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Abstract: This study presents the results of economic and environmental analysis for two types of
zero-emission ships (ZESs) that are receiving more attention to meet strengthened environmental
regulations. One of the two types of ZES is the ZES using only the energy storage system (All-ESS),
and the other is the ZES with fuel cell and ESS hybrid system (FC–ESS). The target ship is a tug
operating in South Korea, and the main parameters are based on the specific circumstances of South
Korea. The optimal capacity of the ESS for each proposed system is determined using an optimization
tool. The total cost for a ship’s lifetime is calculated using economic analysis. The greenhouse gas
(GHG) emission for the fuel’s lifecycle (well-to-wake) is calculated using environmental analysis.
The results reveal that the proposed ZESs are 1.7–3.4 times more expensive than the conventional
marine gas oil (MGO)-fueled ship; however, it could be reduced by 1.3–2.4 times if the carbon price is
considered. The proposed ZESs have 58.7–74.3% lower lifecycle GHG emissions than the one from
the conventional ship. The results also highlight that the electricity- or hydrogen-based ZESs should
reduce GHG emissions from the upstream phase (well-to-tank) to realize genuine ZESs.

Keywords: zero-emission ship (ZES); fuel cell (FC); energy storage system (ESS); greenhouse gas
(GHG); well-to-wake (WtW); economic and environmental analysis; optimal capacity; total cost

1. Introduction

Harmful emissions from ships cause significant health and environmental problems,
particularly for inhabitants near ports and coastal areas. One of the most representative
regulations for this environmental issue is in emission control areas (ECAs), where ships
must comply with more stringent air quality standards designated by the International
Maritime Organization (IMO).

Numerous countries are strengthening their domestic environmental regulations to
comply with international standards. For example, South Korea’s Ministry of Oceans
and Fisheries (MOF) declared a Korean version of the ECA that limits sulfur emissions
to 0.1% m/m (mass by mass) for all ships anchored in major ports in South Korea as of
1 January 2022. In addition, the Korean government officially announced its green ship
strategy named the “2030 Green Ship-K Promotion Strategy” in December 2020 to achieve
carbon neutrality in the shipping industry [1].

In order to respond to these environmental policies in the marine sector, most ship
owners have tried to utilize low-carbon fuel or exhaust gas after-treatment devices for
their ships as a short-term measure. However, all ships should ultimately be converted
to zero-emission ships (ZESs) in the long run. Significantly, the tugs (tugboats), which
help maneuver other large ships to nearby ports, emit a large amount of greenhouse gas
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(GHG) emissions while maneuvering and are the largest contributor among inland ships [2].
Therefore, it is regarded as needing to be converted to a ZES urgently.

For a ZES, renewable energy sources (solar or wind energy) are not preferred as the
onboard power source due to their highly weather-dependent characteristics. Since weather
can change quickly and unpredictably, their power could not supply continuously and
stably. Moreover, while they require a large installation volume, a tug possesses a limited
space in which only optimized and compact equipment would fit.

In the meanwhile, according to references [3,4], oil fuels will fade out, and ammonia,
hydrogen, and biofuels are taking the lion’s share for ocean-going vessels with efforts to
employ such fuels in internal combustion engines (ICE). However, in the short-sea segment
(such as tugs, offshore, and passenger ships/ferries), fuel cells and energy storage systems
(ESSs) represent promising power sources [5] because of the shorter voyage time and
smaller power demands than ocean-going ships.

In the past, in most cases, ESSs with small capacity have been used for a peak load
or transient load supply to overcome the oversized main engine capacity problems [6].
Recently, however, large-capacity of ESS has become the main power source for tugs due to
technological development. Combined with ESS, fuel cells (FCs) have also been adopted as
the main power source to extend the voyage distance for ships.

A lifetime cost analysis is required to determine the optimal power system among
various options when applying these alternative FC or ESS power sources to a ship. In
addition, for an alternative power system, its fuel’s lifecycle GHG emissions are becoming
more prominent because the alternative fuel (e.g., hydrogen, electricity) is primarily laid in
the upstream phase [7]. Therefore, this study provides new insights into alternative power
systems’ long-term economic and environmental impacts.

The remainder of this paper is organized as follows: Section 2 presents a relevant
literature review. Section 3 describes the target ship and its conventional power systems.
Section 4 presents the lifecycle emission factors of hydrogen and electricity based on the
long-term policies of the Korean government. Section 5 introduces the two proposed zero-
emission systems with formulations for economic and environmental analyses. Section 6
presents the analysis results, and finally, Section 7 presents the concluding remarks.

2. Literature Review

With the current trend of adopting greener technologies in the maritime industry, the
economic and environmental impacts of FC- or ESS-powered tugs have been investigated
over the past decades.

Kumar et al. [8] suggested a tug with a generator–flywheel hybrid system to reduce fuel
consumption. They reported that adopting the 50 kWh flywheel offers a 25.6% reduction in
fuel consumption compared with the conventional generator-only power system. Yuan
et al. [9] introduced a power management control strategy for a generator–battery hybrid
system for a tug. The proposed power management strategy promises a 17.6% reduction in
fuel consumption compared with the conventional strategy.

Shiraishi et al. [10] introduced Japan’s first hybrid tug (TSUBASA), which uses two
shaft generators (S/G), two diesel generators, and two sets of lithium-ion batteries. It
achieves a 20% reduction in carbon dioxide (CO2) emissions compared with the conven-
tional tug.

Additionally, C. Mulder and M. Mulligan [11] employed a hybrid power system for
tugs. For normal low-power operations, the FC and ESS were operated in parallel; however,
for infrequent high-power operations, they were combined with a single diesel generator
to obtain a boost power supply. Reportedly, the hybrid tug could reduce emissions by 67%
compared with the conventional tug.

