2.2. Underwater Object Detection

In recent years, various underwater ODNs have been proposed. Different solutions
have been introduced to address the difficulty of underwater object detection. For instance,
to solve the problem of underwater image color distortion, Yeh et al. [21] placed a color
conversion network before the ODN to transform underwater images into gray images and
then jointly trained the color conversion network and the detection network. Further, to
alleviate the adverse effects of a complex underwater environment in underwater images,
Zhao et al. [22] proposed using an auxiliary backbone network to learn the source-domain
data and considered the connection between the backbone of ODN and the auxiliary
backbone to eliminate the interference caused by complex source-domain information.
Wang et al. [23] proposed adding an adaptive image enhancement module to the detection
model before the ODN to solve the problems of unclear images and color distortion in
underwater images. They used the object detection loss function to guide the added module
to optimize the object detection parameters. Chen et al. [24] jointly trained a GAN network
for underwater image restoration and an ODN and used the gradient backpropagation
method to train the GAN network to generate underwater images conducive to object
detection tasks. Zhang et al. [25] improved the YOLOv4 object detection model by using
the MobileNetv2 [26] and proposed a multi-scale attention feature fusion mechanism to
improve the detection accuracy of small targets under the condition of a large number of
small targets in the underwater environment.

Although the above-mentioned studies have solved the problems in underwater object
detection to a certain extent, they increased the complexity of the detection task. Namely,
they require much effort in underwater image preprocessing and use complex modules
to improve the accuracy of underwater ODNs. To overcome these limitations, this paper
proposes a self-supervised pre-training method that does not require adding any module
to the forward inference of the ODN while improving the detection accuracy and ensuring
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the light weight of a detection model. The proposed method is described in detail in the
following section.

3. Proposed Method

This section introduces the LUO-YOLOX model. In the proposed model, the backbone
of YOLOX is lightened by using the weighted ghost-CSPDarknet to extract features from
underwater images. In addition, the path aggregation network (PANet) [27] is improved,
and a simplified PANet is used as a feature synthesis part in the proposed object detection
network. Finally, the decoupled anchor-free head is used to detect the target. After intro-
ducing the LUO-YOLOX model, the proposed self-supervised pre-training joint framework
is described in detail. The overall architecture of the proposed method is shown in Figure 1.

feature
map1

UAET Decoder

Jaffe-McGlamery 
model

Atmospheric 
scattering model
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degradation parameters of 
the following two models
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Figure 1. The overall architecture of the proposed self-supervised pre-training joint framework; LU

loss is the loss of the UAET decoder.

3.1. Weighted Ghost-CSPDarknet

This study designs a lightweight backbone based on the CSPDarknet model [11] called
weighted ghost-CSPDarknet (WG-CSP). The WG-CSP structure is presented in Figure 2. In
the figure, Base conv consists of Conv2d, BatchNorm, and SiLU, where Conv2d denotes
the convolution operation, BatchNorm is the batch normalization, and SiLU represents
the activation function; K3 denotes the convolution kernel size of 3 × 3; S2 indicates that
the stride of convolution is two; P1 shows that the padding of convolution is one. The
default values of K, S, and P are one, one, and zero, respectively. Further, Maxpool2d
denotes the max-pooling downsampling operation; concat shows that the feature maps are
concatenated in the channel dimension; ⊕ stands for the element-wise addition; num_cls
in the head denotes the number of classes in datasets. The CSPDarknet is the backbone of
the YOLOX model. It should be noted that a large number of parameters are taken over
by the bottlenecks in the CSPDarknet. Therefore, more attention is paid to the lightweight
design of the bottleneck.

