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Abstract: The marine vertical centrifugal pump is an important piece of auxiliary equipment for
ships. Due to the complex operating conditions of marine equipment and the frequent swaying of the
hull, typical pump failures such as rotor misalignment, rotor unbalance and mechanical loosening
occur frequently, which seriously affect the service life of the marine vertical centrifugal pump. Based
on multi-domain characteristic parameters, a fault identification method combining weighted kernel
principal component analysis (WKPCA) and particle swarm optimization support vector machine
(PSO-SVM) is proposed in this paper. It can effectively solve the problem of multi-fault classification
of the centrifugal pump and provide reference for efficient maintenance of equipment. Firstly, a
vertical centrifugal pump test bench is set up to simulate typical faults. The collected original fault
data are denoised by Kalman filtering. Then, a multi-domain feature set composed of 20 feature
parameters was constructed. However, due to high dimension, data redundancy and calculation
time were increased. After dimensionality reduction, a fault feature set with 9 feature indexes was
established by combining with the WKPCA method. Finally, the PSO-SVM model is used to realize
multi-fault identification, and the recognition results of the traditional support vector machine and
the genetic algorithm support vector machine (GA-SVM) are compared to verify the diagnosis results
and classification performance of PSO-SVM. The results show that the accuracy of WKPCA and
PSO-SVM fault recognition methods based on multi-domain characteristic parameters is 1, and it has
good convergence.

Keywords: marine vertical centrifugal pump; multi-domain characteristic parameters; multi-fault
classification; weighted kernel principal component analysis; particle swarm optimization support
vector machine

1. Introduction

The marine vertical centrifugal pump is a key component of a ship pipeline system,
which is responsible for conveying a fluid working medium to maintain the normal opera-
tion of various parts of mechanical equipment. However, the ship’s swing, the vibration of
the operating equipment and the long-term operation under a certain load easily cause the
failure of the rotor components of the vertical centrifugal pump unit and reduce the service
life of the equipment [1–3]. Therefore, the establishment of multi-fault classification and
an identification method for the rotor fault and the mechanical loose fault of the marine
vertical centrifugal pump has become a research hotspot. It is also a technical means to
prevent the sudden failure of equipment and effectively improve the operating efficiency
and service life of equipment.

In recent years, the fault diagnosis of rotating machinery has developed from tradi-
tionally relying on expert experience to the intelligent fault identification based on machine
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learning [4]. The fault diagnosis process of the rotating machinery system generally in-
cludes three key stages: (1) Obtaining the original signal of equipment fault information
based on the field sensor. (2) Signal preprocessing and feature extraction are used to obtain
fault signal features. (3) The trained diagnostic model is used to diagnose and identify the
test samples [5]. In the industrial production scene, the data collected by the sensor usually
have the characteristics of not obvious features and noise interference. Therefore, it is very
important to mine signal characteristics and reduce noise in the rotating machinery fault
diagnosis [6]. Zhang et al. proposed an image representation fault diagnosis method based
on convolutional neural network (CNN) signal features, which overcomes the problem
that information cannot fully reflect the fault mode, and has been verified in rotor tests [7].
Shao et al. proposed a multi-domain convolutional neural network method based on deep
learning. Its features are composed of time domain and frequency domain characteristic
parameters, and make full use of the characteristics of the two domains for fault diagnosis.
The effectiveness of this method on the bearing data set is verified by a large number of ex-
periments [8]. Pang et al. proposed a deep learning fault diagnosis method, which extracts
features from time domain and frequency domain signals. Two sets of deep features in mul-
tiple domains are fused into intrinsic low-dimensional features. A lot of experiments on the
gearbox, rotor and engine bearing show that the method has better diagnostic performance
and stronger adaptability [9]. Sun et al. proposed a data-driven multi-wavelet denoising
technique, which has been successfully applied in weak feature extraction of minor faults in
bearing inner rings [10]. By product function selection and wavelet packet decomposition,
Lee et al. effectively removed the high-frequency noise, effectively extracted the fault
information hidden under the noise, and established a high-precision fault location feature
set of bearing roller [11]. Therefore, signal noise reduction is essential for feature extraction
of industrial production equipment fault signals, which is conducive to reflect the actual
state of equipment earlier, more accurately and more truly.