As presented in Table 1, various trials have been conducted to develop zero- or low-
emission tugs using FC or ESS. The hybridization of the FC and ESS is believed to be
very promising in the shipping industry because they can compensate for each other’s
shortcomings. First, the ESS can supply the cold-up starting power for the FC. Additionally,
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the ESS has a faster response performance than FC. For the FC, the frequent changing load
conditions are the main reason leading to its life attenuation due to the difficulties of water
management and insufficient supply of reactive gases [12]. By contrast, the ESS’s size is
limited in a tug’s smaller space, hindering the long-distance voyage [13]. As a solution to
this, when FC is used together, it can extend the ships’ voyage distance because FC is an
energy converter rather than an energy storage device.

Table 1. List of low- or zero-emission tugs using FC/ESS power.

No. Project Name /Owner Ship Name Bollard
Full (ton)

Power System
Configuration

Power Source Capacity
Country Built

Year Ref.G/E
(kW) FC (kW) ESS (kWh)

1 Foss Maritime
Company 1

Carolyn
Dorothy 58 Generator + ESS 620 - 0.3 U.S. 2009 [14,15]

2 E-KOTUG 1 RT Adriaan 84 Generator + ESS - - 117 Netherlands 2012 [16]

3 NYK Bulk &
Projects Carrier Ltd. 1 Tsubasa 55 Generator + ESS 800 - 300 Japan 2013 [10]

4 Luleå Hamn AB 1 Vilja 100 Generator + ESS Unknown - 600 Sweden 2019 [17,18]

5 GISAS Shipbuilding
Industry Gisas Power 32 All-ESS - - 2900 Turkey 2020 [19,20]

6 ELEKTRA project Elektra - FC + ESS - 300 2500 Germany 2021 [21,22]

7 Lianyungang Port
Holding Group

Yungang
Electric No. 1 - All-ESS - - 5000 China 2021 [23]

8 Sembcorp Marine - 65 M/E + ESS - - 904 Singapore 2021 [24]
9 Ports of Auckland Sparky 70 All-ESS - - 2784 New Zealand 2021 [25]
10 e5 Tug/Tokyo Kisen Taiga 50 Generator + ESS Unknown - Unknown Japan 2022 [26]

11 Crowley eWolf 70 All-ESS - - 6000 U.S. (expected)
2023 [27]

12 HaiSea Marine Unknown 70 All-ESS - - 5240 Canada (expected)
2023 [28]

13 Svitzer (Maersk) Unknown 80 FC + ESS - Unknown Unknown Europe (expected)
2024 [29]

14 DSME Unknown Unknown FC + ESS
(total 3 MWh) - Unknown Unknown South

Korea
(expected)

2026 [30]

Note. Data are from references of [10,14–30]. 1 The S/G is not included in this Table.

Based on the studies described above and reference ships (Table 1), the market demand
for FC- or ESS-powered tugs is increasing, primarily because of the evident environmental
benefits. However, in the previous studies, lifetime costs for a tug have not been analyzed
in depth under the government’s long-term energy policy. In addition, previous studies on
environmental analysis have not focused on the lifecycle impact of alternative fuels, which
is more crucial than before because of their high dependency on the upstream phase.

This study attempts to fill this gap by investigating the long-term potential economic
and environmental impacts of the ZES based on two types: the ZES using only the ESS
(All-ESS) and the ZES with FC and ESS hybrid system (FC–ESS). The FC–ESS is further
divided into two cases: one consists of two sets of FC and one set of ESS, while the other,
conversely, consists of one set of FC and two sets of ESS. For the proposed systems, the
optimal capacity of the ESS was determined to minimize the total lifetime cost, and the total
lifecycle GHG emissions were analyzed based on South Korea’s energy policies. Korea’s
energy policy to achieve net zero by 2050 is not significantly different from other global
energy policies. Hence, this study’s methodology and analysis results can be easily applied
to cases in other countries.

3. Target Ship

The vessel system considered in this study was a 31 m long tug with a bollard pull of
200 tons. This target ship is powered by two 1400 kW main engines (M/Es) and two 100 kW
generator engines (G/Es), which are fueled by marine gas oil (MGO), as shown in Figure 1.
Each M/E is connected through a mechanical drive shaft to one propeller, and two G/Es are
used for hotel loads, lighting, air conditioning, and winch motors. The general specifications
of the target ship are listed in Table 2, and the assumed cost data for the main equipment
are listed in Table 3. MGO and O&M costs were assumed to increase annually, with an
inflation rate of 2%.
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Figure 1. System layout of the conventional system of a target ship.

Table 2. General specifications of the target ship.

Item Specification

Length overall (LOA) 31 m
Gross tonnage 200 ton

Bollard full 46 ton
Working hours 160 min./trip

The number of trips per day 9 times/day
Annual operation days 313 days/yr 1

M/E power 1400 kW × 2
(4-stroke medium-speed)

G/E power 100 kW × 2 (AC 220 V)
Propulsion efficiency 51% 2

Electric power supply efficiency 48% 3

Fuel type MGO
Lifespan 25 years

1 The rest of the year (52 days) is the cold standby state when the ship is inoperable for repair, maintenance,
inspection, etc. [31]. 2 The efficiencies of M/E (52%) and shafting (99%) are included [32]. 3 The efficiencies of
G/E (50%), alternator (98%), and switchboard (98%) are included [32].

Table 3. Assumed cost data for the conventional MGO-fueled system.

Category Cost Data Reference

Investment cost
M/E USD 300/kW [33]
G/E USD 350/kW [34]

M/E auxiliaries USD 90/kW 1 [35]

O&M cost
O&M (M/E, G/E, aux.) 2.5% of CAPEX/year -

Fuel (MGO) USD 1.19/kg 2 [36]

Note. Data are from references of [33–36]. 1 It is assumed to be approximately 30% against the M/E cost. 2 It is
the average cost for the year 2021 in South Korea (VAT included), applied unit conversion factors for petroleum
product of 0.92 kg/L [37].