The main innovation of this work relates to the GhostNet [28], which assumes that there
is redundant information in the feature maps extracted by the common convolutional layer.
Therefore, the Ghost Block, which uses convolution operations to extract rich, informative
features while the redundant features are formed by cheap operations, is proposed. The
Ghost Block was used to replace the common convolutional layers in bottlenecks, and
depthwise separable convolutions were used as cheap operations. However, the Ghost
Block simply concatenates rich, informative feature maps and redundant feature maps in
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the channel dimension. It is obvious that the importance of the two feature maps is different,
so the squeeze-and-excitation (SE) block [29] was added after the Ghost Block to weigh the
feature maps extracted by the Ghost Block in the channel dimension. The SE block assigns
larger weights to rich, informative feature maps and smaller weights to redundant feature
maps. The structures of the Ghost Block and SE block are shown in Figure 3.
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Figure 2. The block diagram of the LUO-YOLOX model.
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Figure 3. The structures of the Ghost Block and SE block. (a) The Ghost Block structure, where Conv
denotes the convolution operations, and cheap operations denote linear transformation; (b) the SE
block structure.
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By combining the Ghost Block and the SE block, a weighted ghost (WG) block was
designed and used to reconstruct the bottleneck. The structures of the WG Block, the new
bottleneck, and the WG-CSP block are shown in Figure 4. Moreover, different from the
YOLOX model, which uses spatial pyramid pooling (SPP) [30] to fuse features of different
scales, the proposed WG-CSP uses a spatial pyramid pooling-faster (SPPF) block. The
SPPF block can achieve the same results as the SPP block while reducing the calculation
cost of the ODN and increasing the detection speed of the network. After applying the
WG-CSP, the number of parameters of ODN reduces from 8.94 M to 7.93 M, while the
floating-point operation number reduces from 5.63 GFlOPs to 4.86 GFLOPs compared to
the YOLOX model.
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Figure 4. The details of the WG-CSP. (a) The structure of the WG Block, Bottleneck, and SPPF;
(b) basic WGCSP Blocks in the WG-CSP consisting of the modules shown in (a).

3.2. Simplified PANet

Currently, the majority of one-stage ODNs use a PANet as their neck to fuse features
from different layers, which is beneficial for detecting targets of different scales. The PANet
is designed based on the feature pyramid network (FPN) [31], and its main function is
to add the bottom-to-top feature fusion path on the basis of the top-down feature fusion
path of an FPN. This significantly alleviates the deficiency of low semantic information in
the top fusion layer of the FPN. However, due to its complex structure, the PANet is not
suitable for lightweight ODNs. In view of this, this study proposed a simplified PANet,
whose structure is shown in Figure 2.
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There are a large number of 1 × 1 convolution kernels in a PANet. Therefore, to
make the network lightweight, this study proposes a new module called the shuffle-
weighted ghost (S-WG) block to replace the 1 × 1 convolution kernels. First, the input
feature maps were split in the channel dimension. Half of the input feature maps were
calculated by the WG block, while the other half of the feature maps were obtained by
identity mapping. Finally, the channels [32] were combined to enhance the feature maps’
interactions in the channel dimension. With the help of the S-WG block, the number of
network parameters was decreased significantly. In addition, a downsampling block called
hybrid downsampling (HD) was designed based on the S-WG block. In the HD block,
maximum pooling downsampling and S-WG downsampling were performed on the input
feature maps in turn. Then, the two output feature maps were concatenated in the channel
dimension. In addition, inspired by the bidirectional feature pyramid network (BiFPN) [33],
the cross-level links were used at the feature level to achieve better feature fusion. The
structures of the S-WG, upsample, and HD blocks in the S-PANet are shown in Figure 5.

＝

Base Conv

MaxPool2d

Concat

S-WG Block ＝ Channel 
split Concat Channel 

Shuffle

HD Block

WG Block

Upsample
Block

＝ S-WG Block Upsamle

Figure 5. The structures of the S-WG, upsample, and HD blocks in the S-PANet.

After using the S-PANet, the parameters of our ODN were reduced from 7.93 M to 5.31 M,
and the number of floating-point operations was reduced from 4.86 GFLOPs to 3.81 GFLOPs
while ensuring the feature fusion ability of the proposed object detection network.

3.3. Decoupled Anchor-Free Head

The decoupled anchor-free head (DAH) was used for underwater object detection
and its structure is shown in Figure 2. Decoupled anchor-free detection heads are at the
end of LUO-YOLOX. It has three branches for detecting large, medium, and small targets,
respectively. Compared to the anchor-based detector, an anchor-free detector omits the
complex anchor generation process. In addition, due to a large number of small targets in
the underwater object detection task and difficulty in matching the anchor generated by
the anchor-based detector to the ground truth for small targets, a high missing rate of small
targets can be caused. The proposed anchor-free detector can solve this problem based on
keypoint detection. Moreover, the decoupled technology was used, and two branches were
used to perform the regression of the detection box and the classification of the target.