William proposed a zero-crossing feature parameter extraction method for the early
fault detection of rotating machinery [12]. In this method, zero-crossing characteristic
parameters are extracted from time-domain signals by using continuous zero-crossing
time intervals. When the data dimension is high, the direct use of machine learning for
data classification will cause a long computing time, and the classification performance
cannot be achieved. To solve these problems, kernel principal component analysis has
advantages in dimensionality reduction. According to the eigenvalue of the kernel matrix,
the kernel function weight is formed, and the data dimension is reduced by combining
multiple kernel functions [13,14]. Du et al. proposed wavelet packet decomposition (WPD)
and high-order cumulant to extract features from bearing failure vibration signals, and
combined them with principal component analysis (PCA) to reduce the redundancy of
feature data [15]. Shen et al. proposed a feature selection method based on the polling
mode and the weighted kernel principal component analysis (WKPCA) method. Finally,
this method can adaptively classify highly sensitive features with more fault information
of rotating components, improving the separability of the fault sample subset [16]. In order
to identify the fault state of centrifugal pump effectively, it is important to construct the
feature space with the optimal dimension to improve the recognition ability.

Machine learning is an effective method of equipment fault diagnosis, and the accuracy
of classification recognition can be used as a typical basis to judge the diagnosis model.
Support vector machine (SVM) is a machine learning method widely studied by scholars.
When combined with other intelligent algorithms, SVM can realize high-precision fault
identification under limited fault samples [17]. Huang et al. proposed an SVM model based
on the optimized genetic algorithm, which successfully identified the faults of the operating
mechanism such as the loosening of the foundation screw and the failure of the buffer
spring. Compared with traditional SVM, it has higher recognition accuracy [18]. The SVM
classifier optimized by grid search technology can effectively identify the running state of
centrifugal pumps [19]. Maamar uses wavelet packet transform for feature extraction at
multiple decomposition levels, and studies two parent wavelets to verify the effectiveness of



J. Mar. Sci. Eng. 2023, 11, 551 3 of 18

feature extraction. At the same time, a genetic algorithm was used to optimize the number
of hidden layers and multilayer perceptual neurons, and the hybrid training method a
combining genetic algorithm and a BP algorithm was applied to the fault classification
of the centrifugal pump [20]. Rotating machinery fault diagnosis technology is usually
proposed for a single fault. But compound failures of rotating machinery occur more
frequently [21–23]. Liu proposed a hybrid intelligent model based on redundant second-
generation wavelet packet transform, kernel principal component analysis and dual support
vector machines to realize multi-fault detection of the rotating machinery. Experimental
results have proved the effectiveness of this method [24]. Tang et al. proposed a particle
swarm optimization support vector machine (PSO-SVM) multi-fault diagnosis method
based on information fusion, and the accuracy distribution of this method for normal state,
single fault mode and multi-fault mode can reach 98.3%, 97.6% and 94% [25]. Therefore,
combining an intelligent algorithm to optimize the kernel function and penalty parameters
in traditional SVM is an effective way to improve its fault recognition accuracy.

In the study of rotating machinery fault diagnosis, the above literature mainly consid-
ered the signal noise reduction ability of the diagnosis algorithm, the feature set screening
of the optimal dimension and the fault recognition accuracy, but ignored the sensitivity
of signals at different measuring points of the equipment to fault characteristics and the
characterization ability of multi-domain signal features of a single measuring point. Due
to the characteristics of marine vertical centrifugal pump, including complex structure,
variable operating conditions, rotor dynamics and fluid dynamics and other factors, dif-
ferent measuring points have different sensitivity to fault characteristics. The limitation
of single feature representation is an important factor affecting the diagnostic accuracy.
This paper takes the marine vertical centrifugal pump as the research object to solve the
problems of uncertainty of the fault signal, limitation of single feature representation and
poor classification and identification effect of multiple faults. In this paper, the fault simula-
tion test platform and data acquisition system of the Marine vertical centrifugal pump are
built. The test point with the highest sensitivity to fault characteristics is selected from six
typical test points of the Marine vertical centrifugal pump. Secondly, the multi-domain and
multi-type feature parameter set is established, and the feature set dimension is reduced
by the WKPCA method, which effectively solves the aliasing phenomenon of various
fault features. Finally, the optimal parameters are selected based on the PSO algorithm to
improve the performance of the support vector machine model in the classification and
identification of multiple faults of Marine vertical centrifugal pumps.

