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Abstract: This work is devoted to increasing the computational efficiency of numerical methods for
the one-way Helmholtz Equation (higher-order parabolic equation) in a heterogeneous underwater
environment. The finite-difference rational Padé approximation of the propagation operator is
considered, whose artificial computational parameters are the grid cell sizes and reference sound
speed. The relationship between the parameters of the propagation medium and the artificial
computational parameters is established. An optimized method for automatic determination of
the artificial computational parameters is proposed. The optimization method makes it possible
to account for any propagation angle and arbitrary variations in refractive index. The numerical
simulation results confirm the adequacy and efficiency of the proposed approach. Automating the
selection process of the computational parameters makes it possible to eliminate human errors and
avoid excessive consumption of computational resources.
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1. Introduction

Sound propagation in the underwater marine environment is described by the wave
equation. Given the variety of heterogeneities that occur under water, as well as large
distances, numerical modeling of the wave propagation appears to be a rather sophisticated
problem. For over 20 years, improving the efficiency of computer modeling methods has
remained an urgent task [1]. One of the most widely used approaches for solving this
problem is the parabolic equation method [2] and its wide-angle generalizations [3–5],
also known as the one-way Helmholtz equation. Although the first publications on the
application of the parabolic equation method in hydroacoustics appeared half a century
ago [6,7], it is still actively undergoing development [8–10]. The advantage of the parabolic
equation method is the possibility of taking into account both vertical and horizontal
inhomogeneities of the medium. Backscattering can also be modeled [11,12]. There are
modifications for elastic medium and essentially three-dimensional space [13]. It is worth
mentioning the recently developed iterative method for solving the Helmholtz equation
as a series of the parabolic equation solutions [14], and the practical applications of this
method for the numerical solution of computational underwater acoustics problems [15].

Another widely used approach to computing the acoustic field is the method of
normal modes [16]. Although this method was initially asymptotic and applicable only
for a horizontally homogeneous medium, a number of modifications have allowed this
method to be used in practical problems. In particular, the KRAKEN [17] software tool for
predicting acoustic transmission-loss in the ocean was developed on its basis.

The available general-purpose methods, such as the finite element [18] or boundary
element [19] method, are not practically applicable to the problem of the acoustic wave
propagation in the ocean. This is due to the huge size of the computational domain
compared to the wavelength, which makes computations too slow or even impossible.
Nevertheless, their use is reasonable for verification and testing of faster models and
software implementations.
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The application of the parabolic equation method is not limited to computational
hydroacoustics. The method was first introduced by Leontovich and Fock in 1946 [20] to
solve the problem of radio wave propagation in an inhomogeneous troposphere. Since then,
new modifications have constantly been developed to account for complex inhomogeneities
[21], boundary conditions [22,23] and to increase computational efficiency. In addition
to the radio frequency range, the method is also successfully used in the optical range
for computing a beam trajectory under various conditions [24,25]. A large number of
numerical methods have been developed for the Schrodinger Equation [26,27], which is an
analog of the diffraction parabolic equation. Another analogue of the parabolic equation
of the diffraction theory is the Black–Scholes model [28], which has had a huge impact
on financial mathematics. Heat transfer equation is also a parabolic one and is solved by
similar numerical methods [29]. The principle of mathematical model universality [30]
allows applying the same numerical methods to solve problems of a different physical
nature.

There are many practical problems in underwater acoustics where sound propagation
modeling plays a key role. [31]. These include remote sensing of the movement of ships and
marine life [32], as well as determination of their characteristics [33]. Computer modeling
is used to characterize sea currents and the seabed [34], and for estimating the global
noise level from shipping and its impact on the world’s oceans [35,36]. The OALIB web
resource [37] contains a large number of computational hydroacoustics methods software
implementations, experimental data and other useful materials on the specified topic.

Each computer simulation method contains a number of artificial computational
parameters. Such parameters include the size of the computational grid cells, the order
of approximation, various thresholds and many others. These parameters are usually
selected manually by the user (expert). The human factor can lead to modeling errors due
to incorrectly selected parameters. Even if the parameters are chosen correctly, the solution
may be suboptimal in terms of computational efficiency. For example, the choice of an
insufficiently dense computational grid leads to incorrect results, and an overly dense one
leads to overspending of the computational resources and slow modeling. Oceanologists,
hydroacoustics, sailors and other potential users of the simulation results most often are
not specialists in the numerical methods. After all, the need for an expert reduces the level
of automation. This circumstance is a significant disadvantage that hinders the wider use
of complex mathematical methods in practice.