3.4. SPJF

The attenuation and scattering of the light medium have a great influence on the
detection accuracy of an underwater ODN. To overcome this limitation, most of the existing
methods aim to enhance an underwater image using image enhancement algorithms. How-
ever, in some cases, this approach does not yield satisfactory results. Unlike this approach,
this study proposes an innovative SPJF to solve the mentioned problems in underwater
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object detection. In addition, inspired by the multi-task auto encoding transformation
(MAET) [34], this study proposes the UAET. Applying self-supervised learning, the pro-
posed UAET handles the adverse effects of color bias and blurring in underwater images
when extracting the intrinsic feature of objects.

First, an underwater degradation pipeline was designed, as shown in Figure 6. Con-
sidering the time cost of the ODN training, the pipeline was designed in a way to omit the
design complexity. Further, the Jaffe–McGlamery model [35] was used to degrade land
optical images to underwater images, which can be expressed as follows:

Iλ(x) = tλ(x) · Jc(x) + [1− tλ(x)] · Ac (1)

tλ(x) = exp[−βλ · d(x)], (2)

where λ represents r, g, and b channels; Iλ(x) is a degraded underwater image in a channel
λ; Jλ(x) is the clear land optical image in channel λ; Ac is the background light; tλ(x)
is the underwater attenuation rate of channel λ, which is calculated by Equation (2); βλ

represents the attenuation coefficients of different wavelengths of the light in water; d(x)
represents the depth information on image pixels.

Jaffe McGlarmery model: 

Random degradation parameters:

 (1)attenuation coefficient:

 (2) depth information :

Atmospheric scattering model:

Random degradation parameters:

 (1)transmissivity:

 (2) global background light:

g b

d

r

t

cA

Figure 6. The general view of the proposed underwater degradation pipeline.

The atmospheric scattering model is used to simulate the foggy effect of underwater
optical images, which can be expressed as follows:

I(x) = J(x) · t(x) + A · [1− t(x)], (3)

where I(x) represents a foggy image; J(x) is a clear image; t(x) is the transmittance of light;
A is the intensity of background light.

Given a clear land image, this study aimed to degrade it to an overall greenish-
blue, fuzzy optical image of the water using the underwater degradation pipeline. The
degradation coefficients of the pipeline were randomly set within a certain range. According
to the UWCNN research [36], four types of underwater attenuation coefficients were
adopted in this study to generate different characteristics of underwater images. In addition,
the depth of an underwater optical image was randomly assigned between 1.5 m and 8 m,
and the depth value of the whole underwater image obeys the normal distribution. Further,
the transmittance and background light intensity of an underwater scene were set randomly
and used by the atmospheric scattering model to generate foggy underwater images with
different degrees of ambiguity. The ranges of the degradation coefficients are shown in
Table 1, where U(a, b) denotes a number randomly set between a and b, and N(a, b)
indicates the normal distribution with a mean value of a and a standard deviation of b.
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Table 1. The underwater degradation pipeline parameters.

Transformation Parameters Value

Jaffe-McGlamery model

Attenuation coefficients βr, βg, and βb
(four groups of parameters)


0.750 0.885 0.830
0.750 0.885 0.725
0.710 0.820 0.650
0.670 0.730 0.630



Depth information d(x) d(x) = α×N(0, 1)+U(1, 10)

Atmospheric scattering model

Background light Ac U(0.6, 0.95)

Transmissivity t U(0.3, 0.95)

After degenerating clear land images into underwater images, both the land images
and the simulated degraded underwater images were input into the weight-sharing WG-
CSP backbone. The features of the two types of images were extracted by the WG-CSP.
In the channel dimension, the two extracted feature maps were concatenated and input
into the UAET decoder. The UAET decoder consists of two fully connected layers that
decode the concatenated feature maps to predict the degradation parameters that are ran-
domly set in the underwater degradation pipeline. Thus, the UAET adopts self-supervised
learning to predict the degradation parameters to assist the WG-CSP in extracting more
intrinsic features. The more accurate the prediction result of UAET decoder of randomly
set degradation parameters is, the more essential the features extracted by the WG-CSP are.

