
Citation: Yang, Z.; Lai, Y.; Zhou, H.;

Tian, Y.; Qin, Y.; Lv, Z. Improving

Ship Detection Based on Decision

Tree Classification for High

Frequency Surface Wave Radar. J.

Mar. Sci. Eng. 2023, 11, 493.

https://doi.org/10.3390/

jmse11030493

Academic Editor: Rafael Morales

Received: 14 January 2023

Revised: 19 February 2023

Accepted: 23 February 2023

Published: 24 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Article

Improving Ship Detection Based on Decision Tree
Classification for High Frequency Surface Wave Radar
Zhiqing Yang 1, Yeping Lai 2, Hao Zhou 3,* , Yingwei Tian 3 , Yao Qin 1 and Zongwang Lv 1

1 College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
2 Peng Cheng Laboratory, Shenzhen 518055, China
3 School of Electronic Information, Wuhan University, Wuhan 430072, China
* Correspondence: zhou.h@whu.edu.cn

Abstract: The traditional constant false alarm rate (CFAR) method, with fixed parameter settings and
single noise background calculation, is unable to intelligently catch the current detection background.
To improve the performance of the CFAR method, this paper proposes a target detection method based
on decision tree classification (DTC) for high-frequency surface wave radar (HFSWR). Firstly, the
training sample set and labels are obtained by means of a ship automatic identification system (AIS).
Then, feature vector of range dimension, Doppler dimension and range-Doppler (RD) dimension is
extracted by way of cell averaging, ordered statistics, censored mean and trimmed mean. Finally,
DTC is used to recognize “true” and “false” targets in feature space. Experimental results show
that, under the same number of detection targets, the DTC method is superior to traditional CFAR
methods, and the accuracy of target detection can be increased by more than 5%.

Keywords: HFSWR; decision tree; target classification and detection

1. Introduction

HFSWR can realize over-the-horizon monitoring of “soft targets” (wind, wave, current)
and “hard targets” (ship and low-altitude aircraft) by using the characteristics of short-wave
diffraction propagation. Therefore, it has received significant attention in most countries.
At present, HFSWR mainly uses two kinds of antennas: phased antenna array and compact
antenna [1,2]. The HFSWR with compact antenna, which has been widely used, has the
advantages of low cost, small footprint, and all-weather and large-scale monitoring [3–5].
However, the SNR of the ship echo is very low due to the impact of sea and land clutter,
the disturbance of the target radar cross section, and external interference, which makes the
detection of such targets extremely difficult [6,7]. Therefore, how to improve the detection
performance of a ship target in a complex background is one of the major challenges.
Currently, there are several representative research methods in HFSWR target detection.

(1) CFAR method based on clutter background model. The CFAR method can automat-
ically adjust the decision threshold to achieve adaptive detection. Based on the mean value
of clutter samples on both sides of a cell under test (CUT), a cell averaging (CA)-CFAR
method was proposed by Finn [8]. This method has the best detection performance under
the uniform background environment. However, ship target detection in HFSWR often
suffers complex situations, such as multi-target and clutter edge. Therefore, Hansen and
Trunk proposed the greatest of (GO)-CFAR and the smallest of (SO)-CFAR to improve the
performance of the CA method for the non-uniform clutter environment. However, they
can only solve either multi-target or clutter edge [9,10]. Inspired by image median filtering
technology, Rohling et al. [11] proposed an ordered statistics (OS)-CFAR method. OS-CFAR
performs better in multi-target detection than CA-CFAR, and its detection ability was mod-
erate under a uniform environment. Subsequently, some improved methods are proposed
based on OS-CFAR, such as: censored mean level detector (CMLD)-CFAR [12], trimmed-
mean (TM)-CFAR [13], automatic censored mean level detector (ACMLD)-CFAR [14], two
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dimensional (2D)-OS-CFAR [15], etc. To deal with a complex background, some adaptive
methods have also been proposed. Heterogeneous clutter estimate (HCE)-CFAR estimates
clutter the intensity by adjusting the separation points of two clutter regions in the reference
window, and obtains the adaptive detection threshold [16]. Variability index (VI)-CFAR
realizes the adaptive detection by selecting one of CA, GO, and SO to estimate clutter inten-
sity according to the mean value ratio of the clutter in the leading and lagging reference
windows and the variable index [17]. In recent years, for non-uniform and heterogeneous
clutter environments, some researchers have proposed first order difference (FOD)-CFAR,
second order difference (SOD)-CFAR, and adaptive 2D-OS-CFAR according to the statistical
characteristics of clutter in the reference window [18–20].