Previously [38], the problem of computational grid optimization was formulated as the
minimization of the discrete dispersion relation error. However, this approach did not take
into account variations in the refractive index, which are highly significant in underwater
acoustics. It was shown in [39], that a significant increase in performance can be achieved
on a non-uniform height grid, but a specific deterministic algorithm for its generation
depending on the environment parameters was not presented. The purpose of the present
work is to develop an algorithm for the automatic selection of the artificial computational
parameters, namely the size of the computational grid cells and the reference sound speed.
For this purpose, analytical accuracy estimates depending on the computational parameters
and properties of the propagation medium were derived. The optimization problem was
formulated on this basis.

The paper is organized as follows. The next two sections present the mathematical
formulation of the acoustic wave propagation problem in an inhomogeneous marine envi-
ronment and derive a method for solving it using the finite-difference Padé approximations.
Algorithms for optimizing the computational grid and reference sound speed are intro-
duced in Section 4. Section 5 is devoted to the analysis of the optimization algorithm results
for the various environmental parameters. Section 6 presents a comparative analysis of the
numerical simulations for several common propagation conditions.
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2. Mathematical Problem Statement and Definitions

Acoustic pressure ψ in two-dimensional media on a fixed frequency f satisfies the
Helmholtz equation in the following form [16]

∂2ψ

∂x2 + Hψ = 0, (1)

where

Hψ = Dψ + k2(x, z)ψ,

Dψ = ρ
∂

∂z

(
1
ρ

∂ψ

∂z

)
,

k2(x, z) = k2
0n2(x, z),

n(x, z) =
c(x, z)

c0
,

k0 =
2π f
c0

,

c(x, z) is the sound speed, c0 is a reference sound speed, which in general can be chosen
arbitrarily, ρ(x, z) is the density of the medium. Unknown function ψ is a complex value
and is defined on set Ω = {(−∞,+∞)× (0,+∞)}.

The Dirichlet boundary condition is posed on the upper boundary between the sea
and air

ψ(x, z = 0) = 0.

One can use a special non-local boundary condition to take into account the rough sea
surface [40]. A transparent boundary condition [41] is set at the lower boundary of the
computational domain.

The wave process is generated by the initial condition

ψ(0, z) = ψ0(z)

with known function ψ0, which corresponds to the radiation source pattern.
A schematic description of the considered problem is depicted in Figure 1.

z x

0 sea surface: Dirichlet BC ( =0)

c(x,z): sound speed

(x,z): density

Δx Δz

radiation source

transparent BC

Figure 1. A schematic description of the considered problem.

Using the change of variable [42]

ψ′ = ψ/
√

ρ
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we can omit the density function ρ in operator D and rewrite Equation (1) in a more
convenient form

H′ψ′ = D′ψ′ + k2
0n′2(x, z)ψ′,

D′ψ′ =
∂2ψ′

∂z2 ,

n′2 = n2 +
1

2k2
0

√
ρ

∂

∂z

(
1

ρ
√

ρ

∂ρ

∂z

)
.

Obviously, this replacement does not work in the case of density jumps, which usually
occurs at the water–bottom boundary. In this case, it is recommended to divide the
integration domain into separate parts, in which the density is continuous, and to stitch the
boundaries using the boundary conditions [16]. In what follows, for simplicity, we assume
that the density is constant throughout the underwater medium.

3. Finite-Difference Padé Approximation

In this section, we will show the derivation of a step-by-step solution to the Helmholtz
equation. Special attention will be paid to the influence of input parameters on the so-
lution. For a more detailed derivation and its theoretical aspects, we refer the reader to
works [3,4,16,43,44].

We seek the numerical solution ψn
j = ψ(n∆x, j∆z) on a uniform computational grid

with steps ∆x and ∆z.
Let us write down the expansion of the field into the plane waves in terms of the

vertical wavenumber kz [45]

ψ̃(x, kz) =
1√
2π

+∞∫
−∞

ψ(x, z)e−ikzzdz, (2)

ψ(x, z) =
1√
2π

+∞∫
−∞

ψ̃(x, kz)eikzzdz.

Variable kz is expressed via propagation angle θ as follows

kz = k sin θ.