In a conventional system for a tug, the M/E power is typically based on the tug’s rated
bollard pull operation, where ships do not spend much time. According to the reference
of [15], the average M/E load (expressed as a percentage of full power) over the monitoring
period was only 16%.
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Herein, the typical load profile shown in Figure 2, which has five operation modes
(Table 4) based on references [9,10,38–40], was applied. For simplicity and practical reasons,
rapid dynamics and transient power demands were not considered. The ship service load
(or hotel load) of 70 kW was assumed to be constant throughout its operating cycle.
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Figure 2. Typical load profile of a tug (M/E: main engine; G/E: generator engine; AMP: alternative
maritime power).

Table 4. Description of each operation mode of a target ship.

No. Operation Mode Description

1© Harbor standby Idling in the water waiting for a call.
2© Transit Movement of the tug between to or from a ship.
3© Waiting Waiting for a while for the next job preparation.
4© Close to the ship Close movement of the tug to a ship for a ship assisting.
5© Ship assist (towing) Assisting a ship from berth to sea and vice-versa.

4. Environmental Parameters

To analyze the ship fuel’s lifecycle GHG emissions, a well-to-wake (WtW) analy-
sis, which is similar to the well-to-wheel concept in the automotive industry, could be
performed. WtW analysis can be divided into two groups: well-to-tank (WtT) and tank-
to-wake (TtW). The WtT emission is the sum of all emissions from the fuel production
to a ship’s fuel tank, including fuel transmission, distribution, storage, and refueling. In
contrast, the TtW emission is the sum of emissions from the fuel tank of a ship to fuel
consumption to operate a ship. A simplified WtW process for ships powered by hydrogen
or electricity is shown in Figure 3 and can differ between countries.

4.1. Conventional Fuel

Marine gas oil (MGO), one fuel type of marine diesel oil (MDO), is still the most
preferred alternative for responding to stricter environmental regulations. The WtT and
TtW GHG emission factors of the MGO are listed in Table 5, in which the unit “kWh” refers
the mechanical or electrical energy output of M/E or G/E.
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Table 5. Assumed technical specifications and GHG emission factors for MGO.

Type Specific Fuel Consumption
(g/kWh) [2]

Energy Density
Assumption (kJ/kg) [2]

GHG Emission Factor (gCO2−eq./kWh)

WtT TtW Total (WtW)

M/E 175 42,700 107.60 [41] 569.30 [2] 676.90
G/E 185 42,700 113.75 [41] 602.95 [2] 716.70

Note. Data are from references of [2,41].

Here, GHG emissions were expressed as carbon dioxide equivalent (CO2
-eq.), which

aggregates the three pollutants based on their century-long global warming potentials
(GWPs), as determined by the Fifth Assessment Report (AR5) of the Intergovernmental
Panel on Climate Change (IPCC). Therefore, the 100-year GWPs are assumed to be 1 for
CO2, 30 for fossil CH4, and 265 for N2O [42] for the MGO fuel.

4.2. Hydrogen

The GHG emissions from hydrogen fuel differ between countries, depending on the
hydrogen production pathway of each country. In general, hydrogen can be produced
using the following four methods.

• Byproduct hydrogen in the petrochemical industry, predominantly through
naphtha cracking;

• Hydrogen produced using steam methane reforming (SMR), typically sourced from
natural gas;

• Hydrogen from SMR together with the carbon capture and storage (CCS) process;
• Hydrogen produced in the electrolysis process using electricity from renewable energy.

In addition, a certain proportion of hydrogen fuel used in each country may be imported
from abroad. In this study, all imported hydrogen is assumed to be liquid hydrogen (LH2),
and the electrolysis efficiency is assumed to be 64% [43]. The GHG emission factors of the
WtT process for each hydrogen production method are shown in Table 6.
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Table 6. Hydrogen fuel’s GHG emission factors for a ship according to its production method
in S. Korea.

Phase
Domestic Production

(gCO2−eq./kWh) Overseas Production (gCO2−eq./kWh)

Naphtha Cracking SMR SMR+CCS Electrolysis SMR+CCS Electrolysis

Upstream (fuel) 36.00 [44] 200.15 1 [45] 200.15 1 [45] 54.23 3 200.15 [45] 54.23 3

H2 production 108.00 [44] 350.28 2 [46] 158.06 2 [46] 0 158.06 2 [46] 0
CCS process 0 0 81.36 [46] 0 81.36 [46] 0
Liquefaction 0 0 0 0 171.45 [47] 171.45 [47]

Regasification 0 0 0 0 15.15 [47] 15.15 [47]
H2 transport/distribution 4 8.58 8.58 8.58 8.58 8.58 5 8.58 5

Total 152.58 559.01 448.15 62.81 634.75 249.41

Note. Data are from references of [44–47]. 1 The imported LNG, which has 200.15 gCO2
−eq./kWh [45] during the

NG upstream phase is applied. 2 Assumed that the CCS rate is 85% in the SMR process, and 65% in energy to drive
SMR. Moreover, its methane leakage rate is assumed to be 3.5%. 3 The electrolyzer’s operation is assumed to be
driven only by local solar and wind power. 4 The only pipeline is applied as the inland H2 transport/distribution
method because it occupies a relatively large proportion of 93% [48,49]. However, contrary to reference [47], the
distance is applied twice because ports are farther away than inland charging stations. 5 A LH2 carrier could use
boil-off gas (BOG) in storage tanks for its propulsion fuel; therefore, it is assumed that the ship would not incur
additional GHG emissions during seagoing [43].

Currently, the hydrogen used in South Korea is derived primarily from byproducts
through naphtha cracking in the petrochemical process or from the SMR process using natural
gas. However, the government aims to achieve 100% green hydrogen by 2050 [50]. In this
regard, the hydrogen mix in South Korea is expected to be changed, as shown in Table 7.

Table 7. Current and expected future hydrogen mixes in South Korea.