(2) Detection method based on geometric feature difference of target and clutter. In
a range Doppler (RD) image, the Bragg region along the range dimension is regarded as
a linear shape, and ship target as a point. Grosdidier et al. [21,22] uses morphological
component analysis to suppress sea clutter and separate target signals. The simulation
results show that this method can effectively detect targets and has broad application
prospects. However, sea clutter is not strictly of a linear shape, but rather a columnar
shape which is broadened and decayed with distance. Therefore, it is difficult for the
method to accurately separate sea clutter and easy to remove the true target signal. In an
RD image, Jangel et al. [23] regards sea clutter as a low-frequency component and a target
as a high-frequency component, and used the wavelet decomposition and reconstruction
technology to suppress sea clutter, and then obtained the ship target signal with a single
point characteristic. The disadvantage is that it is difficult to select the appropriate wavelet
and the number of wavelet decompositions cannot be adjusted adaptively, so the scope
of use is limited. For the shortcomings of [23], Li et al. [24] adaptively determined the
wavelet transform scale by means of peak SNR and then used the fuzzy set algorithm to
enhance the high frequency components of target signals to separate the sea clutter and
target. Before using the wavelet decomposition to suppress sea clutter, Lu et al. [25] firstly
carried out the principal component analysis (PCA) of the coherent echo signal and then
reconstructed the RD spectrum. The experimental results showed that the SNR of the target
could be increased by more than 10dB, which improved the detection ability of the method
on weak targets. In the time-frequency (TF) domain, the ship target has long duration and
high energy concentration, while noise is chaotic and of short duration. Based on the TF
characteristics of target signals, Cai et al. [26] separated the TF ridges on the TF plane by
the image segmentation method to realize the detection of weak targets. Then, on the basis
of [26], Yang et al. [27,28] proposed the TF-CFAR method by combining the advantages
of TF and the image processing method, which achieved better detection performance in
multiple targets, clutter edge targets and weak targets for HFSWR.

(3) Target detection method based on learning classification. With the popularity of
machine learning, the application of the learning classification method to HFSWR target
detection has attracted the attention of some researchers. Based on the feature difference of
target, clutter and interference in RD images, Zhang et al. [29] established a lightweight
faster region-based convolutional neural network to improve the performance of HFSWR.
Next, Zhang et al. [30] also proposed a kind of semi-supervised self-distillation algorithm
(S3D) to classify and locate targets. It uses a higher false alarm rate to locate candidate
targets. Next, the S3D algorithm is used to retain real targets and remove false targets.
However, the detection precision of this method is influenced by a number of training
parameters. Based on the convolutional neural network-extreme learning machine (CNN-
ELM) model, Wu et al. [31] proposed a two-stage cascade detector for HFSWR. After that,
on the basis of [31], Wu et al. [32] proposed an intelligent detection algorithm that includes
two states: preprocessing and target detection. Firstly, the clutter region is identified
and located by preprocessing, and then a two-level classifier is used to distinguish the
target signals. This method has a good recognition effect on targets in the clutter region.
However, for the target signal with a low SNR, it is difficult to distinguish the target features.
Consequently, the detection performance of this method is poor. Ji et al. [33] used a superior
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deep learning algorithm and an adaptive dictionary learning algorithm to separate a variety
of unwanted echo signals. In his work, the target signal obscured by clutter was identified
and good detection results were obtained. The results of the above methods prove the
feasibility and effectiveness of introducing an intelligent learning method into HFSWR
target detection.

One disadvantage of the traditional CFAR method is that the estimation of back-
ground noise only adapts to a single scenario. For example, CA is suitable for uniformly
distributed background noise and OS is suitable for background noise with large fluctua-
tions. Fortunately, DTC can integrate multiple clutter intensity estimation methods through
multi-dimensional feature extraction, such as range dimension, Doppler dimension, RD
dimension, sample adjacent units, etc. to obtain a more flexible and stable detection than
the traditional CFAR method. By using a supervised machine learning method, this pa-
per proposes a method of ship target detection based on DTC for HFSWR. Compared
with traditional CFAR methods, the DTC method has more obvious advantages in target
detection performance.