Following [44], substitute decomposition (2) into Equation (1)

∂2

∂x2

 1√
2π

+∞∫
−∞

ψ̃(x, kz)eikzzdkz

+ H

 1√
2π

+∞∫
−∞

ψ̃(x, kz)eikzzdkz

 = 0. (3)

To fulfill (3), it is sufficient to satisfy the following equation

∂2ψ̃

∂x2 + ψ̃e−ikzzDeikzz + k2n2(x, z)ψ̃ = 0. (4)

Bearing in mind that in the case of uniform density

e−ikzzDeikzz = −k2
z,

Equation (4) can be formally written as an expansion into waves propagating in the
positive and negative directions along the x-axis[

∂

∂x
− i
√

k2 − k2
z

][
∂

∂x
+ i
√

k2 − k2
z

]
ψ̃ = 0. (5)
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In what follows, we consider only waves propagating in the positive direction and,
accordingly, discard the second term in (5). Then, the step-by-step solution is written as
follows

ũ(x + ∆x, kz) = exp
(

ik∆x
√

1 + ξ
)

ũ(x, kz), (6)

ξ = − k2
z

k2 +
(

n2(x, z)− 1
)

, (7)

u(x, z) = e−ikxψ(x, z).

Apply the rational Padé approximation [46,47] of order [m/n] in the vicinity of point
ξ = 0

exp
(

ik∆x
(√

1 + ξ − 1
))
≈ 1 + ∑m

l=1 ãlξ
l

1 + ∑n
l=1 b̃lξ l

=
p

∏
l=1

1 + alξ

1 + blξ
, (8)

where ãl and b̃l are the Padé approximation coefficients, p = max(n, m).
Using the obtained rational approximation (8), the action of the propagation operator

at each step in the variable x can be represented as a system of p one-dimensional differential
equations [44] 

(1 + b1L)vn
1 = (1 + a1L)un−1

(1 + bl L)vn
l = (1 + al L)vn

l−1 l = 2, . . . , p− 1
. . .(
1 + bpL

)
un =

(
1 + apL

)
vn

p−1

(9)

where

Lu = Du +
(

n2(x, z)− 1
)

u. (10)

System (9) is solved sequentially from top to bottom.
Operator (10) is approximated by the fourth-order Numerov method [48]

Du ≈ D∆zuj =
1

k2∆z2 δ2
(

1 + αδ2
)−1

uj, (11)

where

α =

{
0, for the second-order approximation,
1/12, for the fourth-order approximation,

second difference operator is defined as follows

δ2u = u(z− ∆z)− 2u(z) + u(z + ∆z) = uj−1 − 2uj + uj+1.

Thus, each line of system (9) can be solved by the tridiagonal matrix method in linear
time.

Each step on ∆x requires p solutions of tridiagonal equations. Thus, the asymptotic
complexity of the numerical scheme is expressed by the formula

O
( p

∆x∆z

)
. (12)

4. Computational Parameters Optimization Algorithm

As can be seen from the previous section, there are the following artificial parameters
of the numerical scheme: longitudinal grid step ∆x, transversal grid step ∆z and reference
sound speed c0. It is common to select them manually based on semi-empirical considera-
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tions. In this section, we propose an algorithm for automatically determining them in an
optimal way.

4.1. Computational Grid Optimization

Let us denote the minimum and maximum values of the sound speed in the desired
medium as follows

cmin = inf
(x,z)∈Ω

c(x, z),

cmax = sup
(x,z)∈Ω

c(x, z).

Owing to (7), possible values of variable ξ will belong to interval [ξmin, ξmax], where

ξmin = − sin2 θmax +

(
c0

cmax

)2
− 1,

ξmax =

(
c0

cmin

)2
− 1,

where θmax is the maximum propagation angle, which can be estimated from the geometry
of the problem.

We first estimate the Numerov approximation error (11). To do this, we take a one-
dimensional plane wave of the form

E(z) = exp(ikzz).

Substitute E(z) to (11) and compare with the original second derivative

h(kz, ∆z) = e−ikzz|Deikzz − D∆zeikzz|,

Deikzz = −k2
zeikzz,

D∆zeikzz =
1

∆z2

(
−4 sin2

(
kz∆z

2

)
− α16 sin4

(
kz∆z

2

))
eikzz.