The UAET self-supervised module can assist the backbone of LUO-YOLOX through
joint training to extract more intrinsic features from degraded underwater images. The
operational principle of the SPJF is presented in Figure 1. It should be noted that the
SPJF framework represents a pre-training method based on land images and randomly
degraded underwater images. After pre-training, the pre-trained model was retrained on
real underwater datasets to achieve better results in underwater object detection.

3.5. Loss Function

The total loss of the proposed SPJF consists of two parts, which can be expressed by:

Ltotal = ω1 · Lobj + ω2 · LU , (4)

where Lobj is the loss of the ODN; LU is the loss of the UAET decoder; ω1 and ω2 are
two hyper-parameters used to balance the loss function, and they are set to 1.0 and
0.01, respectively.
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Moreover, Lobj includes the classification loss, box regression loss, and confidence loss,
which can be expressed by:

Lobj = Lcls + Lcon f + lbbox

=
s2

∑
i=0

Ip
ij ∑

c∈cls
BCE(Pi(c), p̂i(c)) +

s2

∑
i=0

BCE(cij, ĉij)

+
s2

∑
i=0

Ip
ij(1− Iou(boxij, pboxij)), (5)

where Lcls denotes the classification loss, Lobj is the confidence loss, and Lbbox represents the
box regression loss; IouLoss is the box regression loss; Iou stands for the intersection over
union, which can be expressed by IouAB = A∩B

A∪B ; the s2 is the number of anchor points of the
output feature maps; Ip

ij indicates whether the anchor point is a positive sample; BCE stands
for the binary cross entropy loss, which can be expressed by BCE(cij, ĉij) = −cij log(ĉij)−
(1− cij) log(1− ĉij); Pi(c) and p̂i(c) are the probabilities of the cth predicted class network
and the corresponding ground truth, respectively; cij and ĉij are the confidence degrees
of the prediction box (i, j) and its ground truth, respectively; boxij and pboxij denote the
prediction box and its ground truth, respectively.

Further, LU includes the deviation loss and cosine similarity loss. The cosine similarity
loss is used for gradient shunting for a multi-task framework to reduce the impact of the
loss function, which is designed for the UAET in the object detection task. The LU can be
expressed as follows:

LU = λ1 · Ld + λ2 · Lcs

Ld =
∥∥dp − dgt

∥∥
1

Lcs =

∂E
∂Dobj

· ∂E
∂DU∥∥∥ ∂E

∂Dobj

∥∥∥ · ∥∥∥ ∂E
∂DU

∥∥∥ , (6)

where Ld denotes the loss deviation between the predicted degradation parameter (dp) and
the corresponding ground truth (dgt); Lcs is the cosine similarity loss; λ1 and λ2 are hyper-
parameters; E represents the encoder of the joint framework; Dobj is the object detection
decoder; DU denotes the UAET decoder.

4. Experiments and Results
4.1. Training Parameters and Evaluation Metrics

The experiments were based on the general object detection framework MMDetec-
tion [37]. The operating system was Ubuntu20.04, and Nvidia GeForce 2080ti GPU was
used to train the proposed network. The proposed SPJF was trained on the Pascal VOC2012
dataset, which is a land image dataset. This dataset was randomly degraded into underwa-
ter images using the proposed underwater degradation pipeline. Then, the land image and
the corresponding degraded image were input into the proposed joint framework together
and used for the end-to-end training. The size of the training image was 512× 512, the batch
size was 16, and the initial learning rate was 0.01. After the joint training for 100 epochs,
the trained model is retrained on the URPC2021 and detecting underwater object (DUO)
dataset for further model optimization. The URPC2021 contained four types of targets:
holothurian, echinus, starfish, and scallop, including a total of 7600 underwater images
divided into the training and test sets according to the ratio of 9:1. The DUO also contained
four types of targets: holothurian, echinus, starfish, and scallop, including 7782 images, of
which 6671 were used for training and 1111 for testing. Some of the samples of the two
datasets are shown in Figure 7.
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(a)

(b)

Figure 7. Samples of the URPC2021 and DUO datasets. (a) URPC2021 dataset; (b) DUO dataset.