H2 Production
Region H2 Production Method Current Mix in 2021

(%) [51] 1
Future Mix in 2050

(%) [50] 2

Domestic

Naphtha cracking 56.42 0
SMR 33.61 0

SMR+CCS 0 0
Electrolysis 9.98 20.07

Overseas
SMR+CCS 0 0
Electrolysis 0 79.93

Total - 100 100

Note. Data are from references of [50,51]. 1 Byproduct hydrogen produced and consumed by oil refineries is
excluded. 2 Plan A scenario in the reference [50] is applied, which is the complete transition to 100% green
hydrogen by 2050.

Based on Tables 6 and 7, the WtT GHG emission factor of hydrogen in 2021 was ap-
proximately 280.24 gCO2

−eq./kWh, and it is expected to decrease to 211.96 gCO2
−eq./kWh

by 2050, with a rate of about −0.96% per year. If the same rate is applied to the subsequent
period, the emission factor is expected to be 220.29 gCO2

−eq./kWh in 2046, when the ship’s
lifespan is over.

4.3. Electricity

Shore power or alternative maritime power (AMP) is the electric power supplied from
shoreside electrical power to a ship at berth while its onboard power source is shut down.
The emission from AMP is highly dependent on its land-side electricity generation mix.
Therefore, it is expected to be lower if land-side electricity is generated by more renewable
power sources.

Under the draft 2050 carbon-neutral scenarios [50] announced in 2021, coal will be
phased out before 2050. Hence, the GHG emission factors and the electricity generation mix
for each power source in South Korea are expected to be changed, as presented in Table 8.
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Table 8. GHG emission factors and the electricity generation mix by each power source in S. Korea.

Power Source
GHG Emission

Factor
(gCO2−eq./kWh)

Current Mix
in 2021 (%) [52,53]

Future Mix in
2050 (%) [50] 6 Reference

Nuclear 1 12.00 27.00 6.10 [54]
Coal 2 1251.5 34.00 0.00 [55]

Natural gas (NG) 3 564.15 29.00 0.00 [45,56]

Renewable energy

Solar 52.42 3.42 34.85 7 [57]
Wind 17.00 0.44 34.85 7 [54]
Hydro 24.40 0.42 0.00 [57]
Biofuel 53.00 1.63 1.00 7 [57]

New energy Fuel cell 4 588.00 (2021),
325.89 (2050) 0.67 1.40 [44]

Hydrogen turbine 4 278.95 (2021),
210.69 (2050) 0.00 21.50 Section 4.2, [58]

Pumped storage 256.63 1.00 0.00 [59]
Etc. 5 1422.00 2.42 0.30 [44]

Note. Data are from references of [44,45,50,52–59]. 1 Only pressurized water reactor (PWR) nuclear power plant,
which accounts for most in South Korea, is considered. 2 The average value of the installed and new-build coal
power plant in South Korea is applied. 3 The imported LNG, which has 200.15 gCO2

−eq./kWh [45] during the
NG upstream phase is applied. 4 In 2021, fuel cells were primarily fueled by imported natural gas. However,
by 2050, fuel cells and hydrogen turbines will be fueled by 100% hydrogen, with a carbon emission intensity of
~0% g/kWh in the downstream phase [58]. 5 In the Etc., only byproduct gas plants are applied due to lack of
accurate data. 6 Plan A scenario in the reference [50] is applied, which is the cessation of thermal power generation.
7 Renewable energy generation is assumed to be achieved using solar and wind power (excluding 1% of
biofuel) [60].

Based on Table 8 and an electric power transmission and distribution (T&D) loss
of 3.6% [61], the WtT GHG emission factor of electricity in 2021 was approximately
659.86 gCO2

−eq.g/kWh, which is expected to be reduced to 82.55 gCO2
−eq./kWh by 2050,

with a rate of about−6.92% per year. If the same reduction rate is applied to the subsequent
period, the emission factor is expected to be 109.96 gCO2

−eq./kWh in 2046.

5. Proposed Systems

This study proposed three different power systems using FC or ESS to realize a zero-
emission tug. The proton-exchange membrane fuel cell (PEMFC) and the lithium-ion
battery (LIB) were selected as the types of FC and ESS, respectively, as they are among the
most commonly used types on the market. Moreover, it is assumed that the PEMFC is sup-
plied its fuel by onboard hydrogen fuel tanks, and LIB is charged from onshore electricity
in the port. They offer an expected lifetime based on the marine manufacturer’s references.
Furthermore, the capacity loss (capacity fading) factor is considered to determine the ap-
propriate installation capacity of PEMFC and LIB. The detailed assumptions for the design
parameters of the PEMFC and LIB are presented in Table 9. The other assumptions for this
study are listed below:

• Korea’s carbon-neutral policy will be achieved successfully by 2050.
• The hydrogen/electricity charging infrastructure for a tug is prepared.
• The tug can return to port safely even though one power source is out of service.
• Only a tug’s main equipment is considered for the economic analysis.
• The carbon price will be imposed on WtW emissions from a ship after 2026.
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Table 9. Assumed specifications of PEMFC and LIB for the proposed systems.

Type Item Specification Reference

PEMFC

Efficiency (PEMFC) 45% 1 [62]
Efficiency (System) 43% 2 [62]

Lifetime 31,500 h 3 [63–65]
Specific fuel consumption (SFC) 4 62 g/kWh [63,66]

Capacity loss/fading 10% (at end-of-life) [67,68]
Fuel storage Compressed tanks (700 bar) Assumption

H2 charging cycle Once a day Assumption

LIB

Efficiency (LIB) 98% [69]
Efficiency (System) 94% 2 [69]

Lifetime 8600 cycles 3 (DoD 80%) [70–72]
Capacity loss/fading 30% (at end-of-life) [73]

Operating C-rate 2C Assumption
Depth of Discharge (DoD) 80% Assumption

SoC operating range 10–90% Assumption
Electricity charging cycle 3 times per day Assumption

Note. Data are from references of [62–73]. 1 The efficiency of a PEMFC varies with its load factor. However, for
simplicity, it is assumed to have a fixed value of 0.45 [62]. 2 The efficiency of a converter (98%) and onboard
switchboard (98%) are added. 3 Average values based on references from marine PEMFC or LIB (nickel manganese
cobalt (NMC) or lithium iron phosphate (LFP) type) manufacturers are considered. The lifetime is assumed to
increase (approximately 25%) for each replacement according to technology development [74–76]. 4 Average
value based on degradation factor (0.3%/1000 h [77]) is considered because the reference values are based on the
beginning of life (BoL).

