
Citation: Sun, Z.; Huang, W.; Lu, H.;

Bu, Y.; Yin, Y.; Wang, S.; Fan, Y.

Mechanical Characteristics of

Fiber-Reinforced Flexible Pipe

Subjected to Axial Tensile Load. J.

Mar. Sci. Eng. 2023, 11, 586. https://

doi.org/10.3390/jmse11030586

Academic Editor: Bruno Brunone

Received: 10 February 2023

Revised: 4 March 2023

Accepted: 8 March 2023

Published: 9 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Article

Mechanical Characteristics of Fiber-Reinforced Flexible Pipe
Subjected to Axial Tensile Load
Zhenwen Sun 1,*, Weiping Huang 1, Hailong Lu 2, Yufeng Bu 2, Yuanchao Yin 3 , Shichao Wang 3 and Yimeng Fan 3

1 College of Engineering, Ocean University of China, Qingdao 266100, China
2 State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics,

Dalian University of Technology, Dalian 116024, China
3 School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
* Correspondence: szwmsnxz@163.com

Abstract: Fiber-reinforced flexible pipes are subjected to large axial tension loads in deep-water
applications, which may result in the excessive deformation of the pipes. Owing to the anisotropy
of the composite materials, accurately describing the tensile behavior of these pipes is difficult.
Theoretical, numerical, and experimental methods are employed in this study to investigate the
mechanical characteristics of a glass fiber-reinforced unbonded flexible pipe under axial tensile loads.
Based on the load–strain relationship of each pipe layer, analytical equations considering the effect of
anisotropy and radial deformation are first proposed to calculate the axial tensile stiffness of the pipe.
A detailed numerical model is established to simulate the tensile behavior of the pipe. A prototype
test is performed on a 4500 mm long sample using a tensile testing machine. The leading roles of
outer tensile reinforcement layers in axial tensile capacity are illustrated by the strain energy of the
pipe layers obtained by the numerical model. Subsequently, a comparison analysis of the mean
fiber direction strains of the selected sections are performed between numerical and experimental
results, which validates the numerical model. Additionally, the stress distributions of different pipe
layers are discussed based on the results of the numerical analysis. Finally, the comparison of axial
tensile stiffness results validates the accuracy of the analytical model considering radial deformation.
This study proposes effective theoretical and numerical models to predict the tensile behavior of a
fiber-reinforced flexible pipe, which provides useful references for the design and structural analysis
of these pipes.

Keywords: fiber-reinforced flexible pipe; axial tensile stiffness; strain in fiber direction; analytical
model; prototype test; finite element model

1. Introduction

Fiber-reinforced flexible pipes are a new type of offshore composite pipes manufac-
tured by companies such as Technip [1] and DeepFlex [2] in recent years. These pipes
comprise multiple reinforcement and polymer layers, similar to metal-reinforced flexible
pipe [3]. However, metal-reinforced spiral belts are replaced by composite-reinforced spiral
belts in fiber-reinforced flexible pipes, resulting in lower weight and better chemical and
fatigue resistance.

The glass fiber-reinforced unbonded flexible pipe investigated in this study comprises
nine layers, as shown in Figure 1. The liner, membrane, and outer sheath are PE (Abbrevi-
ations are all listed in notation list, see Table 1) layers formed by extrusion molding that
separate the transmission medium from the external seawater. The inner hoop layer is a
cylindrical structure comprising two sublayers formed by curing after cross-winding of
glass fiber. The tensile and hoop reinforcement layers comprise GFRP spiral belts wound in
a single direction via wet winding. Owing to the different winding angles and thicknesses,
the tensile and hoop reinforcement layers contribute primarily to the axial and radial
stiffness, respectively.
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Figure 1. Sample of glass fiber-reinforced unbonded flexible pipe.

Table 1. Notation list.

Notation Description

3D three-dimensional
GFRP glass fiber-reinforced plastic

PE polyethylene
C3D8R eight-node brick element with reduced integration
ALLIE internal energy
ALLSE elastic strain energy
ALLAE artificial strain energy
ALLKE kinetic energy

E1 longitudinal tensile modulus
E2 transverse tensile modulus

G12 in-plane shear modulus
ν12 main Poisson ratio
ρ density

The excessive deformation of pipes and the rupture of tensile armors caused by axial
tensile loads are typical failure modes of flexible pipes [4]. Although the weight of fiber-
reinforced flexible pipes is lower than that of typical flexible pipes, the axial tensile loads
caused by the gravity of pipes in deep water are non-negligible. Therefore, the tensile
stiffness and ultimate capacity of fiber-reinforced flexible pipes under axial tension must be
investigated.

Some scholars have proposed analytical models to predict the tensile behavior of
flexible pipes. Oliveira et al. [5] proposed a simple analytical formula based on strain
and geometrical relationships to evaluate the axial stiffness of flexible pipes. Lu et al. [6]
and Yue et al. [7] established theoretical models considering the radial contractions of the
liner and pressure armor layers to describe the axial tensile behavior of a shallow-water
flexible pipe. Tang et al. [8] proposed equations based on the tension and axial deformation
relationship to calculate the tensile stiffness of umbilicals. Wang et al. [9] introduced an
analytical model based on the curved beam theory to investigate the tensile mechanical
behavior of flexible pipes and cables with helically wound structures.