2. Typical Fault Simulation Test System
2.1. Test Bench

In order to study the sensitivity of a typical fault signal of the vertical centrifugal
pump and provide data support for fault signal feature extraction and an established
diagnosis model, a vertical centrifugal pump fault simulation test-bed is built according to
the requirement specified in GB/T 29531-2013 pump vibration measurement and evaluation
methods, as shown in Figure 1.

The test model pump adopts a single-stage single-suction vertical centrifugal pump,
and the main design parameters are: specific speed ns is 67.09, rated flow Qd is 100 m3/h,
rated speed n is 2950 rpm. The test speed ratio n’/n is 0.8, that is, the impeller speed
is 2360 rpm and the axial passing frequency (1f APF) is 39.33 Hz. The arrangement of
measuring points of the vertical centrifugal pump sensor is shown in Figure 2. Table 1
shows the number information of sensor measuring points.
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Figure 2. Physical layout of sensor measuring points.

Table 1. Sensor measuring point number information table.

Number of
Measuring Point M1 M2 M3 M4 M5 M6

Location of
measuring point Motor bracket Pump shaft

surface
Pump outlet

flange
Pump inlet

flange Pump body Machine foot

Signal of
measuring point

Vibration
acceleration

Displacement
in XY direction

Vibration
acceleration

Vibration
acceleration

Vibration
acceleration

Vibration
acceleration

The data acquisition system of the test-bed adopts an INV3020 Series high-performance
24 bit sampling instrument, with sampling frequency of 25.6 kHz and sampling time of
30 s. The data acquisition and signal processing software is the supporting software DASP
V10 engineering version of the system. The test sensor adopts INV9822 IEPE uniaxial
acceleration sensor and LD980-Y integrated eddy current displacement sensor.
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2.2. Fault Simulation Scheme

The typical fault of the vertical centrifugal pump is reproduced in the form of manual
fault simulation. After one typical fault test is completed, the next typical fault simulation
can be carried out after returning to the original state. The three typical fault simulation
parameters are shown in Table 2.

Table 2. Parameters of fault simulation.

Fault Type Position Fault Quantity

Rotor unbalance Coupling at pump shaft end The unbalance quantity is 15 g
Rotor misalignment Motor shaft and pump shaft Comprehensive misalignment

Mechanical looseness Base machine foot The number of loosened bolts is one

2.3. Signal Sensitivity Analysis

Vibration intensity is a comprehensive and effective characteristic quantity reflecting
the vibration state of the centrifugal pump. It is widely used in the research of vibration
monitoring and the condition evaluation of rotating machinery. The vibration intensity is
the root mean square of the vibration speed of the centrifugal pump and reflects the total
vibration energy of each harmonic energy [26]. The signal measured in the test is a discrete
signal, and its expression is:

Vims =

√√√√ 1
N

N−1

∑
n=0

v2(n) (1)

where, N is the total number of discrete signals; v(n) is the nth discrete speed signal. Using
the discrete Fourier Transform Theory, the expression of the signal in the frequency domain
X(k) can be obtained:

X(k) =
N−1

∑
n=0

x(n)e−j2nkπ/N , k = 0, 1, · · ·, N (2)

where, x(n) is the measured N-point vibration signal. The single side amplitude spectrum
Ak and harmonic frequency of signal fk are obtained as follows:

Ak =
2
N
|X(k)|, k = 0, 1, · · ·, N

2
(3)

fk =
k fs

N
, k = 0, 1, · · ·, N

2
(4)

If it is a vibration displacement signal, the unit is mm, then the vibration intensity
within the frequency range fa ∼ fb is:

Vmss =
2
√

2π fs

N2

√√√√ kb

∑
k=ka

(k|X(K)|)
2

(5)

If it is a vibration acceleration signal, the unit is mm/s2, then the vibration intensity
within the frequency range fa ∼ fb is:

Vmsa =
1√

2π fs

√√√√ kb

∑
k=ka

(
|X(k)|

k

)2

(6)

where, fs is the signal sampling frequency; ka is the smallest integer greater than N fa/ fs;
kb is the maximum integer greater than N fb/ fs.
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The average value of five groups of data is selected to calculate the vibration intensity
of the signal at each measuring point under the four states of normal, rotor unbalance,
rotor misalignment and mechanical looseness of the vertical centrifugal pump, as shown
in Figure 3. It can be seen from the figure that the M2 signal at the measuring point is the
most sensitive to the rotor unbalance and misalignment, and its vibration intensity is 53.9%
and 65.3% higher than under normal conditions. The M6 signal of the measuring point
is the highest sensitivity of the mechanical loosening state, and its vibration intensity is
increased by 73.6%. Therefore, M2 and M6 measuring points can better reflect the typical
fault characteristic information of the vertical centrifugal pump and will also be used as
the measuring point signal source for algorithm verification.
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3. Feature Extraction
3.1. Signal Preprocessing