5.1. System Layout

The first ship power system considered in this study was powered by only two sets of
ESS (Case 1), as shown in Figure 4. The others were FC–ESS hybrid systems, as shown in
Figure 5: (a) a system with two ESS sets and one FC set (Case 2), and (b) a system with two
FC sets and one ESS set (Case 3). All cases were based on the DC-grid system, and each
power source should be connected to the main bus bar through a DC/DC converter.
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In the FC–ESS systems, the capacity of one FC set was determined to be 730 kW
(including a 15% sea margin) such that the FC could supply power by itself during all
operating modes, except for the towing mode, in which the ESS can assist in supplying the
peak power. Electricity is assumed to be charged after three voyage cycles, and hydrogen
fuel is charged once daily during a standby period at a port.

Each system must have remaining spare energy to deal with cases of worst situations
(e.g., loss of one power source and loss of one main switchboard). Essentially, the ship must
be able to return to the port safely using the spare energy, even if any worst situation occurs.
In case of Case 3, it has two separate FC power sources; hence, it can satisfy the requirement
without the reserved energy in the ESS. However, the other systems (Cases 1 and 2) should
retain spare energy in the ESS during one ESS charging cycle.

5.2. Cost Assumptions

The cost data for the proposed system are presented in Table 10. One USD is assumed
to be approximately 1145 Korean Won based on the average exchange rate in 2021 [78].

Table 10. Assumed cost data for the proposed systems.

Category Equipment Cost Reference

Investment cost

PEMFC USD 1000/kW [79]
LIB USD 500/kWh [80]

Converter/VFD 1 USD 200/kW [81]
Propulsion motor USD 135/kW [82]

H2 storage tank (Type IV, 700 bar) USD 18/kWh 2 [43]

O&M cost

PEMFC USD 13/kW/year [83]
LIB USD 5/kWh/year [83]

Converter/VFD 1 USD 2/kW/year [84]
Propulsion motor 1% of CAPEX/year [85]

Note. Data are from references of [43,79–85]. 1 Variable frequency drive (VFD) (also known as the motor drive)
for a propulsion motor. 2 Maritime tank is more expensive than the one used for cars or trucks, which are
approximately USD 14−15/kWh [43,86,87].

In general, when replacing PEMFC and LIB at the end of their lifespan, only the
stack parts of the PEMFC and cell parts of the LIB are to be replaced. In this study, it is
assumed that stack parts account for 72% [88] of the initial PEMFC system cost, and cell
parts account for 82% [89] of the initial LIB system cost. Moreover, replacement costs may
decrease because of future market growth, as presented in Table 11. Moreover, the lifespan



J. Mar. Sci. Eng. 2023, 11, 540 11 of 22

of PEMFC and LIB was assumed to increase by 25% for each replacement, considering
technological developments [74–76].

The assumptions for electricity and hydrogen costs, which were based on the inland
standards in 2021, are summarized in Table 12. The hydrogen cost was USD 7.42/kg [90,91]
in 2021 in Korea; it was assumed to decrease by 4.13% annually and become USD 2.18/kg
by 2050, according to the Korean government plan [92].

Table 11. Assumed replacement cost parameters for PEMFC and LIB.

Parameter PEMFC LIB Ref.

Cost change for
each replacement

1st (6th year) 75% of the initial cost 1st (9th year) 50% of the initial cost
[93]2nd (13th year) 40% of the initial cost 2nd (20th year) 27% of the initial cost

3rd (23rd year) 30% of the initial cost - -

Note. Data are from references of [93].

Table 12. Assumed hydrogen and electricity cost for ships.

Type Current Fee (2021) Annual Change Rate Reference

Hydrogen USD 7.42/kg-H2 −4.13%/year [90–92]
Electricity 1 USD 6.31/kW/month, USD 0.08/kWh + 5%/year [94–97]

Note. Data are from references of [90–92,94–97]. 1 For the sake of simplicity, the other specific cost factors with
high volatility were not considered.

For electricity cost, the inland commercial rate was applied, and as of 2021, it was
composed of a fixed cost of USD 6.31/kW/month and a variable cost of USD 0.08/kWh [94].
In addition, the rate was expected to increase annually by approximately 5%, which is
higher than that in the past decades due to the increase in new and renewable energy in
coming decades [95–97].

5.3. Objective Function

In this study, the proposed systems were assumed to minimize the total lifetime cost
of a target ship. To satisfy this assumption, the lifetime costs were calculated using the
optimization problem based on the net present value (NPV) method described below.

Generally, the total lifetime cost (TC) comprises the investment cost (IC), variable cost
(VC), and replacement cost (RC) of the PEMFC and LIB, as follows.

TC = IC + VC + RC (1)

The annual values of each cost were discounted to the base year, and the discount rate
was arbitrarily set to 5%. The assumed parameters used in this study are listed in Table 13.
First, the IC mainly comprised the main equipment costs, as expressed in the following
equation, where UC refers to each unit cost of the main equipment: PEMFC (UCfc), LIB
(UClib), converter or VFD (UCcon), hydrogen tank (UCtk), and propulsion motor (UCmt).
Additionally, time-step t is from 0 to the end of three voyages with the interval (∆ts) of
5 min, as shown in Figure 2.