Numerical models that considered the detailed geometries and interactions of different
pipe layers were used to simulate the tensile behavior of flexible pipes. Bahtui et al. [10]
performed a finite element analysis using ABAQUS/Explicit, and the results showed the
hysteresis of the tensile response of a flexible pipe under a high radial pressure. Merino
et al. [11] established a flexible pipe model based on beam and shell elements using ANSYS
to predict the effect of end constraints and friction coefficients on the tensile response.
Ren et al. [12] established a detailed finite element model based on ABAQUS/Explicit. In
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consideration of the interaction between all layers, the axial tensile stiffness of an eight-layer
unbonded flexible riser was predicted.

In terms of experimental research, Ramos Jr. et al. [13] conducted an axial tensile test
on a flexible pipe to measure the axial and transverse strains of the outer tensile spiral
belts and the axial displacement of the pipe. Lopez et al. [14] conducted a dynamic tension
test on a flexible pipe and identified the rupture of tensile armors using accelerometers,
inclinometers, and strain gauges. Bai et al. [15] investigated the axial tensile behavior of
a steel strip-reinforced flexible pipe through a full-scale test to determine the effects of
the loading rate and friction coefficient on the ultimate capacity and failure mode of the
pipe. In consideration of internal pressure on the tensile response of steel strip-reinforced
flexible pipes, Chen et al. [16] investigated the typical failure characteristics of the pipe via
full-scale tests. A full-scale axial tensile test was conducted by Liu et al. [17] to investigate
the effect of the internal friction and viscoelastic properties of polymeric layers on the axial
behavior of the flexible pipe.

In consideration of the stress concentration of flexible pipes, Dong et al. [18] investi-
gated the effects of end restraints on the stresses of the tensile armors under axial tensile
loads using the finite element method. An analytical model based on strain energy and the
Euler equation was also derived by Dong et al. [19] to clarify the effects of end restraints.
Nassiraei and Rezadoost [20] investigated the effect of fiber-reinforced polymer layers and
joint geometry on the stress concentration factors of tubular joints using finite element
models and empirical formulas. Zhu et al. [21] demonstrated that ovality exerted a limited
effect on the tensile stiffness of flexible pipes but resulted in stress concentrations on tensile
armors. De Sousa et al. [22] and Zhu et al. [23] investigated the axial tensile response of
a flexible pipe with damaged tensile armor wires; subsequently, stress concentration was
observed in wires adjacent to the damaged wires.

The tensile strength of flexible pipe has also been investigated by some scholars.
Goto et al. [24] proposed an equation based on the force equilibrium between the axial and
circumferential directions to calculate the tensile strength of the pipe. Yim et al. [25] equated
the carcass and pressure armor layer to orthotropic shells, and proposed constitutive,
compatibility and force equilibrium equations for a flexible pipe; subsequently, the ultimate
strength of the tensile layer was obtained using a regression analysis. Considering the
plastic behavior of materials, Cornacchia et al. [26] proposed a theoretical model using the
secant modulus to calculate the tensile strength of unbonded flexible pipes.

The tensile behavior of flexible pipes with composite layers has received attention
in recent years. Xu et al. [27] investigated the effect of the filament winding angle, fiber
volume ratio, and diameter–thickness ratio on the tensile stiffness of glass fiber-reinforced
bonded flexible pipes using theoretical and finite element models. Fang et al. [28] proposed
analytical and numerical models by embedding glass fibers into a matrix to simulate
the mechanical behavior of a glass fiber-reinforced bonded flexible pipe under tension
and internal pressure. Zhou et al. [29] investigated the tensile behavior of a flexible
pipe with partial composite reinforcement layers using the finite element method, where
predefined beam elements and laminated shell elements were selected for spiral belts and
fiber-reinforced inner jackets, respectively. Liu et al. [30] proposed a theoretical model
based on the energy method and a numerical model using ABAQUS to simulate the tensile
behavior of flexible pipes with partial composite reinforcement layers.

Past research on the tensile behavior of flexible pipes has mostly focused on metal-
reinforced flexible pipes, while little relevant research has been performed on fiber-reinforced
unbonded flexible pipes, which are entirely composed of composite and polymer materials.
The mechanical properties of composites are more complex than metal materials due to
anisotropy, which leads to difficulties in research. The axial tensile behavior of a glass
fiber-reinforced unbonded flexible pipe within the elastic deformation range was investi-
gated in this study using established analytical models, while considering the anisotropy
of materials and the effect of radial deformation. The classical laminate theory was used
in the analytical model to obtain the engineering constants of the inner hoop layer. A
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3D numerical model was established to validate the analytical model; subsequently, the
distribution characteristics of the strains, stresses, and axial displacement of the pipe were
obtained. Additionally, a prototype test was performed to measure the fiber-direction strain
of the spiral belts in the outer tensile reinforcement layer.