The implementation process of Kalman Filter is to predict the current value by using
the optimal result of the previous time, and modify the predicted current by using the
measured value to finally obtain the optimal result. Its calculation formula is:

x̂t = x̂−t + Kt(zt − Hx̂−t ) (7)

Kt = P−t HT(HP−t HT + R)
−1

(8)

P−t = FPt−1FT + Q (9)

where, x̂t is the optimal result; x̂−t is the predicted current value; zt is the measured value;
Kt is Kalman gain; P−t is the covariance of the predicted value [27,28].

3.2. Weighted Kernel Principal Component Analysis (WKPCA)

In order to realize the rapid screening of nonlinear characteristic parameters and
eliminate the influence of irrelevant factors on pattern recognition, the Kernel Principal
Component Analysis (KPCA) method is used to standardize and reduce the dimension of
the characteristic matrix.

Standardize the original fault data with the number of characteristic parameters s and
the number of samples k, and the calculation formula is as follows:

∗
xsk =

xsk − xk√
var(xk)

(s = 1, 2, · · ·, n; k = 1, 2, · · ·, p) (10)
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where, xk =
1
n

n
∑
1

xsk.

Select kernel function K to map matrix X to high-dimensional matrix C, and calculate
the sample correlation coefficient matrix:

rsk =
1

n− 1

n

∑
t=1

xtsxtk(s, k = 1, 2, · · ·, p) (11)

The Jacobian method is used to solve the eigenvalues (λ1, λ2, · · ·, λp) and correspond-
ing eigenvectors ai = (ai1, ai2, · · ·, aip), i = 1, 2, · · ·, p of the correlation coefficient matrix R.
The calculation formula of the characteristic contribution rate is as follows:

Pλ(i) =
λi

p
∑

i=1
λi

(12)

According to the principle that the contribution rate of characteristic parameters is
sorted from high to low and the index is greater than 0.85, the first m eigenvectors of the
contribution rate are taken to form an eigenvalue matrix with s eigenvalues reduced into m
principal elements [29].

3.3. Establishing Feature Set

The filtering noise reduction method eliminates and suppresses the influence of ran-
dom noise components on signal feature extraction to a certain extent. The vibration
signal of vertical centrifugal pump has nonlinear and unsteady characteristics. In order
to improve the adaptability of multi-resolution analysis of vibration signal. The original
signal is adaptively decomposed to obtain intrinsic mode functions (IMF) components
at different characteristic time scales, so that the decomposed components have a single
eigenfrequency, and the linearization and smoothing of the original signal are realized [30].

Taking the vibration displacement data of measuring point M2 in the rotor misalign-
ment fault test as an example, the empirical mode decomposition (EMD) results are shown
in Figure 4. It can be seen from the figure that the waveforms of the IMF4 and IMF5 are all
approximate sinusoidal waves with period 2π, and according to the corresponding spectral
diagram, obvious amplitude characteristics appear at 1f APF and 2f APF. The time-domain
waveform data of IMF4 and IMF5 are extracted for signal reconstruction analysis, and the
results are shown in Figure 5.

By observing the time-domain waveform of the reconstructed signal, it can be found
that the time-domain waveform presents the characteristics of a sine wave, and there
are depressions and double peaks at the peak. This is the main time-domain feature of
the dual frequency rotation component in the corresponding frequency-domain diagram.
By Fourier transform, it can be further found that the main frequency of the signal is
1f APF, accompanied by a secondary frequency of 2f APF, which accords with the spectrum
characteristics of the rotor misalignment fault.