IC = (UCfc × FC0/Cf_ f c) + (UClib × ESS0/Cf_ess) + {UCcon × (FC0 + (Cr × ESS0) + Pprop)}+ UCtk × Fr
× (∆ts

60 ×∑t
p_FC(t)

η f c
) + (UCmt × Pprop)

(2)

where FC0 (kW) is the minimum rated power of the PEMFC; ESS0 (kWh) is the minimum
rated capacity of the LIB; Cf_fc and Cf_ess are the remaining capacity at the end-of-life (EoL)
against the initial capacities of the FC and LIB, respectively; Pprop (kW) is the total rated
power of the propulsion motors; p_FC (t) (kW) is the power generated by the PEMFC; Cr is
the operating C-rate of the LIB; Fr is the number of LIB charging per day; and η f c is the
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efficiency of the PEMFC system. In Equation (2), the PEMFC and hydrogen tanks were
only applied to the FC–ESS system.

Table 13. Assumed parameters for analysis in this study.

Parameter Symbol Value Source

The operating days of a tug per year D 313 days/yr Table 2
The number of LIB charging Fr 3 times/day Table 9

The number of ship trips for one day Tr 9 times/day Table 2

The minimum rated power of PEMFC FC0
0 kW (Case 1)

730 kW (Case 2)
1460 kW (Case 3)

Section 5.1

The specific fuel consumption (SFC) of the PEMFC SFCfc 62 g/kWh

Table 9
The operating C-rate of the LIB Cr 2

The remaining capacity against its initial capacity of FC (@ EoL) Cf_fc 0.9
The remaining capacity against its initial capacity of LIB (@ EoL) Cf_ess 0.7

The sum of the propulsion power Pprop 2800 kW Table 2

The shore power used by a ship at berth Pamp 70 kW

Figure 2
The energy consumption for AMP at berth Camp 58.33 kWh/voyage 1

The remaining LIB spare energy for safety Rload

466 kWh (Case 1)
233 kWh (Case 2)
0 kWh (Case 3)

Annual discount rate d 5%/yr Assumption
Annual inflation rate r 2%/yr Assumption

The annual rate of change of hydrogen cost f −4.13%/yr
Table 12The annual rate of change of electricity cost e + 5%/yr

FC system efficiency ηfc 0.43
Table 9ESS discharging efficiency ηess 0.94

The efficiency of LIB charging from shore power ηch 0.94 Assumption
The efficiency of AMP at berth ηamp 0.92 Assumption

The unit cost of the PEMFC UCfc USD 1000/kW

Table 10
The unit cost of the LIB UClib USD 500/kWh

The unit cost of the converter/VFD UCcon USD 200/kW
The unit cost of the propulsion motor UCmt USD 135/kW

The unit cost of the hydrogen tank UCtk USD 18/kWh

The O&M cost of the PEMFC w USD 13/kW/yr

Table 10
The O&M cost of the LIB x USD 5/kWh/yr

The O&M cost of the converter/VFD z USD 2/kW/yr
The O&M cost of the propulsion motor mt USD 1.35/kW/yr

The annual average cost of hydrogen fuel in 2021 UCh2 USD 7.42 × 10−3/g
Table 12The annual average fixed cost of electricity in 2021 EC1 USD 6.31/kW/month

The annual average variable cost of electricity in 2021 EC2 USD 0.08/kWh

The ratio of the PEMFC stack cost against its system cost a 72%
Table 11The ratio of the LIB cell cost against its system cost b 82%

GHG emission factor of hydrogen in 2021 GHGh2 280.24 gCO2
−eq./kWh

Sections 4.2 and 4.3
GHG emission factor of electricity in 2021 GHGelec 659.86 gCO2

−eq./kWh
Annual reduction rate of the hydrogen emission factor m 0.96%/yr
Annual reduction rate of the electricity emission factor n 6.92%/yr

1 Camp is calculated by multiplying the Pshore and harboring standby time of 50 min. (70 kW × 50 min.).

The replacement costs, or RC, are expected to decrease according to the assumed rates
noted in Table 11 and can be expressed as follows.

RC = {UCfc ×
FC0

C f _ f c
× a × (

0.75

(1 + d)6 +
0.40

(1 + d)13 +
0.30

(1 + d)23 )}+ {UClib ×
ESS0
C f _ess

× b × (
0.50

(1 + d)9 +
0.27

(1 + d)20 )} (3)

where d is the annual discount rate; a is the ratio of the PEMFC stack cost against its entire
system cost; and b is the ratio of the LIB cell cost against its entire system cost.
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The VC comprises the total hydrogen cost (HC), total electricity cost of shore charging
(EC), and total O&M cost (OC). Hence, VC can be formulated as follows.

VC =
25

∑
y=1

[{
HC(1 + f )y + EC(1 + e)y + OC(1 + r)y}/(1 + d)y] (4)

where f is the annual rate of change in the hydrogen cost; e is the annual rate of change in
the electricity cost; and r is the annual inflation rate. First, HC was calculated based on the
annual hydrogen consumption as follows.

HC {D × Fr × UCh2 × (
∆ts

60
×∑

t
p_FC(t))} × SFCfc (5)

where D is the working day of a tug per year; UCh2 (USD/g) is the annual average cost
of hydrogen fuel in 2021; and SFCfc (g/kWh) is the specific fuel consumption (SFC) of the
PEMFC.

In addition, the EC was calculated by summing the fixed and the variable electricity
cost as below. The fixed electricity cost, which is related to the maximum allowable
contracted power, was assumed to have a 10% margin.

EC = [{12 × EC1 × (
Cr × ESS0

ηch
+

Pamp

ηamp
)× 1.1}+ {D × EC2 × (Fr ×

Cch
ηch

+Tr ×
Camp

ηamp
)}]× 1.137 (6)

where EC1 (USD/kW/month) is the average fixed cost of electricity; EC2 (USD/kWh) is
the average variable cost of electricity; Pamp (kW) is the shore power used by a ship at berth;
Camp (kWh) is the energy consumption for AMP at berth; Cch (kWh) is the charging capacity
for LIB from the fully discharged state to the maximum limit of SOC (up to 90%); ηch is the
efficiency of LIB charging from shore power; ηamp is the efficiency of AMP at berth; and
Tr is the number of ship trips per day. All cost parameters needed to calculate the above
equation are based on Table 12, adding a 13.7% tax.