2. Methods and Models
2.1. Analytical Method

For the fiber-reinforced flexible pipe used in this study, the liner, inner hoop layer,
membrane, and outer sheath were modeled as cylindrical structures, whereas the inner and
outer tensile reinforcement layers and hoop reinforcement layer were modeled as helical
structures. The stresses and deformations of the layers under axial tensile loading are
shown in Figure 2.

Figure 2. Deformation and stress of pipe layers. (a) Cylindrical layer; (b) helical layer.

The following hypotheses were proposed for the analytical model of fiber-reinforced
flexible pipe subjected to axial tensile load:

1. All pipe layers are in small displacement and strain state.
2. All layers follow the plane section assumption.
3. All materials are in the linear elastic range.
4. The thickness of each layer remains constant along the axial direction of the pipe, and

the spiral belts distribute uniformly along the circumferential direction.
5. All layers are subject to the same end restraints; thus, they have the same axial

elongation.
6. The relative sliding between adjacent layers is not considered; thus, the effect of

friction is ignored.
7. The radial separation of adjacent layers is not considered.

2.1.1. Cylindrical Layers

The axial load–strain relationship of the cylindrical layer can be expressed as:

F(i) = E(i)A(i)
∆L
L

(1)

where F(i) is the axial tensile load; A(i) is the section area of the cylindrical layer; E(i) is the
elastic modulus of the material; ∆L and L represent the axial elongation and initial length,
respectively; and the subscript i indicates the ith layer of the pipe.

In contrast to other cylindrical layers, the inner hoop layer formed by filament winding
is anisotropic; thus, the moduli differ along different directions. Using the known engineer-
ing constants of the laminas, the classical laminate theory [31] can be used to calculate the
tensile elastic modulus of the inner hoop layer along the axial direction of the pipe.
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For the lamina in the plane stress state, the strain–stress relationship in the principal
direction of the material can be expressed by the flexibility matrix S, as follows: ε1

ε2
γ12

 =

S11 S12 0
S12 S22 0
0 0 S66

 σ1
σ2
τ12

 = S

 σ1
σ2
τ12

 (2)

where the coefficient Sij can be expressed by the fiber-direction modulus (E1), transverse-
direction modulus (E2), in-plane shear modulus (G12), and main Poisson ratio (ν12) of the
lamina, as follows:

S11 =
1

E1
, S12 = −ν12

E1
, S22 =

1
E2

, S66 =
1

G12

However, the local coordinate system (i.e., 1–2) of the lamina is different from the
global coordinate system (i.e., x–y) of the structure, and the angle between the 1-axis (the
fiber direction of the material) and x-axis (the axis direction of the structure) is θ (anti-
clockwise implies positive direction), as shown in Figure 3. A coordinate transformation is
required to obtain the off-axis engineering constants. The expansion of the transformation
matrix T is expressed as:

T =

 cos2θ sin2θ 2sinθcosθ
sin2θ cos2θ −2sinθcosθ

−sinθcosθ sinθcosθ cos2θ − sin2θ

 (3)

Figure 3. Local coordinate system of lamina and global coordinate system of structure.

The strain–stress relationship of the lamina in different coordinate systems can be
expressed as:  εx

εy
γxy

 = TT

 ε1
ε2

γ12

 = TTS

 σ1
σ2
τ12

 = TTST

 σx
σy
τxy

 = S

 σx
σy
τxy

 (4)

The elastic modulus in the x-direction of the plane (Ex) can be obtained from coefficient
S11 of the off-axis flexibility matrix S. S11 can be expanded as follows:

S11 = 1
Ex

= 1
E1

cos4θ +
(

1
G12

− 2ν12
E1

)
sin2θcos2θ + 1

E2
sin4θ (5)

As can be inferred from Equations (3)–(5), the elastic constants in different directions of
the inner hoop layer change with the fiber winding angle, which will affect the mechanical
behavior of the pipe.
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For the lamina in the plane stress state, the strain–stress relationship in the principal
direction of the material can also be expressed by the stiffness matrix Q, as follows: σ1

σ2
τ12

 =

Q11 Q12 0
Q12 Q22 0

0 0 Q66

 ε1
ε2

γ12

 = Q

 ε1
ε2

γ12

 (6)

where

Q11 =
S22

S11S22 − S2
12

, Q22 =
S11

S11S22 − S2
12

, Q12 =
−S22

S11S22 − S2
12

, Q66 =
1

S66

The off-axis stress–strain relationship of the lamina is expressed by the stiffness matrix,
as follows: σx

σy
τxy

 = T−1

 σ1
σ2
τ12

 = T−1Q

 ε1
ε2

γ12

 = T−1Q
(

T−1
)T
 εx

εy
γxy

 = Q

 εx
εy

γxy

 (7)

where Q is the off-axis stiffness matrix of the lamina.
The laminate comprises multiple laminas, and the plies of the laminate are shown in

Figure 4a. The in-plane strains of the laminate include mid-plane strains (normal strains ε0
x

and ε0
y, and shear strain γ0

xy) and mid-plane curvatures (bending curvatures κx and κy, and
torsion curvature κxy). The internal forces (Nx , Ny , and Nxy) and internal moments (Mx ,
My, and Mxy) act on the unit width of the laminate cross-section with a thickness of h, as
shown in Figure 4b. Hence, the internal force–strain relationship of the laminate can be
expressed as: [

N
M

]
=

[
A B
B D

][
ε0

κ

]
(8)

where A, B, and D are the tensile, coupling, and bending stiffness matrices, respectively,
and their coefficients can be obtained by integrating the off-axis stiffness coefficient, Qij.
N and M are the vectors of the internal force and moment, respectively. ε0 and κ are the
vectors of strain and curvature, respectively.