Now we can estimate the maximum error on the required range of the spectral variable kz

h(∆z) = sup
kz∈[kmin

z ,kmax
z ]

h(kz, ∆z). (13)

Keeping in mind that kz = k sin θ, it is reasonable to set kmin
z = −k2

0 sin2 θmax, kmax
z = 0.

Next, we estimate the approximation error of the propagation operator at each step
along the x axis. Assume first, that there is no second derivative approximation error (h = 0).
Then, the estimate reduces to the error between the original propagation operator (6) and
its Padé approximation (8) on desired interval [ξmin, ξmax]

τ(∆x) = sup
ξ∈[ξmin ,ξmax ]

R(∆x, ξ),

R(∆x, ξ) = R(∆x, ξ, ξ),

R(∆x, ξ1, ξ2) = | exp
(

ik∆x
(√

1 + ξ1 − 1
))
−

p

∏
l=1

1 + alξ2

1 + blξ2
|.
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To take into account the vertical discretization error (13), we need to keep in mind that
each dot ξ will be replaced by range

[
ξ − k−2

0 h(∆z), ξ + k−2
0 h(∆z)

]
. Then the error estimate

at each step will be written as follows

τ(∆x, ∆z) = sup
|ξ1−ξ2|<k−2

0 h(∆z)
ξ1,ξ2∈[ξmin ,ξmax ]

R(∆x, ξ1, ξ2).

Bearing in mind the asymptotic Formula (12), we obtain the following optimization
problem. We are given the maximum distance from the source xmax and the required
accuracy ε at that distance. It is required to maximize the size of the computational grid
cells

∆x∆z→ max

under condition

τ(∆x, ∆z) · nsteps < ε, (14)

where nsteps = dxmax/∆xe is the number steps on x.

4.2. Reference Sound Speed Optimization

Let us now turn to the parameter c0 and its optimal value determination. Figure 2
demonstrates the distribution of error R(∆x, ξ) when ∆x = 10. It can be seen that the Padé
approximation is local and the smallest error is observed at the point ξ = 0, increasing
monotonically with distance from it in any direction. Recall that the value of c0 can be
chosen arbitrarily. It gives us the opportunity to choose values ξmin and ξmax in a way that
interval [ξmin, ξmax] most completely fell into the vicinity of the point ξ = 0 with the best
accuracy. Based on equality ξmin = −ξmax, we obtain the following optimal value.

c0 = cmincmax

√
2 + sin2 θmax

c2
min + c2

max
. (15)

−0.4 −0.2 0.0 0.2 0.4
Re(error)

−0.4
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(a) Distribution on a complex plane (ξ). (b) Distribution on a real axis (ξ).

Figure 2. Distribution of error 10 log R(∆x, ξ) when ∆x = 10.

Note that the variations in sound speed and the required accuracy are known a priori,
and the maximum propagation angle can be easily estimated from the geometry of the
problem.

5. Optimization Results

This section presents the results of optimization for various propagation scenarios. In
all subsequent examples in this section, the operation frequency is chosen equal to 500 Hz.
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Keeping in mind asymptotic Formula (12), the gain between methods is further calculated
using the following formula

Gain =
p1

∆x1∆z1
·
(

p2

∆x2∆z2

)−1
.

5.1. Influence of the Maximum Distance from the Source

First, consider the case of a homogeneous medium with constant sound speed c(x, z) ≡
1500 m/s. The source frequency is 500 Hz. We will proceed from the maximum propagation
angle θmax = 30◦. It is common in such case to set the value of c0 also equal to 1500 m/s.
However, Formula (15) gives optimal value of c0 equal to ≈ 1591 m/s. Table 1 shows
the optimal values of the computational grid cell sizes for various values of parameter
c0 and distance from the source xmax. In all the examples, target accuracy ε is set to 10−3.
It can be seen that the use of parameter c0 calculated by Formula (15) allows us to use
about four-times more sparse grid, which gives an approximate four-fold corresponding
reduction in the propagation runtime. As expected, the location of segment [ξmin, ξmax] in
the middle of point ξ = 0 gives more accurate approximation in (8). It is also clear from
Table 1, that increasing the distance from the source leads to a decrease in the computational
grid cell sizes.