The vibration characteristics are different due to different faults. The number and order
of the IMF component are also different. For example, the IMF5 component is selected to
reconstruct the unbalanced rotor fault signal after decomposition. The time-domain signal
of the IMF5 component presents a sinusoidal function with a period 2π. After mechanical
loosening fault signal decomposition, IMF2, IMF5 and IMF6 components were selected for
reconstruction. In order to cover different fault characteristic information, the first six IMF
components after EMD decomposition are selected as the characteristic parameters in the
time-frequency domain.
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The characteristic energy is calculated as follows:

Ei =
∫ +∞

−∞
|ci(t)|

2
dt (13)

An eigenvector matrix is constructed by taking the energy characteristic of the first six
IMF components decomposed as elements:

T = [E1 E2 E3 E4 E5 E6] (14)
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Normalization:

E =

(
6

∑
i=1
|Ei|2

) 1
2

(15)

The normalized energy characteristic matrix is obtained:

T′ = [E1/E E2/E . . . E6/E] (16)

The four operating states of normal, rotor unbalanced, rotor misalignment and me-
chanical looseness have different characteristics. In order to avoid the limitation of fault
trend analysis caused by a single characteristic parameter or a single type characteristic
parameter, a multi-domain and multi-class fault feature extraction method is used to form
a fault feature set. The characteristic indexes include 10 time-domain indexes, 4 frequency-
domain indexes and 6 time-frequency domain energy characteristic indexes, as shown in
Table 3.

Table 3. Signal characteristic index information table.

Name Symbol Formula Name Symbol Formula

Mean Pt1

N
∑

n=1
x(n)

N
Mean frequency pf1

m
∑

i=1
U(i)

m

Kurtosis Pt2

N
∑

n=1
(x(n)−pt1)

4

Npt54

Center of gravity
frequency pf2

m
∑

i=1
fi×U(i)

m
∑

i=1
U(i)

Peak Pt3 max(|x(n)|) Root mean square
frequency Pf3

√√√√√ m
∑

i=1
( fi)

2×U(i)

m
∑

i=1
U(i)

Variance Pt4

N
∑

n=1
(x(n)−pt1)

2

N

Frequency
standard deviation Pf4

√
m
∑

i=1
( fi−p f 2)

2×U(i)

m

Harmonic mean Pt5

√
1
N

N
∑

n=1
(x(n))

2
IMF component 1 E1

∫ +∞
−∞ |c1(t)|

2
dt

Waveform index Pt6
pt5
pt1

IMF component 2 E2
∫ +∞
−∞ |c2(t)|

2
dt

Pulse index Pt7
pt3

1
N

N
∑

n=1
|x(n)|

IMF component 3 E3
∫ +∞
−∞ |c3(t)|

2
dt

Peak index Pt8
pt3
pt5

IMF component 4 E4
∫ +∞
−∞ |c4(t)|

2
dt

Margin index Pt9
pt3(

1
N

N
∑

n=1

√
|x(n)|

)2 IMF component 5 E5
∫ +∞
−∞ |c5(t)|

2
dt

Skewness index Pt10
pt3

1
N

√
N
∑

n=1
|x(n)|2

IMF component 6 E6
∫ +∞
−∞ |c6(t)|

2
dt

According to the above table, a multi-domain and multi-type feature sample library
is constructed for signals collected under four typical conditions of the marine vertical
centrifugal pump, and a single fault sample contains 100 feature matrices. According to the
needs of model training and verification, this paper divides the single fault sample library
into training set and test set according to the ratio of 5:5. A total of 50 samples were selected
to build a training set for training the diagnostic model, and 50 samples were selected to
build a test set for verifying the fault classification and recognition effect of the diagnostic
model. At the same time, labels are configured for four typical states of the Marine vertical
centrifugal pump, which are used for training and verification of the diagnostic model.
Table 4 describes the fault sample database classification and label configuration.



J. Mar. Sci. Eng. 2023, 11, 551 10 of 18

Table 4. Fault sample database classification and label configuration.

Fault Category Training Sample (PCS) Test Sample (PCS) Sample Label

Normal 50 50 1
Rotor unbalance 50 50 2

Rotor misalignment 50 50 3
Mechanical looseness 50 50 4

Total 200 200 -

3.4. Data Dimensionality Reduction

Due to the rich variety of original signal feature parameters, the correlation between
parameters results in information redundancy. In order to avoid aliasing between different
faulty core principal components, the problem of information redundancy is reduced or
eliminated. The original high-dimensional fault features are dimensionally reduced, and
the weight index size of each feature parameter in the original fault feature set is calculated,
as shown in Figure 6.
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Figure 6. Weight distribution of original feature parameters.