Figure 4. Laminate structure. (a) Plies of laminate and z-coordinate of laminas; (b) internal forces
and moments of laminate in the plane stress state.

Regularizing the coefficients of the stiffness matrix in Equation (8) and inverting the
matrix yields the following equation:[

ε0

κ∗

]
=

[
α∗ 1

3 β∗

β∗T δ∗

][
N∗

M∗

]
(9)
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When a uniaxial internal force Nx is applied to the laminate while the other internal
forces and moments are zero, the normal strain ε0

x can be obtained by solving Equation (9),
as follows:

ε0
x = α∗11Nx (10)

The x-direction elastic modulus of the laminate in the plane stress state is expressed as:

E0
x =

1
α∗11

(11)

2.1.2. Helical Layers

Assume that the helical layer is the jth layer of the pipe. The helical layer comprises nj
spiral belts uniformly distributed along the circumferential direction; therefore, each spiral
belt is subjected to the same tensile load. The fiber-direction tensile load on a single spiral
belt can be expressed as follows:

F1(j) = σ1(j)A1(j) = E1(j)ε1(j)b(j)t(j) (12)

where E1(j) is the fiber-direction elastic modulus of GFRP; ε1(j) is the fiber-direction strain
of the spiral belt; b(j) and t(j) are the width and thickness of the spiral belt, respectively;
and the subscript j indicates the jth layer of the pipe.

As shown in Figure 5a, for the spiral belt with helix angle αj, the geometric relationship
between the strain along the fiber and axial directions of the pipe can be expressed as
follows:

ε1(j) =
∆Lw

Lw
=

∆Lcosα(j)

L/cosα(j)
= cos2α(j)

∆L
L

(13)

where Lw denotes the initial length of the spiral belt corresponding to the pipe with length
L, and ∆Lw is the variation in the length of the spiral belt.

Figure 5. Deformation of spiral belts. (a) Deformation induced by axial strain of inner layers;
(b) deformation induced by radial strain of inner layers.

Substituting Equation (12) into Equation (13), the relationship between the axial tensile
load and axial strain of the spiral belt can be expressed as follows:

F(j) = F1(j)cosα(j) = E1(j)b(j)t(j)cos3α(j)
∆L
L

(14)

Under axial tensile loads, the pipe undergoes axial elongation and radial compression
deformation. When the radial deformations of the inner layers are considered, the fiber-
direction strains of the spiral belts change, which significantly affects the axial stiffness of
the pipe. Based on Figure 5b, the geometric relationship between the fiber-direction strain
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of the spiral belt with helix angle αj and the radial strain of the liner can be expressed as
follows:

ε1(j) =
∆Lw

Lw
=

2π∆Rsinα(j)

2πR/sinα(j)
= sin2α(j)

∆R
R

(15)

where R is the initial average radius of the liner, and ∆R is the variation in R.
Assume that the ratio of the radial compression deformation to the axial elongation is

the Poisson’s ratio of the liner material [6], i.e.,

νPE =
∆R(1)/R(1)

∆L/L
(16)

Subsequently, using Equations (13)–(16), the relationship between the axial tensile
load and axial strain of the spiral belt, considering the radial compression deformation of
the liner, can be expressed as follows:

F(j) = F1(j)cosα(j) = E1(j)b(j)t(j)cos3α(j)

(
1 − νPEtan2α(j)

)∆L
L

(17)

The structural layers of the unbonded flexible pipes are independent. Thus, the axial
tensile load applied to the entire pipe is equal to the sum of the axial tensile load acting
on each layer. Due to the same end constraints, the axial elongation of each layer is the
same. Therefore, the total axial tensile stiffness of the fiber-reinforced flexible pipe can be
obtained by summing the axial tensile stiffness of each layer. Based on Equations (1) and
(17), the total axial tensile stiffness of the pipe can be expressed as follows:

(EA)total = ∑
i=1,2,6,9

E(i)A(i) + ∑
j=3,4,5,7,8

n(j)E1(j)b(j)t(j)cos3α(j)

(
1 − νPEtan2α(j)

)
(18)

As shown in Equation (18), the winding angles of spiral layers have significant effects
on the axial stiffness of fiber-reinforced flexible pipes.

2.2. Numerical Model

A 3D numerical model was established using the finite element software ABAQUS to
simulate the axial tensile behavior of a fiber-reinforced flexible pipe with an inner diameter
of 150 mm and a length of 2700 mm. The main geometric parameters of the sample and the
material parameters obtained by mechanical properties tests are listed in Tables 2 and 3 [32],
respectively.

Table 2. Geometric parameters and materials of the pipe.