Table 1. Optimal values of the cell sizes, ε = 10−3, θmax = 30◦, f = 500 Hz, rational approximation
order is [7/8].

xmax (m) c0 = 1500 m/s c0 = 1591 m/s Gain
∆x (m) ∆z (m) [ξmin, ξmax] ∆x (m) ∆z (m) [ξmin, ξmax]

1000 20 0.1

[−0.25, 0]

50 0.1

[−0.125, 0.125]

2.5
2000 20 0.09 40 0.1 2.2
5000 10 0.08 40 0.09 4.5

10,000 10 0.07 40 0.07 4.0
50,000 10 0.04 30 0.05 3.75

5.2. Effect of the Maximum Propagation Angle

Next, let us look at how the maximum propagation angle affects the required density
of the mesh. Table 2 shows the optimal values of the cell sizes for the various maximum
propagation angles. It can be seen that with the increase in the propagation angle, the mesh
density increases. It is important to note that for large propagation angles, it is impossible
to obtain a mesh within the Padé approximation without the c0 shift. Indeed, as can be
seen from condition (14), as ∆x decreases, the required value of τ(∆x, ∆z) also decreases,
which in turn requires a further decrease of ∆x. The proposed method of calculating the
optimal c0 allows one to overcome this limitation. It can be seen that this method allows
taking into account the entire visible spectrum of propagation angles. At the same time, its
gain increases with the increase in the maximum propagation angle.

Table 2. Optimal values of the cell sizes, ε = 10−3, xmax =5000 m, f = 500 Hz, rational approximation
order is [7/8]. “ - ” means that a reasonable grid could not be found.

θmax (◦) c0 = 1500 m/s c0 = 1591 m/s Gain
∆x (m) ∆z (m) [ξmin, ξmax] ∆x (m) ∆z (m) [ξmin, ξmax]

5 100 1.0 [−0.0075, 0.0] 100 1.0 [−0.0038, 0.0038] 1.0

10 100 0.4 [−0.03, 0.0] 100 0.4 [−0.015, 0.015] 1.0

20 40 0.1 [−0.12, 0.0] 100 0.1 [−0.06, 0.06] 2.5

30 10 0.08 [−0.25, 0.0] 40 0.09 [−0.125, 0.125] 4.5
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Table 2. Cont.

θmax (◦) c0 = 1500 m/s c0 = 1591 m/s Gain
∆x (m) ∆z (m) [ξmin, ξmax] ∆x (m) ∆z (m) [ξmin, ξmax]

45 6 0.04 [−0.5, 0.0] 20 0.05 [−0.25, 0.25] 4.2

60 1 0.02 [−0.75, 0.0] 10 0.04 [−0.38, 0.37] 20

70 - - [−0.88, 0.0] 10 0.03 [−0.44, 0.44] -

80 - - [−0.97, 0.0] 9 0.03 [−0.49, 0.48] -

85 - - [−0.99, 0.0] 8 0.03 [−0.5, 0.49] -

5.3. Influence of the Approximation Order

Now let us consider how the order of approximation affects the computational grid
and the performance of the numerical scheme. Table 3 shows the mesh sizes for sev-
eral Padé approximation orders, second- and fourth-order approximations of the vertical
operator (11). It is observable that the fourth-order Numerov scheme can significantly
increase the performance of the whole scheme without increasing the computational costs.
Bearing in mind that increasing the rational approximation order leads to an increase in
computations at each step by x, Table 3, in addition to the mesh sizes, contains the value
of asymptotic complexity (12), which is linearly related to the runtime of the propagation
algorithm. The use of higher-order rational approximations also gives a significant in-
crease in the performance of the numerical scheme. It is noteworthy that for the widely
used Crank–Nicolson scheme, which corresponds to the approximation order [1/1], and
propagation angle 30◦, it appears to be impossible to found a reasonable grid.

Table 3. Optimal values of the cell sizes. ε = 10−3, xmax= 1000 m, θmax = 30◦, f = 500 Hz, c0 = 1591 m/s.
“ - ” means that a reasonable grid could not be found.