It can be seen from the graph analysis that the original 20 characteristic parameters
are subjected to dimensionality reduction processing, and the 9 characteristic parameters
that meet the conditions are Mean, Kurtosis, Peak, Harmonic Mean, Mean Frequency, E1,
E2, E5, E6 respectively. The weight values are 0.21515, 0.2938, 0.317025, 0.35055, 0.109925,
0.319, 0.1441, 0.114, 0.1457. The feature matrix composed of 9 feature parameters is used as
the target feature set for fault classification.

3.5. Feature Extraction Result

The distribution of the four operating state feature parameters kernel key element
feature points obtained by the KPCA method is relatively concentrated. Among them,
the core principal element feature points of mechanical loosening faults are relatively
concentrated; that is, the intra-class spacing is small, and it is clearly distinguished from
the principal element feature points in the normal state; that is, the inter-class spacing is
obvious, and the distinguishing effect is good. However, the feature points of the two
types of faults of rotor unbalance and rotor misalignment overlap with each other, and it is
impossible to completely distinguish the core feature points of normal operating conditions
and mechanical loose faults. The fault principal components extracted by the feature
dimension reduction of KPCA have obvious aliasing, which cannot fully achieve the effect
of classifying multiple faults of centrifugal pumps, as shown in Figure 7a. The WKPCA is
an extension of the general KPCA method. Its basic idea is to strengthen the role of some
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fault features on fault classification by weighting each data feature in the data set. The
two-dimensional distribution is shown in Figure 7b. The core principal element feature
points of the four types of working conditions can be clearly distinguished, the distance
between classes is obvious, and the discrimination degree of multiple fault categories is
good.
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It can be seen from the figure that compared with the feature parameter kernel pivot
feature point extraction method of KPCA, the intra-class spacing of the kernel pivot feature
points of the four operating states extracted by the WKPCA method is smaller. The inter-
class spacing is larger. Accurate classification of kernel key element feature points in four
operating states is achieved.

4. Diagnostic Algorithm
4.1. Support Vector Machines

Support vector machine based on statistical theory has obvious advantages in small
sample, nonlinear and high-dimensional classification and recognition, and can achieve
high fault classification performance. Its general form can be expressed as follows:

min
w,b,ξ

(
1
2 wTw + C

n
∑

i=1
ξi

)
yi(wTxi + b) ≥ 1− ξi
ξi ≥ 0
i = 1, . . . , n

(17)

where, C is the penalty factor of SVM; ξi is the relaxation variable; xi is the fault characteristic
sample; yi is the sample label. Radial basis function (RBF) is adopted as the kernel function,
which can overcome the complexity of inner product operation in high-dimensional feature
space. Its kernel function expression is:

K
(

xi, xj
)
= exp

(
−g
∥∥xi − xj

∥∥2
)

(18)

where, xi is the fault characteristic sample; g is a kernel function.
The selection of RBF kernel parameter g and SVM penalty parameter C ultimately

affects the sample training and test results, which easily to causes the SVM classification
results to fall into local optimization, affecting the accuracy of fault identification. Therefore,
PSO is used to optimize the kernel parameter g and penalty parameter C [31,32].
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4.2. Particle Swarm Optimization

In a D-dimensional target search space, N Particles form a community, in which the ith

particle is represented as a D-dimensional vector:

Xi = (xi1, xi2, . . . , xiD), i = 1, 2, . . . , N (19)

The optimization speed of the ith particle is also a D-dimensional vector, expressed as:

Vi = (vi1, vi2, . . . , viD), i = 1, 2, . . . , N (20)

Particle velocity and position updates can be expressed as:{
vij

t+1 = ωvij
t + c1r1

t
(

pt
ij − xt

ij

)
+ c2r2

t
(

pt
gj − xt

ij

)
xt+1

ij = xt
ij + vt+1

ij

(21)

where, vt+1
ij , xt+1

ij are the velocity vector and position vector on the j dimension after the

t + 1 iteration of the ith particle, respectively; ω is the inertia weight that decreases linearly;
c1, c2 are individual learning coefficient and global learning coefficient, respectively; r1, r2
are independent random numbers of [0,1]; pij is the current optimal position of the ith

particle; pgj is the current optimal position of the whole group [33,34].
In summary, the steps of feature extraction and the multi-fault identification method

of the marine vertical centrifugal pump based on WKPCA and PSO-SVM are as follows:
(1) Collect original data. A fault simulation test system is built, and the original data

with high sensitivity are selected based on vibration intensity. The signal is denoised by
Kalman filter.