The remainder of this paper is organized as follows. Section II introduces the principle
and process of the DTC method. Section III introduces the methods of data sample acquisi-
tion and feature extraction. Section IV gives the experimental results. Section V includes
the discussion, and Section VI obtains a brief conclusion.

2. Detection Method

The process of the radar-target detector to make “true” and “false” judgements on a
signal is similar to the process of a machine learning algorithm for the binary classification
of input samples. Based on the tree structure, decision tree can make decisions on the
complex problems, which can realize the classification task of HFSWR targets, as shown in
Figure 1.
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Figure 1. The decision tree of HFSWR target detection.

A decision tree consists of a root node, several inner nodes, and leaf nodes. The
critical step in the process of generating the decision tree is how to optimistically divide the
attributes, that is, the samples contained by the branch nodes belong to the same category
as far as possible, and the “purity” of the nodes is getting higher and higher. Information
entropy is the most commonly used indicator to measure the purity of a sample set [34].
Suppose that the proportion of the k-th sample in the current training sample set D is pk
(k = 1, 2, . . . , M), then the information entropy of D is defined as

Ent(D) = −
M

∑
k=1

pk log2 pk, (1)
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The smaller the Ent(D) indicates the higher purity of D. Assuming that the discrete
attribute a has V possible values

{
a1, a2, · · · , aV}, is used to divide the sample set D, and

V branch nodes are generated. The v-th branch node contains all the samples in D whose
value is av on attribute a, denoted as Dv. According to different branch node including the
different number of sample, the weight of the branch node is given by |Dv|/|D|, and
the information gain obtained by the division of the attribute a to the sample set D can
be calculated.

Gain(D, a) = Ent(D)−
V

∑
v=1

|Dv|
|D| Ent(Dv), (2)

The greater the information gain, the greater the purity improvement achieved by
using attribute a for division. Therefore, information gain is used to select the attributes of
the decision tree.

a∗ = argmax
a∈A

Gain(D, a), (3)

a∗ represents the optimal partition attribute of the current node, and A is the set of
training sample attributes. Through recursion and attribute division, until the sample set
contained by the current node is empty and cannot be divided any further, a decision tree
with strong generalization ability is finally generated. In training a classification tree, the
operating environment is Matlab 2016a [35]. The values of the tree depth controllers for
growing classification trees are the maximum number of splits, minimum leaf size and
minimum parent size. They are set to 100, 1, and 10, respectively. The processing flowchart
of HFSWR target detection based on DTC is shown in Figure 2.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 4 of 13 
 

 


=

−=
M

k
kk ppD

1
2log)Ent( , (1) 

The smaller the Ent(D) indicates the higher purity of D. Assuming that the discrete 
attribute a  has V possible values { }Vaaa ,,, 21  , is used to divide the sample set D, and 
V branch nodes are generated. The v-th branch node contains all the samples in D whose 
value is va  on attribute a , denoted as Dv. According to different branch node including 
the different number of sample, the weight of the branch node is given by |Dv|/|D|, and 
the information gain obtained by the division of the attribute a to the sample set D can be 
calculated. 

)Ent()Ent(),Gain(
1

v
V

v

v

D
D

D
DaD 

=

−= , (2) 

The greater the information gain, the greater the purity improvement achieved by 
using attribute a  for division. Therefore, information gain is used to select the attributes 
of the decision tree. 

),Gain(maxarg* aDa
Aa∈

= , (3) 

*a  represents the optimal partition attribute of the current node, and A is the set of 
training sample attributes. Through recursion and attribute division, until the sample set 
contained by the current node is empty and cannot be divided any further, a decision tree 
with strong generalization ability is finally generated. In training a classification tree, the 
operating environment is Matlab 2016a [35]. The values of the tree depth controllers for 
growing classification trees are the maximum number of splits, minimum leaf size and 
minimum parent size. They are set to 100, 1, and 10, respectively. The processing flowchart 
of HFSWR target detection based on DTC is shown in Figure 2. 

 
Figure 2. The processing flowchart of DTC method. 

3. Sample Acquisition and Feature Extraction 
3.1. Sample Acquisition 

After pulse compression and coherent integration, ship target echo presents as a 2D 
sinc function in the RD spectrum, and has a small amount of expansion in both range and 
Doppler dimension, showing a peak shape similar to a cone. Range, speed, heading and 
azimuth information of a ship obtained by AIS can be converted to the RD spectrum 
through mapping (see Figure 3a), but the position of the AIS record after mapping may 

Figure 2. The processing flowchart of DTC method.