Padé Order 2nd Order 4th Order Gain
∆x (m) ∆z (m) p/(∆x∆z) ∆x (m) ∆z (m) p/(∆x∆z)

[1/1] - - - - - - -

[2/3] 3 0.006 166.6 4 0.08 9.4 17.7

[3/4] 9 0.006 74.1 10 0.1 4.0 18.5

[6/7] 30 0.006 38.8 40 0.09 1.9 20.4

[7/8] 50 0.005 32.0 50 0.1 1.6 20

[8/8] 50 0.006 26.6 50 0.1 1.6 16.6

5.4. Effect of the Inhomogeneous Sound Velocity Profile

Finally, let us consider the optimization of the computational grid in a medium with
an inhomogeneous refractive index. Suppose that the sound speed varies between 1500 and
1550 m/s. Table 4 shows the optimal values of the cell sizes for various distances from the
source xmax. Comparing Tables 1 and 4, it can be seen that the presence of inhomogeneities
of the refractive index leads to a decrease in the required cell sizes. As before, shifting
parameter c0 gives an opportunity to increase the performance by about three times.
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Table 4. Optimal values of the cell sizes. ε = 10−3, θmax = 30◦, f = 500 Hz, rational approximation
order is [7/8].

xmax (m) c0 = 1500 m/s c0 = 1616 m/s Gain
∆x (m) ∆z (m) [ξmin, ξmax] ∆x (m) ∆z (m) [ξmin, ξmax]

1000 10 0.1

[−0.31, 0.0]

30 0.1

[−0.16, 0.16]

3
2000 10 0.1 30 0.1 3
5000 10 0.08 30 0.09 3.375

10,000 10 0.06 30 0.07 3.5
50,000 10 0.04 20 0.05 2.5

5.5. Specifics of the Optimization Algorithm Implementation

The computational grid optimization algorithm is implemented by simply iterating
through various values of the computational grid cell sizes. This explains the fact that
in the tables above, the optimal values are rounded. Given the small range of possible
values, this simple approach turns out to be quite acceptable in terms of performance. In
principle, it would be possible to implement minimization more efficiently. Bearing in
mind the fact that the error monotonically increases with increasing grid step, it is possible
to implement a binary-search-based algorithm. When the performance is critical, one can
also use pre-tabulation of parameters for various input data.

Maximum propagation angle can be estimated by the following formula

θmax = max
(

θsrc
max, θbottom

max

)
,

where θsrc
max is the maximum angle of the antenna pattern, θbottom

max is the maximum slope
angle between bottom and water. Both parameters are estimated directly from the direction
of the source and the bottom relief.

6. Numerical Results

The solutions obtained by the wavenumber integration (WNI) method are used as
a reference in all examples [16]. The WNI method is not an asymptotic one (unlike the
normal mode method), and allows for a solution to be made on an arbitrary computational
grid, which is convenient for point-by-point comparison. All the presented numerical
examples are computed using an open source Python 3 software library [49] developed by
the author.

6.1. Waveguide with a Perfectly Reflective Bottom

In the first example, we will consider the effect of the wave propagation angle on
the accuracy of the numerical scheme. To do this, consider an extremely simple scenario:
falling and multiple reflections of a directional beam. The acoustic field is generated by
a narrow beam with a width of 1◦, directed at an angle of 30◦. The acoustic frequency of
the source is 1000 Hz, the depth is 100 m. The sound speed is constant throughout the
integration space and is equal to 1500 m/s. The Neumann condition is established on the
lower boundary: u′z(x, z = 300) = 0. Figure 3 demonstrates the results of the numerical
modeling using the Padé approximation method for two values of c0: 1500 m/s and 1591 m/s
(corresponding to (15)). In both cases, the same grid was used: ∆x = 24 m, ∆z = 0.07 m,
rational approximation order is equal to [7/8]. The cell sizes was obtained for c0 = 1591 m/s
and maximum propagation angle θmax = 31◦. Thus, the computational costs in both cases were
identical. However, we see that the result obtained for the suboptimally selected c0 = 1500 m/s
differs from the expected one, namely, it fades rapidly as it moves away from the source.

Now let us compare the obtained results with the WNI method. Figure 4 shows a
two-dimensional error distribution between the WNI method and the Padé method. In
this example, different meshes were used: ∆x = 24 m, ∆z = 0.07 m for c0 = 1591 m/s and
∆x = 10 m, ∆z = 0.06 m for c0 = 1500 m/s. It can be seen that in both cases the results are
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barely distinguishable; however, the optimal choice of the parameter c0 allows for the use a
much more sparse grid.
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Figure 3. Waveguide with a perfectly reflective bottom. Acoustic pressure distribution (20 log |ψ|),
computed on a grid with cells ∆x = 24 m, ∆z = 0.07 m using optimal c0 = 1591 m/s (left) and
suboptimal c0 = 1500 m/s (right).
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Figure 4. Waveguide with a perfectly reflective bottom. Error distribution between the Padé ap-
proximation method and the WNI method (10 log |ψPade − ψWNI |). ∆x = 24 m, ∆z = 0.07 m,
c0 = 1591 m/s (left) and ∆x = 10 m, ∆z = 0.06 m, c0 = 1500 m/s (right).