(2) Extract signal features. Multi-domain and multi-type feature parameters are
extracted, the feature matrix is normalized and dimensionality reduced, and the feature
parameters are weighted based on the ReliefF algorithm. WKPCA is used to achieve
accurate classification of the four fault states.

(3) Establish fault samples. 100 groups of samples are selected for each fault state,
which are divided into 50 groups of training set and 50 groups of test set. Label different
fault samples.

(4) Select kernel function. In order to select the appropriate kernel function, RBF kernel
function with strong learning ability and generalization ability is selected as the mapping
function of the model.

(5) Optimize parameters. For the selected mapping function, based on the existing
fault feature set data samples, particle swarm optimization algorithm is selected to globally
optimize the penalty factor C and kernel function g parameter values of SVM.

(6) Fault classification based on PSO-SVM recognition model. The obtained training
set and test set are input into the recognition model respectively to analyze the effect of
fault classification.

The flow of feature extraction and the fault classification model based on WKPCA and
PSO-SVM algorithm is shown in Figure 8.
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5. Results and Discussion

In order to further explore the contribution of multi-domain and multi-type charac-
teristic parameters to the classification and recognition of multiple faults of the marine
vertical centrifugal pump, the multi-domain and multi-type characteristic parameters es-
tablished in Chapter 3 are divided into a single domain, two domains and three domains.
A single domain is divided into three cases, including 4 features in the time domain (T),
1 feature in the frequency domain (F), and 4 features in the time-frequency domain (TF).
The two domains are divided into three cases, including 5 features of the time domain
and frequency domain (T + F), 8 features of the time domain and time frequency domain
(T + TF), and 5 features of the frequency domain and time frequency domain (F + TF). The
three domains contain 9 features of the time domain, frequency domain and time frequency
domain (T + F + TF). The seven categories were used as input of the PSO-SVM model for
multi-fault classification identification, and the results are shown in Table 5.

Table 5. Influence of different characteristic parameters on classification of PSO-SVM model.

Characteristic
Parameter

Single Domain Two Domains Three Domains
T F TF T + F T + TF F + TF T + F + TF

Accuracy 0.85 0.69 0.87 0.89 0.95 0.92 1
F-1 score 0.91 0.73 0.93 0.94 0.97 0.96 1

As can be seen from Table 5, when a single domain is the input feature of the model,
the average classification accuracy of the feature parameters of the three domains is 0.8.
The average accuracy of classification in two domains is 0.92. The classification accuracy
reaches 1 in three domains. At the same time, F-1 score is an indicator of the accuracy of the
binary model. It can be regarded as a weighted average of model accuracy and recall rates.
The average F-1 score of a single domain is 0.86; The average F-1 score of the two domains
is 0.96; The F-1 score for all three domains is 1. When measured by classification accuracy
and F-1 score, the classification performance of the PSO-SVM model is improved with the
increase of the number of domains. It can be seen that the establishment of multi-domain
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and multi-type characteristic parameters has a positive contribution to the multi-fault
classification of the marine vertical centrifugal pump.

The parameters of the SVM model are optimized based on the PSO optimization
algorithm, and the diagnostic classification results are shown in Figure 9. It can be seen from
the figure that the fitness value of the PSO algorithm reaches the maximum convergence
accuracy of 98.8% in the 11th generation. It is obtained that the optimal solution of penalty
parameter C is 56.22, and the optimal solution of kernel parameter g is 0.81. The accuracy of
fault classification based on the PSO-SVM model has reached 1; that is, the four operating
states have been accurately classified. Thus, it is verified that the proposed fault pattern
recognition model has strong learning generalization ability.
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Figure 9. The test results based on PSO-SVM model. (a) The classification results (b) The fitness
change curve.

In order to further verify the advantages of the proposed parameter optimization
and pattern recognition algorithm in the multi-fault classification of the marine vertical
centrifugal pump, 200 groups of test samples composed of four fault data sets are classified
and compared with the traditional SVM model and GA-SVM model, respectively. The final
classification performance is shown in Figures 10 and 11, and the data comparison results
are shown in Table 6.
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Table 6. Comparison of classification performance of three fault pattern recognition models.