Layer Thickness (mm) Winding Angle (◦) Number of Belts Materials

Liner (L1) 8 – – PE
Inner hoop layer (L2) 2 ±80 – GFRP1

Inner tensile reinforcement layer 1 (L3) 2.5 54 20 GFRP2
Inner tensile reinforcement layer 2 (L4) 2.5 −54 20 GFRP2

Hoop reinforcement layer (L5) 8.5 86 2 GFRP2
Membrane (L6) 4 – – PE

Outer tensile reinforcement layer 1 (L7) 3 30 36 GFRP2
Outer tensile reinforcement layer 2 (L8) 3 −30 36 GFRP2

Outer sheath (L9) 4 – – PE
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Table 3. Parameters of materials.

Parameters GFRP1 GFRP2 PE

E1 (GPa) 33.70 49.6 1.1
E2 (GPa) 7.35 1.46 –

G12 (GPa) 2.50 2.7 –
ν12 0.3 0.27 0.45

ρ (g/cm3) 2.1 2.1 0.95

Local coordinate systems were established to define the material orientations for all
fiber reinforcement layers, wherein directions 1, 2, and 3 referred to the fiber, transverse,
and thickness directions, respectively; thus, the output of strain and stress followed the
direction of the local coordinates. Two reference points, RP1 and RP2, were set at the
center points of the two end sections, and kinematic coupling constraints were established
between the two points and the corresponding surfaces; thus, boundary conditions and
concentrated loads were applied to the model via the reference points. All degrees of
freedom of RP1 and the axial torsion degrees of freedom (UR3) of RP2 were constrained, as
shown in Figure 6a. The contacts between different layers and different spiral belts were
defined as general contacts. The normal behavior was set as hard contact, whereas the
tangential behavior was defined using a penalty method based on the Coulomb friction
model. Friction tests were performed to measure the friction factors between the samples
of GFRP and PE using a peel testing machine. Based on the results of the friction tests, the
friction factor between the GFRP layers was set to 0.18, whereas that between the GFRP
and PE layers was set to 0.08.

Figure 6. Finite element model of glass fiber-reinforced flexible pipe. (a) Couplings and boundary
conditions; (b) meshes of the model.

Structured meshes were employed for the cylindrical layers, while swept meshes were
adopted along the helix direction for the helical layers. Mesh size sensitivity analyses were
performed to determine the mesh sizes of different layers. In the first set of models, the
initial global mesh sizes of the cylindrical layers were set as 10 mm, and those of helical
layers were set as 8, 7, 6, 5 and 4 mm, respectively. In the second set of models, the initial
global mesh sizes of the helical layers were set as 5 mm, and those of the cylindrical layers
were set as 13, 12, 11, 10 and 9 mm, respectively. Figure 7 illustrates the results of axial
displacements obtained by different models. According to the results, the global mesh
sizes of the cylindrical and helical layers were set as 10 and 5 mm, respectively. The mesh
numbers along the circumferential and thickness directions of L1 were set as 50 and 2,
respectively. The mesh numbers along the circumferential and thickness directions of L9
were set as 70 and 2, respectively. The mesh numbers along the transverse and thickness
directions of the spiral belts of L5 were set as 50 and 2, respectively. The mesh number
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along the transverse direction of each spiral belt of the tensile reinforcement layers was
set as 4. To avoid the effect of excessive deformation on the analysis, the C3D8R element
was adopted for all parts of the model, and the enhanced hourglass control mode was
selected to limit the hourglass expansion. The entire model comprised 622,928 elements
and 1332,258 nodes, as shown in Figure 6b.

Figure 7. The axial displacements of the pipe obtained by numerical models with different global
mesh sizes.

The ABAQUS/Explicit solver was employed in the quasi-static analysis to prevent
convergence problems caused by nonlinear factors, such as complex contacts. The loading
time was set to 0.1 s, and a concentrated load of 300 kN in the U3 direction was applied
on End Section 2 through RP2. To avoid the effect of inertia, a smooth step was used
to control the loading rate, and the energy curves were monitored during the loading
process. Geometric nonlinearity was also adopted in the model to ensure the accuracy of
the calculation results.

2.3. Prototype Test

A full-scale axial tensile test was performed on a glass-fiber-reinforced unbonded
flexible pipe with an inner diameter of 150 mm. During the test, the ends of the sample were
connected to the testing machine through end fittings. The end fittings were sufficiently
long to prevent the pipe from slipping under large axial tensile loads. The presence of
end fittings resulted in high-stress regions near the ends. To avoid the effect of stress
concentration, the effective length (the total length minus the lengths of the end fittings)
of the sample should not be less than twice the maximum pitch of the spiral belts, based
on specifications [3,4]. The maximum pitch of the spiral belts in this sample was 1180 mm,
and the total and effective lengths of this sample were 4500 and 2700 mm, respectively.