OC, which is the sum of each O&M cost for the main equipment, was calculated as follows.

OC = (w × FC0/Cf_fc) + (x × ESS0/Cf_ess) + {z × (FC0 + (C r× ESS0) + Pprop) + (mt × Pprop) (7)

where w (USD/kW/year) is the O&M cost of the PEMFC; x (USD/kWh/year) is the
O&M cost of the LIB; z (USD/kW/year) is the O&M cost of the converter/VFD; and mt
(USD/kW/year) is the O&M cost of the propulsion motor.

The GHG emissions during a ship’s lifetime are the sum of the emissions from hydro-
gen (EMh2) and electricity (EMelec) based on each GHG emission factor (GHGh2, GHGelec)
mentioned in Section 3. According to the Korean government’s green policies, these
emission factors will decrease by a certain percentage (m, n) every year, as follows.

EMh2

25

∑
y=1

D× Fr × (
∆ts

60
×∑

t

p_FC(t)
η f c

×GHGh2 × (1−m)y (8)

EMelec =
25

∑
y=1

D× (Fr ×
Cch
ηch

+ Tr ×
Camp

ηamp
×GHGelec × (1− n)y (9)

5.4. Constraints

The power outputs of the ESS (p_ESS (t)) and PEMFC (p_FC (t)) should satisfy the
upper and lower bounds, as follows.

0 ≤ p_ESS (t) ≤ (ESS0 × Cr) (10)

(FC0 × 0.1) ≤ p_FC (t) ≤ (FC0 × 0.9) (11)
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The ESS capacity (c_ESS (t)) also has upper and lower bounds considering its DoD
(80%) and minimum spare energy (Rload) for safety, as follows.

(ESS0 × 0.1) +
Rload
ηess

≤ c_ESS0 (t) ≤ (ESS0× 0.9) (12)

where ηess is the efficiency of the ESS discharging. For the All-ESS system with two separate
ESS sets, each ESS set must have its spare energy in preparation for the failure of the other
set of ESS. The update function for the stored energy in the ESS is dependent on the energy
at the prior time (t −1 ), as follows.

c_ESS (t) = c_ESS (t− 1)− (
∆ts

60
× p_ESS(t)×Cr

ηess
) (t > 1) (13)

c_ESS (t) = (ESS0 × 0.9)− (
∆ts

60
× p_ESS(t)×Cr

ηess
) (t = 1) (14)

For the proposed optimization problem, the demand load (demand (t)) must be met
by the power supplied from both the PEMFC (p_FC (t)) and ESS (p_ESS (t)), as follows.

(Cr × p_ESS (t)) + p_FC (t) = demand (t) (15)

The operating strategies for the proposed systems are derived based on a solution
from a nonlinear programming problem with discontinuous derivatives (DNLP). The
mathematical model described above was implemented using the CONOPT solver, which
is one of the typical solvers available with the general algebraic modeling system (GAMS)
(http://www.gams.com, 10 January 2023).

6. Results

Through the simulation studies, the optimal ESS capacity was determined to be
8162 kWh for the All-ESS (Case 1) system, and 2600 kWh (Case 2) and 910 kWh (Case 3) for
the FC–ESS systems. The comparison results for the proposed systems (Cases 1–3) against
the conventional MGO-fueled system are listed in Table 14.

Table 14. Comparisons of the conventional and proposed systems based on a defined load scenario.

Category
Conventional

System
(MGO-Fueled)

Proposed Systems

Case 1(All-ESS) Case 2(FC–ESS) Case 3(FC–ESS)

Power
capacity

M/E (kW) 2800 - - -
G/E (kW) 200 - - -
FC (kW) - - 812 1624

ESS (kWh) - 8162 2600 910

Cost
(Million USD)

Investment cost 1.16 7.30 4.26 3.98
O&M cost 0.51 1.28 0.73 0.71
Fuel cost

(MGO/H2) 12.44 - 10.97 13.64

Electricity cost 0.60 39.33 12.73 5.07
Replacement cost

(ESS/FC) - 1.41 0.96 1.17

Carbon price 6.69 1.72 2.56 2.76

Total 21.40 51.04 32.21 27.33

GHG
emissions

(ton CO2
-eq.)

MGO 120831 - - -
Hydrogen - - 36,451 45,334
Electricity 1321 31,431 10,249 5087

Total 122,152 31,431 46,700 50,421

http://www.gams.com
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The simulation results for each power dispatch in the proposed system are shown in Figure 6.
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In the case of the All-ESS system, only the ESS covered the entire load except for the
harbor standby mode. However, for the FC–ESS system, the ESS acted as a supplement for
the peak loads.

6.1. Economic Comparison

Figure 7 shows the total lifetime costs of the conventional and proposed systems. Evi-
dently, all the proposed systems had a higher lifetime cost compared with the conventional
system. First, the lifetime cost of the All-ESS (Case 1) system was 3.4 times more than that
of the conventional one, and it was the highest value among the proposed systems. In the
case of the FC–ESS system, the lifetime cost of Case 2 was 2.0 times, and that of Case 3 was
1.7 times more than that of the conventional one.

In the meantime, there have been discussions in the IMO meeting [98] that a WtW
approach should be taken for the carbon pricing system. In this regard, if the carbon price
is imposed on the WtW phase, the proposed ZESs could be 1.3–2.4 times more expensive
than the conventional one (Figure 7). In this study, it is assumed that the carbon price
would be imposed starting from 2026, and would increase step by step for a 2050 target
of full decarbonization (-100% scenario) with the average carbon price of around USD
191/ton [99].

The hydrogen and electricity costs occupy the largest share of the total lifetime cost. In
this regard, considering the volatility in future costs, the total lifetime cost of the proposed
systems could be changeable. For example, as shown in Table 15, if the future hydrogen
cost changes, the total lifetime cost against the “MGO-fueled” in Case 2 and Case 3 have
slight deviations. On the other hand, if the future electricity cost changes (4–6%/year),
Case 1 shows the most significant variations among the proposed systems.
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Table 15. The different results of the total lifetime costs according to fuel cost’s variations.