3. Sample Acquisition and Feature Extraction
3.1. Sample Acquisition

After pulse compression and coherent integration, ship target echo presents as a 2D
sinc function in the RD spectrum, and has a small amount of expansion in both range
and Doppler dimension, showing a peak shape similar to a cone. Range, speed, heading
and azimuth information of a ship obtained by AIS can be converted to the RD spectrum
through mapping (see Figure 3a), but the position of the AIS record after mapping may
not exactly fall on the peak point (see Figure 3b). The AIS record in the red dashed box in
Figure 3a corresponds to that in Figure 3b, and is located at the 17th range bin. Therefore,
in order to increase the reliability of positive samples, the intersection of peak detection
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and CFAR detection is used to match with AIS targets to obtain positive samples labeled as
+1. The criterion of matching is no more than one upper and lower range resolution unit,
and no more than three Doppler resolution units on the left and right. Negative samples
were randomly selected in the region without AIS targets and labeled as −1. In Figure 3a, it
can be seen that the radial velocity of some ships similar to ocean current velocity fall into
the first-order Bragg region, and are completely shielded. When taking samples, such ship
target signals are not considered. Meanwhile, AIS target samples in the zero-frequency
region are not considered.
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Figure 3. RD image and Power spectrum. (a) RD image; (b) power spectrum.

3.2. Feature Extraction

Build a sample set {xk|yk}, k = 1, . . . , M, where xk is the feature vector of the k-th
sample. yk represents the corresponding sample label, “+1” represents the positive sample,
and “−1” represents the negative sample. For each sample, its feature vector contains the
following three types of dimensions (see Figure 4).
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(a) Range dimension: take six reference units respectively from outside of the above and
below protection unit;

(b) Doppler dimension: take five reference units respectively from outside of the left and
right protection unit;

(c) RD dimension: select 5 × 5 data centered on the CUT, eight units in the middle layer
as protection units, and 16 units in the outer layer as reference units.



J. Mar. Sci. Eng. 2023, 11, 493 6 of 14

Suppose the power of target is S, the sample of reference unit is Ri, i = 1, . . . , 2n,
consisting of the leading and lagging sliding window. For the above three dimensions, the
CA, OS, CMLD and TM methods are used to calculate the feature values of target SNR,
which are described below.

(1) The CA method selects the average power of all reference units as the estimation of
clutter power and calculates target SNR as

xca = 10lg
S

1/2n
2n
∑

i=1
Ri

, (4)

(2) The OS method sorts all reference units according to the intensity of clutter power,
and selects the 9th, 7th and 11th as the estimation of clutter power in range dimension,
Doppler dimension, and RD dimension, respectively, to calculate target SNR as

xos = 10lg
S
Ri

, i = 7, 9, 11, (5)

(3) The CMLD method sorts all reference units according to their power intensity, and
then deletes r large reference values starting from the maximum value, where r is 2.
The average value of the remaining reference units is used as the estimation of clutter
power to calculate target SNR as

xcmld = 10lg
S

1
2n−r

(
2n−r

∑
i=1

Ri

) , (6)

(4) The TM method sorts all reference units according to power intensity, eliminating r1
smaller from the minimum value and r2 larger from the maximum value, where r1
and r2 are taken as 1. The average value of the other reference units is used as the
estimator of clutter power to calculate target SNR as

xtm = 10lg
S

1
2n−r1−r2

(
2n−r2

∑
i=r1+1

Ri

) , (7)

By using four methods to calculate the feature values of target SNR in three dimensions,
it is able to integrate clutter samples with different dimensions and various methods to
estimate clutter intensity, so as to achieve “true” and “false” target discrimination in
the feature space, thereby improving the capability of radar target detection. The cross-
loop/monopole (CLM) antenna has three channels to receive echo data, and each channel
is traversed for feature extraction. The 36-dimensional feature values can be obtained
cumulatively. Finally, the complete training sample set can be obtained by combining xk
with its label.