6.2. Waveguide with an Inhomogeneous Refractive Index

In this example, we will add the inhomogeneity of the sound speed and show how it
affects the accuracy and the required grid. We introduce the following linearly increasing ver-
tical gradient of the sound speed: c(z = 0) = 1500 m/s and c(z ≥ 500) = 2000 m/s. Figure 5
demonstrates the modeling results for the two various meshes. In the first case, maximum
propagation angle θmax = 31◦ and the sound speed variations in range [1500, 2000] m/s were
accounted for during the optimization process. The corresponding computational parameters
are ∆x =6 m, ∆z = 0.07 m, c0 = 1806 m/s. In the second case, the sound speed variations
were ignored, leading to the following parameters: ∆x =20 m, ∆z = 0.07 m, c0 = 1806 m/s.
It is clearly seen that ignoring the variation in refractive index leads to the fact that not the
entire spectrum of waves is correctly taken into account.

Figure 6 depicts a two-dimensional error distribution between the WNI method and
the Padé method. The results are presented for the two different values of c0. In both
cases, variations of the refractive index were taken into account when optimizing the
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computational grid. As in the previous example, in both cases it is possible to achieve
almost identical results, but the optimized value of c0 allows to decimate the computational
grid without reducing the solution accuracy.
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Figure 5. Waveguide with an inhomogeneous refractive index. Acoustic pressure distribution
(20 log |ψ|). ∆x =6 m, ∆z = 0.07 m, c0 = 1806 m/s (left) and ∆x =20 m, ∆z = 0.07 m, c0 = 1806 m/s
(right).
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Figure 6. Waveguide with an inhomogeneous refractive index. Error distribution between the
Padé approximation method and the WNI method (10 log |ψPade − ψWNI |). ∆x =6 m, ∆z = 0.07 m,
c0 = 1806 m/s (left) and ∆x = 0.9 m, ∆z = 0.06 m, c0 = 1500 m/s (right).

6.3. Propagation in a Munk Profile

In the last example, we will demonstrate the propagation of acoustic waves in a deep-
water Munk waveguide [16]. This is one of the most frequently encountered sound velocity
profiles in the deep sea. Operational frequency f in this example is set to 50 Hz. Sound
speed profile is depicted in Figure 7. Figure 8 demonstrates the result obtained by the
proposed method and the error distribution. It is clearly seen that the error between the
Padé and WNI solutions fits within the established acceptable range.
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Figure 7. The Munk profile.
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Figure 8. Propagation in the Munk profile. Acoustic pressure distribution (20 log |ψPade|) (left) and
error distribution (10 log |ψPade − ψWNI |) between the Padé and WNI solutions (right).

7. Conclusions

The proposed mesh optimization algorithm allows the parabolic equation method to
be used as part of complex software systems without the need for manual intervention. Au-
tomatic selection of parameters prevents human errors and overconsumption of computing
resources. Optimization of reference speed of sound c0 allows performance to be enhanced
by 3–20 times, while the greatest gain is achieved at large propagation angles. It is shown
that the density of the computational mesh depends on a number of parameters: maximum
angle of propagation, variation of the refractive index, required accuracy and maximum
distance from the source. In general, it can be seen from the provided analysis that the
complexity of the propagation medium, i.e., an increase in the mentioned parameters,
leads to a thicker mesh. A dense grid is more difficult to select manually and requires
more computational resources. Thus, the proposed method is most useful for complex
propagation conditions.
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The established optimization method does not introduce any new design changes
to a well-researched and proven step-by-step numerical scheme. This means that all its
properties, including stability, remain in force. In addition, the proposed method does not
require any significant changes to the existing software implementations.

Expansion of the proposed method to the elastic equation is planned. Given the growing
interest of the community in modeling in a substantially three-dimensional environment [1,13],
the proposed method should also be extended to this case. Bearing in mind the previously
mentioned principle of mathematical model universality, the proposed method can find
applications in a number of other subject areas and mathematical models where parabolic
equations are used.
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