In the training process on the underwater datasets, the image size was set to 640× 640,
the batch size was 12, and the stochastic gradient descent (SGD) optimizer was used to
optimize network parameters. The initial learning rate was set to 0.01, and the cosine
annealing strategy [38] was used to decrease the learning rate automatically as follows:

lr = {[1 + cos(
π · e

e
)]×

1− lr f

2
+ lr f } × init_lr, (7)

where e is the number of epochs; init_lr is the initial learning rate; lr f is a hyper-parameter.
The main evaluation metrics used in the experiments included the average precision

of the ODN when the Iou threshold was set to 0.5 (AP50) and the mean average precision
(AP). The AP was calculated by:

AP =
AP50 + AP55 + AP60 + ... + AP95

10
. (8)

AP is the main metric by which to measure the performance of ODNs, which is defined as
the percentage of the number of objects correctly detected in the total number of detected
objects. Besides this, we also calculated the AR which denoted the average recall of the
detection networks, the parameters (Params) and computational complexity (FLOPs) of
the object detection networks. AR is defined as the percentage of the number of objects
correctly detected of the total number of objects in the dataset.

4.2. Contrast Experiment

We compared our method with the state-of-art ODNs to verify the effectiveness of
the proposed network model. For the fairness of comparison, the image size, batch size,
and data augment method (random flip only) of all compared detection networks were
the same during the training process. The results obtained on the URPC2021 and DUO
datasets are shown in Table 2. The average precision curves of the detection networks
are displayed in Figure 8. The graphs in the first row show the results on the URPC2021
dataset and those in the second row present the result on the DUO dataset. Further, the
first-column figures display the AP curves, and the second-column figures show the AP50
curves. The green point denotes the result of the first epoch, while the red point represents
the best result obtained after 100 epochs.

As shown in Table 2, compared with the other models, the proposed model could
guarantee a small number of parameters and low computational complexity and achieve
high detection accuracy, which indicated that a good trade-off between the lightweight
characteristic and the detection accuracy was achieved. The proposed model had slightly
lower accuracy than the baseline YOLOX model [11] but also had 41% fewer parameters.
Compared with the other lightweight ODNs, such as YOLOX-tiny, SSD [39] with the
MoblieNetv3 [40] backbone, and YOLOv3 [16] with the MobileNetv3 backbone, the pro-
posed model achieved a significant advantage in detection accuracy. In addition, compared
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with the RetinaNet [20] and YOLOF [41] models, the proposed network not only had a
much smaller number of parameters but also achieved higher average precision on the two
underwater datasets. The results in the last two rows in Table 2 show that, after using the
UAET for self-supervised pre-training, the average detection accuracy in the underwater
object detection task was improved.

Zhang et al. [25] proposed a lightweight ODN that also achieves a good trade-off
between accuracy and speed. We compared our method with it on the URPC dataset to
verify the effectiveness of our method. The compared results are shown in Table 3. We
achieved the same mAP as Zhang et al. However, the parameters of our LUO-YOLOX are
only half of it. Our detection speed is also faster.

Table 2. The experimental results on the URPC2021 and DUO datasets.

Model Backbone
URPC2021 DUO

Params (M)↓ FLOPs (G)↓
AP↑ (%) AP50↑ (%) AP↑ (%) AP50↑ (%)

SSD [39] MobileNetv3 34.5 67.5 46.3 69.9 3.07 1.19

YOLOF [41] ResNet50 37.5 72.1 51.1 74.0 42.13 16.6

RetinaNet [20] ResNet50 44.5 79.8 58.8 81.5 36.17 34.83

YOLOv3 [16] MobileNetv3 40.6 79.5 53.2 79.9 3.67 2.78
YOLOv3 [16] DarkNet53 45.5 82.7 60.2 83.9 61.54 32.77

YOLOX-tiny [11] CSPDarkNet 42.3 78.1 57.2 78.9 5.03 3.20
YOLOX-s [11] CSPDarkNet 47.4 82.1 60.1 81.1 8.94 5.63

Proposed LUO-YOLOX WG-CSP 46.3 80.7 59.3 80.9 5.31 3.81
LUO-YOLOX + SPJF WG-CSP 46.7 81.5 59.6 81.6 5.31 3.81

False detection

missing detection 
missing detection 

False detection

missing detection 

(a)

False detection

missing detection 

False detection

missing detection 

(b)

Figure 8. The average precision curves of the underwater ODNs.
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Table 3. The results of the comparison with Zhang et al.