The sample was connected to a horizontal tensile-testing machine. One end was
completely fixed on the support of the machine, and the other end was connected to a
hydraulic actuator with restricted axial torsion. Two sections of the sample, S1 and S2, were
selected to monitor the strain; here, S1 was the midspan section, S2 was located between S1
and the fixed end, and the distance between S1 and S2 is 500 mm, as shown in Figure 8a,b.
S1 was the main section for the measurement of fiber-direction strains of spiral belts, and
S2 was selected for comparative analysis. A section of the outer sheath with a width of 15
cm was removed from S1 and S2; thus, the spiral belts of the outer tensile reinforcement
layer were exposed. Additionally, strain gauges were attached, as shown in Figure 8c.
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Figure 8. Axial tensile test. (a) positions of measuring sections; (b) testing machine and sample;
(c) strain gauges on the spiral belts.

The spiral belts were symmetrically distributed in the circumferential direction; thus,
the points on the spiral belts (nos. 1-4) at positions 0◦, 45◦, 90◦ and 180◦ along the circumfer-
ential directions of S1 and S2, respectively, were selected as the main measurement points,
as shown in Figure 9a. Three strain gauges were attached along the fiber direction in the
middle position of each of the four belts to decrease the measurement errors, as shown in
Figure 9b. For S1, one strain gauge was attached along the fiber direction in the middle of
each of the other belts (nos. 5-10).

Figure 9. Positions of spiral belts and strain gauges. (a) positions and numbers of spiral belts in
circumferential direction; (b) positions of strain gauges on spiral belt.

Four loading–unloading cycles were applied on End Section 2 using a computer-
controlled actuator, and the amplitudes of the tensile loads in the four loading processes
were 210, 205, 197, and 105 kN, respectively. Slow loading processes were performed to
avoid inertial effects; thus, the loading rate was controlled at approximately 1.35 kN/m,
and the total testing time was 1036 s. The value of the tensile load can be measured using a
force sensor, and the value of the strain can be obtained using a data acquisition instrument.
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3. Results and Discussions
3.1. Energy Time History Curves

The time history curves of ALLIE, ALLSE, ALLAE, and ALLKE were extracted from
the finite element results, as shown in Figure 10a. The internal energy curve is relatively
smooth without evident fluctuations during the entire loading process, and the kinetic
and artificial strain energies remain low. At 0.058 s, the ratio of the peak value of the
kinetic energy to the corresponding internal energy is only 1.7%, which satisfies the quasi-
static condition. At 0.1 s, the ratio of the artificial strain energy to the internal energy is
approximately 2.9%, which confirms that the hourglass problem does not significantly
affect the results. At 0.1 s, the ratio of the elastic strain energy to the internal energy is
97.1%, which indicates that almost all the work yielded by the tensile load is converted into
the elastic strain of the pipe. Therefore, the contributions of different layers to the axial
load capacity can be illustrated directly using the strain energy curves.

Figure 10. Energy history curves of finite element model. (a) Comparisons of different energy;
(b) comparisons of strain energy of different layers.

Figure 10b and Table 4 show the values of the elastic strain energy of different layers
and the entire pipe. As shown, the strain energy of Layers L7 and L8 constitutes 38.34%
and 38.04% of the total strain energy, respectively. As can be inferred from Equations (13)
and (15), the strain of Layer L7 is slightly larger than that of Layer L8 because the radius of
Layer L7 is smaller than that of Layer L8 and the two layers share the same elastic constants,
which leads to a larger strain energy in Layer L7. The contribution ratio of the strain energy
of the two layers is 76.42%, which shows that the outer tensile reinforcement layers with a
winding angle of 30◦ contribute the most to the axial load capacity. However, the strain
energy of the inner tensile reinforcement layers with a winding angle of 54◦ constitutes only
1.19% of the total strain energy, which shows that these layers do not significantly affect the
axial load capacity. These results indicate that the winding angle of fibers have a significant
effect on the axial load capacity of the spiral belts and that a relatively small winding angle
is more conducive for the pipe to resist axial load. The PE layers also contribute to the
axial load capacity of the pipe. The contribution ratio of the strain energy of the inner
layer (4.03%) is greater than that of the membrane (3.45%) and outer sheath (2.87%) owing
to the effect of position and thickness. The inner hoop layer with a large winding angle
and small thickness contributes to 8.51% of the total strain energy, which is second only
to that of the outer tensile reinforcement layers and significantly higher than that of the
other cylindrical layers, for the reason that it is completely cylindrical and the equivalent
elastic modulus along the axis of the pipe is 6.5 times that of the PE layer. Although the
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thickness is large, the hoop reinforcement layer is a helical structure instead of a completely
cylindrical structure; thus, it contributes to only 3.50% of the total strain energy.

Table 4. Strain energy and contribution ratio of different layers.

Layer L1 L2 L3 L4 L5 L6 L7 L8 L9 Total

Strain energy (105 mJ) 0.43 0.91 0.07 0.06 0.37 0.37 4.09 4.06 0.31 10.67
Contribution ratio (%) 4.03 8.51 0.64 0.55 3.50 3.45 38.34 38.08 2.87 100

3.2. Strain Distribution of Outer Tensile Reinforcement Layer

Figure 11 illustrates the fiber-direction strain in Sections S1 and S2 of the outer tensile
reinforcement layer (Layer L8). The maximum and minimum strains of S1 are 0.179%
and 0.131%, respectively, and those of S2 are 0.180% and 0.132%, respectively. Due to the
coupling effect of tension and torsion in the spiral wound structure, local bending and
torsion deformation will occur in the spiral belts when the pipe is subjected to tensile load;
thus, the strains could not be completely uniform along the transverse direction of the belts.
The strains at the middle positions are higher than those at the edges in the transverse
direction of the spiral belts.