Expected Annual Cost Change Rate
of Fuel’s Cost

Total Lifetime Cost (Million USD)

MGO-Fueled Case 1
(All-ESS)

Case 2
(FC–ESS)

Case 3
(FC–ESS)

Hydrogen
−3.30%/year (−20% lower) 21.40 51.04 33.07 28.41
−4.13%/year (base value) 21.40 51.04 32.21 27.33
−4.96%/year (+20% higher) 21.40 51.04 31.43 26.37

Electricity
+4%/year (−20% lower) 21.33 46.53 30.74 26.76
+5%/year (base value) 21.40 51.04 32.21 27.33

+6%/year (+20% lower) 21.48 56.31 33.91 28.02

6.2. Environmental Comparison

Figure 8 presents the total lifecycle (WtW) GHG emissions for the conventional and
the three proposed systems. The results revealed that the proposed systems are greener
options even though they have higher WtT emissions than the conventional system. First,
for the All-ESS system (Case 1), the WtW GHG emission was reduced by 74.3% compared
with the conventional one. Additionally, for the FC–ESS system, the emission was reduced
by 61.8% (Case 2) and 58.7% (Case 3).

Additionally, the total WtW GHG emissions could be changeable depending on the
future hydrogen and electricity emission factors. For example, as shown in Table 16, if
hydrogen’s emission factor changes (−0.77% to −1.15%/year), the GHG reduction against
the “MGO-fueled” would be 61.0–62.5% for Case 2, and 57.8–59.6% for Case 3. On the other
hand, if electricity’s emission factor changes (−5.54% to −8.30%/year), the GHG reduction in
Case 1 against the “MGO-fueled” is 70.3–77.5%, which is a significant difference.
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Expected Annual Change Rate
of Fuel’s Emission Factor

Total WtW GHG Emissions (ton CO2
−eq.)

MGO-Fueled Case 1
(All-ESS)

Case 2
(FC–ESS)

Case 3
(FC–ESS)

Hydrogen
−1.15%/year (−20% lower) 122,152 31,431 45,839 49,350
−0.96%/year (base value) 122,152 31,431 46,700 50,421
−0.77%/year (+20% higher) 122,152 31,431 47,587 51,525

Electricity
−8.30%/year (−20% lower) 121,984 27,424 45,394 49,773
−6.92%/year (base value) 122,152 31,431 46,700 50,421
−5.54%/year (+20% higher) 122,357 36,304 48,289 51,210

7. Conclusions and Future Work

This study proposed alternative power systems (All-ESS and FC–ESS) to realize a
zero-emission tug and compared their economic and environmental impacts with those of
the conventional system. For these systems, the optimal ESS capacity was determined by
minimizing the lifetime cost of a ship. And in this study, lifecycle GHG emissions were
investigated based on long-term policies in South Korea, which is not rich in renewable
energy and is expected to increase green hydrogen imports from overseas. Although some
assumptions and limited scope were employed, the following conclusions were drawn
based on the analysis results.

For a ship’s lifetime cost, the proposed ZESs were 1.7–3.4 times more expensive than
the conventional one; however, it could be reduced by 1.3–2.4 times when the carbon price
is considered.

From the fuel’s lifecycle GHG emissions, the proposed ZESs had 58.7–74.3% lower
than the conventional one, despite their higher WtT emissions.

Among the proposed ZESs, Case 3 (FC–ESS) would be the most economical option,
whereas Case 1 (All-ESS) would be the most eco-friendly option.

The analysis results revealed that reducing the ship fuel’s lifecycle GHG emissions is a
step in the right direction. However, many institutional challenges still exist and need to be
solved for the ZES, as follows.

Insufficient onshore electricity/hydrogen charging infrastructure for ZESs.



J. Mar. Sci. Eng. 2023, 11, 540 18 of 22

Unestablished electricity/hydrogen fee standard (or subsidies) for ZESs.
Undecided carbon pricing scheme for non-ZESs.
First, South Korea has been trying to expand its electricity- and hydrogen-charging

infrastructure at ports [100,101]. In addition, the Korean Government is considering lower-
ing hydrogen fuel fees to facilitate shipping companies adopting greener technologies [1].
And the IMO suggests that entry into the force of the carbon pricing might be in 2026 at
the earliest [102]. Moreover, there are many technological or economic challenges that still
exist for the FC or ESS, including:

Long-lifetime technologies with low-degradation rates for reducing replacement cost.
Safety-enhanced technologies for marine applications.
Competitive market price than other alternative solutions.
First, FC and ESS have a limited operating lifetime and must be replaced several times

during a ship’s lifetime. Therefore, extending their lifetime and reducing degradation rates
to a reasonable level represent important priorities. Moreover, it is essential to ensure safe
passage throughout a ship’s voyage, requiring a safety-enhanced design for the FC and
ESS. Additionally, FC and ESS for maritime applications are still expensive compared with
the other industries because they have fewer production systems and higher requirements
for the product. Nevertheless, the FC and ESS cost for ships is expected to drop further in
the coming years as ZESs become more demanding in the market [5].

Lastly, since this study was conducted based on future assumptions, the following
further research is needed to prove the effectiveness of this proposed system:

Economic/environmental comparison with other alternative measures for the ZES
(ammonia, biofuel, etc.).

Environmental comparison with various hydrogen supply scenarios.
Environmental comparison, including the emissions from the manufacturing/production

phase of FC or LIB.
Economic comparison with various institutional GHG emission reduction measures

(GHG levy, incentives, etc.).
This study can be used to determine the optimal ZES options considering long-term

economic and environmental impacts. In addition, it can contribute to deciding the level of
subsidy for ZESs or the carbon price for non-ZESs. Finally, we hope that genuine ZESs will
soon become common in South Korea upon overcoming the aforementioned challenges.
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