Fault Type Normal Rotor Unbalance Rotor Misalignment Mechanical Looseness Total

SVM
Exact quantity 40 38 37 50 165

Accuracy 0.8 0.76 0.74 1 0.83
F-1 score 0.89 0.86 0.85 1 0.9

GA-SVM
Exact quantity 44 48 50 50 192

Accuracy 0.88 0.96 1 1 0.96
F-1 score 0.94 0.98 1 1 0.98

PSO-SVM
Exact quantity 50 50 50 50 200

Accuracy 1 1 1 1 1
F-1 score 1 1 1 1 1

It can be found from Table 6 that the classification accuracy of test samples based
on the traditional SVM model is only 0.83, and that the accuracy of those based on the
GA-SVM model is 0.96. The classification accuracy of 200 groups of test samples based
on the PSO-SVM recognition model is 1, the fitness is 98.8%, and the convergence speed
is the fastest. The classification performance of the PSO-SVM model on test samples is
significantly better than that of traditional SVM and GA-SVM models. The F-1 score based
on the PSO-SVM model reached 1, which is higher than the both of the other models. The
superiority of the proposed PSO-SVM algorithm in multi-fault classification of vertical
centrifugal pumps is comprehensively verified.

6. Conclusions

Multi-fault identification of the Marine vertical centrifugal pump has been carried out
by comprehensive testing and algorithm recognition research. The main contributions and
future prospects of this work are summarized as follows:

(1) The multi-fault simulation test system of the marine vertical centrifugal pump is
established. The vibration data of 6 measuring points were obtained. Taking vibration
intensity as the comprehensive evaluation index, the detection point with the highest
sensitivity of fault characteristics is selected. It greatly simplifies the auxiliary parts of
the cabin piping system and improves the reliability of the detection system.

(2) A multi-domain and multi-category fault feature set with 20 feature indexes is estab-
lished. Combined with the WKPCA method, the feature set was reduced in dimension,



J. Mar. Sci. Eng. 2023, 11, 551 16 of 18

and 9 multi-domain and multi-class feature indexes were selected to realize feature
extraction of four operating states of the Marine vertical centrifugal pump. It is proved
that the multi-domain multi-class feature set is effective to improve the classification
performance of the model.

(3) The optimal penalty parameter C and kernel parameter g in the SVM model are
obtained by using the PSO optimization algorithm, which successfully realizes the
classification and recognition of multiple faults. At the same time, the traditional SVM
model and GA-SVM model are compared to verify the advantages of the PSO-SVM
model. The results show that this model has higher classification and recognition
accuracy and faster convergence speed.

(4) Based on the research in this paper, it is imperative to carry out health diagnostics for
the marine auxiliary equipment in the future. The application includes data cleaning,
transfer learning, digital-analog linkage and so on.
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Nomenclature

CNN convolutional neural network
EMD empirical mode decomposition
f APF axial passing frequency
f BPF blade passing frequency
F frequency domain
GA-SVM genetic algorithm support vector machine
IMF intrinsic mode functions
KPCA kernel principal component analysis
PCA principal component analysis
PSO-SVM particle swarm optimization support vector machine
RBF radial basis function
SVM support vector machine
T time domain
TF time-frequency domain
WKPCA weighted kernel principal component analysis
WPD wavelet packet decomposition
E1 IMF component 1
E2 IMF component 2
E3 IMF component 3
E4 IMF component 4
E5 IMF component 5
E6 IMF component 6
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Ei characteristic energy
Kt kalman gain

K
(

xi, xj

)
kernel function

ns specific speed
n rated speed (rpm)
n’/n speed ratio
Pf1 mean frequency
Pf2 center of gravity frequency
Pf3 root mean square frequency
Pf4 frequency standard deviation
Pt1 mean
Pt2 kurtosis
Pt3 peak
Pt4 variance
Pt5 harmonic mean
Pt6 waveform index
Pt7 pulse index
Pt8 peak index
Pt9 margin index
Pt10 skewness index
P−t predicted value covariance
Pλ(i) characteristic contribution rate
Qd rated flow (m3/h)
rsk sample correlation coefficient matrix
vt+1

ij velocity vector on the j dimension after the t+1 iteration of the ith particle
Vims discrete vibration signal
Vmsa vibration intensity of vibration acceleration signal
Vmss vibration intensity of vibration displacement signal
xt+1

ij position vector on the j dimension after the t+1 iteration of the ith particle
∗

xsk standardization of raw fault data
x̂t optimal result of kalman filter
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