Figure 11. Fiber-direction strains of Layer L8. (a) Strains of S1; (b) Strains of S2.

For the spiral belt at the 0◦ position along the circumferential direction of S1, the
fiber-direction strain was obtained by averaging the fiber-direction strains of Points A and
B (as shown in Figure 10a) at the middle position of the spiral belt. In Section S1, one spiral
belt was selected from every three spiral belts along the circumferential direction from
the 0◦ position to extract the strain data; thus, the fiber-direction strains of 12 spiral belts
were obtained. Similarly, the fiber-direction strains of the 12 spiral belts selected in S2 were
obtained. The average values of the fiber-direction strain of the spiral belts in S1 and S2 are
0.1712% and 0.1695%, respectively, as shown in Figure 12.

The fiber-direction strains of S1 and S2 were obtained by averaging the values of
the fiber-direction strain of the spiral belts measured by strain gauges in the prototype
tests. When the amplitude of tensile load reaches 210 kN, the fiber-directions strains of
S1 and S2 are 0.111% and 0.103%, respectively, as shown in Figure 13. The relationships
between the strains in the fiber direction of S1 and S2 obtained by test and axial tensile
loads are near-liner, even though four loading–unloading cycles were performed in the
test, which indicates that the deformation of the pipe is still in the linear elastic range;
thus, the strain per unit load of each section can be obtained by linear fitting. When the
amplitude of tensile load reaches 300 kN, the fiber-direction strains of S1 and S2 are 0.171%
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and 0.169%, respectively. The relationships between the strains in the fiber direction of S1
and S2 obtained by the numerical model using smooth step are also near-liner. The finite
element and test results of the fiber-direction strain under the unit load of the spiral belts in
Section S1 are 6.0157× 10−4/kN and 6.1233× 10−4/kN, respectively, and the finite element
result is 1.8% lower than the test result (see Table 5). The finite element and test results of
the fiber-direction strain under a unit load of the spiral belts in S2 are 5.9798 × 10−4/kN
and 5.7496 × 10−4/kN, respectively, and the finite element result is 4.0% greater than the
test result. The errors between the numerical and experimental results of the two sections
are insignificant, which indicates the high accuracy of the finite element model.

Figure 12. Fiber-direction strains of spiral belts at S1 and S2 of Layer L8.

Figure 13. Strain-load curves of spiral belts in Layer L8. (a) curves of S1; (b) curves of S2.

Table 5. Mean fiber-direction strains of spiral belts under unit load.

Sections Test Results (×10−4/kN) Numerical Results (×10−4/kN) Errors (%)

S1 6.0157 6.1233 1.8
S2 5.9798 5.7496 4.0
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3.3. Distribution of Stress in Different Layers

Figure 14 illustrates the distribution of the von Mises stress in the pipe sections. The
maximum von Mises stress (116.5 MPa) at the end section is 28.9% higher than that at
the midspan section (90.5 MPa), which demonstrates the end effect of the pipe. The von
Mises stresses in the outer tensile reinforcement layers are significantly higher than those
in the other layers, which confirms that the outer tensile reinforcement layers contribute
significantly to the axial load capacity of the pipe.

Figure 14. Mises stresses of the pipe. (a) end section; (b) midspan section.

Figure 15 illustrates the distribution of the fiber-direction stress at different positions
in the outer tensile spiral layer (Layer L8). As shown in Figure 15a, the variation in
the fiber-direction stress of the outer tensile spiral belts along the axis of the pipe is not
significant, except at the end sections. As shown in Figure 15b, the distribution of the
fiber-direction stress along the circumferential direction of S1 (corresponding to S1 selected
in the test) is relatively uniform, with a maximum value of 88.5 MPa and a minimum value
of 82.9 MPa. The stresses at the middle positions are slightly higher than those at the edges
in the transverse direction of the spiral belts. As shown in Figure 15c, the maximum and
minimum values of the fiber-direction stress of the spiral belts in S2 (corresponding to S2
selected in the test) are 88.2 and 83.2 MPa, respectively, and the stress distribution is similar
to that of Section S1.

Figure 16 illustrates the distribution of the fiber-direction stress at different positions
in the outer tensile spiral layer (Layer L7). As shown in the figure, the stress distributions
of the two sections are similar to those of the corresponding sections of Layer L8. The same
method as described in Section 3.2 was employed to calculate the mean fiber-direction
stress of 12 spiral belts at the midspan section of Layers L8 and L7. The relationships
between the mean fiber-direction stress and axial tensile load are shown in Figure 17. The
figure illustrates that, as the axial tensile load increases, the mean fiber-direction stresses
of the spiral belts increase approximately linearly. When the axial tensile load reaches
300 kN, the fiber-direction stresses of Layer L7 and L8 are 88.57 and 87.19 MPa, respectively.
The stress of Layer L7 is slightly higher than that of Layer L8, indicating that Layer L7
contributes more to the axial load capacity than Layer L8, which is similar to the conclusion
presented in Section 3.1.
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Figure 15. Distribution of fiber-direction stresses of Layer L8. (a) From end section to midspan; (b) S1;
(c) S2.