Model Backbone Input Size mAP(%) Params (M) GPU Speed (FPS)

Zhang et al. MobileNet v2 416 × 416 81.67 10.73 2080ti 44.18

Ours WG-CSP 640 × 640 81.50 5.31 2080ti 50.60

4.3. Ablation Study

Next, the ablation experiments were conducted on the URPC2021 to further verify the
effectiveness of the proposed SPJF. In the experiments, we set all the training parameters,
such as image size, batch size, learning rate, and optimizer type as the same, as these
parameters have a great impact on the trained models. In the first experiment, the normal
pre-training method was used; namely, the LUO-YOLOX model was pre-trained directly on
Pascal VOC2012 and the weights of the trained model were transferred to the underwater
object detection task. In the second experiment, the images in the PASCAL VOC2012
dataset were degraded into underwater images using the underwater degrade pipeline. The
obtained dataset was used to pre-train the LUO-YOLOX model for 100 epochs. Then, the
weights of the pre-trained model were transferred to the underwater object detection task.
In the last experiment, the proposed SPJF was used. The PASCAL VOC2012 dataset was
degraded into underwater images, and the UAET module was used in the self-supervised
pre-training to assist the backbone of the ODN to extract inherent features in the pre-
training stage. The experimental results of the three experiments on the URPC2021 dataset
are shown in Table 4. The reason we did not train LUO-YOLOX with UAET without the
underwater degradation pipeline is that the UAET module can be used for self-supervised
learning only after using the underwater degradation pipeline to generate degraded images.

As shown in Table 4, the performance of the ordinary pre-training was roughly equiva-
lent to that of the pre-training with degraded images. However, the AP and AR of the object
detection network were worse than those of the direct training on the underwater dataset
without a pre-training strategy. This could be caused by the domain shift phenomenon
between the clear land images and the underwater images, which meant that weights
obtained by the pre-training process on the land images could not match underwater target
detection well. Compared with the two pre-trained cases, when the weights obtained by the
proposed SPJF were transferred to the underwater object detection task, both the average
precision and the average recall rate were improved. This proved that the proposed method
could solve the domain shift problem to a certain extent when performing transfer learning.

Table 4. The ablation results of the proposed SPJF scheme.

Underwater
Degradation Pipeline UAET AP↑ (%) AP50↑ (%) AR↑ (%)

1 46.1 81.2 54.4
2 X 46.0 81.1 54.6
3 X X 46.7 81.5 59.6

“X” denotes whether the proposed module model was used in the experiments.

It has been assumed that using the COCO dataset as a land dataset could ensure
higher precision than using the PASCAL VOC2012 dataset. Namely, compared to the
PASCAL VOC2012 dataset, the COCO dataset includes more data samples and richer
objects, which is beneficial in terms of the ODN learning more features during the pre-
training stage. However, training a prediction model on the COCO dataset requires using a
high-performance GPU. Therefore, if the subsequent experimental equipment allows, this
type of model training will be performed in future work.
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4.4. Effect of Image Enhancement on Object Detection Results

In this subsection, the effect of image enhancement on the object detection result is
analyzed. The MLLE [42] and FUnIE-GAN [43] methods were selected as image enhance-
ment algorithms to enhance images in the URPC2021 dataset. The former is a traditional
image enhancement algorithm and the latter is a DL-based algorithm. The results obtained
by the two methods on the URPC2021 dataset are shown in Figure 9.

Figure 9. Enhanced samples of images in the URPC2021 dataset. The first row shows the original
images; the second row displays the samples enhanced by the FUnIE-GAN method; the third row is
the samples enhanced by MLLE.

The enhanced URPC2021 dataset was used to train the proposed lightweight object
detection network (i.e., the LUO-YOLOX model). The results on this dataset are shown in
Table 5, where it can be seen that, different from general cognition, the performance of the
detector was not improved by using the enhanced images for training. The low detection
accuracy after using the image enhancement method could be caused by the difference in
the two tasks’ evaluation metrics and optimized targets. In addition, there was a domain
shift between underwater images and enhanced images, which caused low average recall
efficiency [44]. After using the proposed SPJF, the recall in the underwater object detection
tasks was improved significantly, as well as the AP.

Table 5. The experimental results obtained on the enhanced URPC2021 dataset.

AP↑ (%) AP50↑ (%) AR↑ (%)

MLLE 46.4 81.1 55.6
FUnIE-GAN 45.3 80.6 54.6

Proposed SPJF 46.7 81.5 59.1

4.5. Visualization of Detection Results

The detection results of our methods on the URPC2021 and DUO datasets are pre-
sented in Figure 10. (a) shows the results on the DUO dataset. (b) shows the result on the
URPC2021 dataset. The first rows of Figure 10a,b show the results directly obtained by the
proposed LUO-YOLOX. The second rows present the results detected by LUO-YOLOX
pre-trained by the proposed framework. Yellow boxes denote false detection targets and
purple boxes denote missing detection targets. The method directly detected targets by
the LUO-YOLOX model, facing the problem of missing and false detection. As shown in
the first row in Figure 10a, a number of holothurian and starfish targets were missed; the
ODN mistakenly identified water plants as holothurian, which was not beneficial for the
improvement of the accuracy of the underwater ODNs. The first row in Figure 10b indicates
the same problem. The underwater detection network incorrectly identified the blue gloves
as starfish, and some of the holothurian targets were also missed. However, after using
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the proposed SPJF to pre-train the LUO-YOLOX model, the mentioned problems were
effectively alleviated. The second row in Figure 10a,b shows that the category and position
of the targets were accurately identified and located without any missing or false detection.

False detection

missing detection 
missing 

detection 

(a)

missing 
detection 

False 
detection

missing detection 

(b)

Figure 10. The detection results of the proposed method. (a) shows the results on the DUO dataset.
(b) shows the result on the URPC2021 dataset

The detection result shows that the performance of the proposed object detection
network, the LUO-YOLOX model, became more stable after using the proposed SPJF.

5. Discussion

Compared with other ODNs, the LUO-YOLOX we proposed ensures high AP with
a small number of parameters and low computational complexity in underwater object
detection tasks. The SPJF we proposed guides the backbone of underwater ODNs to extract
more essential features from the underwater images in the manner of self-supervised
learning. This improves the accuracy and robustness of the underwater ODNs without
increasing any parameters and computational complexity. In this paper, we successfully
used it to assist the proposed LUO-YOLOX.

However, our methods have some limitations. Due to the large number of multi-branches
in LUO-YOLOX, the detection speed of our LUO-YOLOX is slower compared with YOLOX
even though its computation complexity is lower. We tested the detection speed on the Nvidia
GeForce 2080ti GPU. The detection rate of the LUO-YOLOX is 50 images per second while
the detection rate of the YOLOX is 70 images per second. However, compared to most other
underwater ODNs, LUO-YOLOX still has an advantage in terms of detection speed.

In the following study, we will try to simplify the branch of LUO-YOLOX and design
a more efficient structure to increase the detection speed of the network. Moreover, we will
use a larger land dataset to train the proposed SPJF. We speculate that SPJF will achieve
more satisfactory results with a larger amount of data. Moreover, our UUVs are being
developed in Qindao, China. Once the project progress meets the experimental conditions,
we will conduct experiments to capture real underwater images and test the performance
of our method on them.



J. Mar. Sci. Eng. 2023, 11, 604 16 of 18

6. Conclusions

In this paper, a lightweight underwater object detection network called the LUO-
YOLOX, which can be implemented in the low-power processors of UUVs, was proposed.
The proposed network can achieve high detection accuracy under a small number of
parameters and at low computational complexity in underwater object detection tasks. It
achieves an accuracy of 80.7% on the URPC2021 dataset and 80.9% on the DUO dataset. To
solve the problems of color distortion and unclear target features of underwater images, the
SPJF framework, which can be used to guide the backbone of an underwater object detection
network to extract more intrinsic and robust target features from degraded underwater
images, was developed. A large number of comparison and ablation experiments have
been conducted to verify the proposed framework and detection model. The results
demonstrate the high effectiveness of the proposed lightweight object detection network
and SPJF framework.
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DAH Decoupled anchor-free head
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DL Deep learning
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FPN Feature pyramid network
HOG Histograms of oriented gradients
LUO-YOLOX lightweight underwater object detection network based on the YOLOX
ODN Object detection network
PSNR Peak signal-to-noise ratio
PANet Path aggregation network
SSIM Structural similarity
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UAET Underwater auto-encoder transformation
UUV Unmanned underwater vehicle
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