Figure 16. Distribution of fiber-direction stresses of Layer L7. (a) Section S1; (b) Section S2.



J. Mar. Sci. Eng. 2023, 11, 586 17 of 21

Figure 17. The mean fiber-direction stresses of the spiral belts in the midspan sections of the outer
tensile reinforcement layers under the axial tensile loads.

Figure 18 illustrates the stress distribution in the midspan sections of the different
layers. The inner hoop layer was subjected to compressive stress along the fiber direction,
and the maximum and minimum values of the fiber-direction stress at the midspan section
are 20.8 and 18.3 MPa, respectively (see Figure 18a). Similarly, the hoop reinforcement
layer was subjected to compressive stress along the fiber direction, and the maximum and
minimum values of the fiber-direction stress at the midspan section are 18.1 and 13.8 MPa,
respectively (see Figure 18b). The inner hoop and hoop reinforcement layers are the main
carriers of radial load, and their filament winding angles are 80◦ and 86◦, respectively,
which are close to the circumferential direction of the pipe; thus the compressive stress
along the fiber direction reflects the radial compression of the pipe under axial tensile load.
The maximum axial stress at the midspan section of the liner and outer sheath are 2.99 and
3.37 MPa, respectively (see Figure 18c,d), which indicates that the contributions of the two
layers to the axial load capacity are limited.

3.4. Axial Tensile Stiffness of the Pipe

The axial displacement U3 of reference point RP1 of the numerical model was extracted
to obtain the axial load–strain relationship of the pipe, as shown in Figure 19; thus, the
axial tensile stiffness of the pipe can be obtained via linear fitting. Additionally, Equation
(18) was used to calculate the axial tensile stiffness of the pipe. In analytical model 1, the
radial compression of the pipe was considered; thus, νPE = 0.45. In analytical model 2, the
radial compression of the pipe was not considered; thus, νPE = 0 (Equation (18)).

The axial stiffnesses of the pipe obtained using analytical models 1 and 2 are 2.5% and
29.2% higher than that of the numerical model, respectively (see Table 6). This indicates that
the analytical model, which considers radial compression, yields more accurate results of
the axial tensile stiffness of the pipe, whereas the analytical model, which does not consider
radial compression, yields a much larger axial tensile stiffness.
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Figure 18. Distribution of stresses at midspan section of different layers. (a) Inner hoop layer; (b) hoop
reinforcement layer; (c) liner; (d) outer sheath.

Figure 19. Axial load–strain relationships of fiber-reinforced flexible pipe.
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Table 6. Axial tensile stiffness of fiber-reinforced flexible pipe obtained using different methods.

Models Tensile Stiffness (×105 kN) Errors (%)

Numerical 1.0985 –
Analytical 1 1.1262 2.5
Analytical 2 1.4192 29.2

4. Conclusions

In this study, the mechanical characteristics of a glass fiber-reinforced flexible pipe
under an axial tensile load were investigated using analytical, numerical, and experimental
methods. Based on the load–strain relationship of different layers, analytical equations
considering the anisotropy of the material and the effect of radial compression deformation
were derived to calculate the axial tensile stiffness of the pipe. A 3D numerical model was
established to simulate the axial tensile behavior of the pipe; thus, the distributions of strain
and stress in different layers and the axial displacement of the pipe were obtained. An
axial tensile test was performed to measure the fiber-direction strains of the multiple spiral
belts in two sections of the pipe. Based on a comparative analysis of the results of different
methods, the following conclusions were inferred:

1. The winding angle significantly affected the axial load capacity of the spiral belts in
the tensile reinforcement layers because the stiffness of GFRP is mainly provided by
fibers. A smaller winding angle is more conducive to the axial load capacity.

2. The errors between the results of the average fiber-direction strains of the outer
tensile reinforcement layer in Sections S1 and S2 by the numerical model and test are
insignificant, which indicates the high accuracy of the finite element model.

3. The distribution of the fiber-direction stress in Layer L8 is relatively uniform along
the axial and circumferential directions of the pipe, except for the regions near the end
sections. The inner hoop and hoop reinforcement layers are subjected to compressive
stress in the fiber direction, which indicates the radial compression effect of the pipe
under an axial tensile load.

4. The result of axial tensile stiffness calculated by the analytical model considering
radial compression is very close to that obtained by the numerical model; thus, the
accuracy of analytical model is proved.

In summary, the analytical model considering the radial compression of the pipe has
high accuracy in predicting the axial tensile stiffness of fiber-reinforced flexible pipes. The
finite element model can also provide accurate descriptions of the distribution characteris-
tics of strain and stress. Nevertheless, the analytical and numerical models proposed in
this study can only be used for the elastic deformation range of fiber-reinforced flexible
pipes. When the pipe is subjected to a larger axial tensile load, the spiral belts may rupture
or other damage may occur. In future studies, the ultimate strength of GFRP should be
considered such that the tensile failure behavior of fiber-reinforced flexible pipes can be
investigated.
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