3.3. Feature Analysis

Figure 5 shows the distribution of the features for different samples collected in one
day, in which the ratio of positive and negative samples is 1:1. By adjusting false alarm
probability, sample sets of different sizes can be obtained. When the number of samples
is equal to 3500, the values of feature 7 and 9, as well as feature 5 and feature 25, can be
almost completely separated, and a very small number of positive and negative samples
are overlapped together, as shown in Figure 5a,b. When the number of samples is equal to
7000, most negative samples of feature 7 and feature 9, feature 5 and feature 25, overlap
with the positive samples, and the degree of feature separation is relatively poor, as shown
in Figure 5c,d. It can be inferred that the larger proportion of positive samples with low
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SNR will (negative samples selected from non AIS targets in long-distance) result in the
poor discrimination between positive and negative sample features. Therefore, the trained
model will generate more false alarms during prediction in this situation, and the detection
probability will decline.
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4. Experimental Results

The experiment uses the radar data collected by the Ocean State Monitoring and
Analyzing Radar, type SD (OSMAR-SD), designed by Wuhan University, from September
to November [36]. The AIS data used in this experiment is synchronized with the radar
data. The radar is located in Dongshan, Fujian, China. The radar parameters are shown in
Table 1.
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Table 1. HFSWR parameters.

Parameter Value

Carrier frequency (MHz) 13.15
Sweep band (kHz) 60

Range resolution (km) 2.5
Velocity resolution (m/s) 0.0825

Receive antenna Cross-Loop/Monopole
Sweep cycle (s) 0.54

Coherent integration time (CIT) (s) 138.24

Among CFAR processing methods, mean level, ordered statistics and adaptive CFAR
are relatively representative radar target detection methods with good detection perfor-
mance in practical applications. Therefore, 2D-CA-CFAR, 2D-OS-CFAR, 2D-VI-CFAR, and
2D-FOD-CFAR are chosen for comparison. Compared with OS-CFAR, 2D-OS-CFAR means
that the form of the reference window is two-dimensional, namely the rectangular reference
window in Figure 4. Other comparison methods also refer to this meaning. Under the
condition that the number of detected targets remains the same within one day, AIS targets,
2D-OS-CFAR targets and DTC targets within a field of radar data are marked respectively
in Figure 6. DTC and 2D-OS-CFAR do not consider the ship targets, which are submerged
by the Bragg region. The DTC method cannot only detect most 2D-OS-CFAR targets, but
also detects other suspected targets, which have more matching pairs with AIS targets, as
shown in the black dashed box in Figure 6.
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4.1. Matching Rate

The matching rate shown in Figure 7 is obtained by classifying the echo data of seven
days using the model trained by the data collected on 27 September. Here, the matching
rate refers to the ratio of the matched target to the number of detected targets. It can be seen
from Figure 7 that the matching rate of the DTC method is more than 5% higher than for the
other four CFAR methods, and has same changing trend with them, which indicates that
the DTC method can integrate the advantages of multiple estimation methods of clutter
intensity by feature extraction, thus improving the ability of radar target detection.
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Table 2 shows the summary of the detected and matched targets of the seven-day
radar data. For the four CFAR methods, 2D-OS-CFAR has the best detection performance,
and 2D-FOD-CFAR has the worst. The average matching rate of the DTC method is 5.82%
higher than that of 2D-OS-CFAR, and 7.44% higher than that of 2D-FOD-CFAR. The above
results indicate the superiority of the DTC method.

Table 2. Total number of matched targets and average matching rate.

Method Total Matched Targets Total Detected Targets Average Matching Rate (%)

2D-CA-CFAR 28,404

78,883

36.00%
2D-OS-CFAR 28,593 36.24%
2D-VI-CFAR 28,353 35.94%

2D-FOD-CFAR 27,312 34.62%
DTC-Method 33,184 42.06%

4.2. SNR

When the SNR of target is lower than 10 dB, Figure 8 compares the number of matched
targets of the DTC method with the 2D-OS-CFAR method over 7 days. As shown in Figure 8,
the DTC method is superior to the 2D-OS-CFAR method in weak target detection, and the
number of matched targets under the DTC method is 2.3~3.4 times that of the 2D-OS-CFAR
method. The results show that the DTC method can overcome the shortcomings of the
single background noise calculation in the CFAR method and improve the performance in
weak target detection through the fusion of multiple features.
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4.3. Target Association

In HFSWR target detection, the radial velocity of the ship target generally changes
slowly. Therefore, in the time of continuous multi field data, the velocity change of the
ship target will form a continuous trajectory. For target association, the distance threshold
is 2 km, and the speed threshold is 0.4 m/s. If the target cannot be associated for three
consecutive fields, the trajectory will be terminated. Figure 9 shows the associated dots
of the matched target of the 2D-OS-CFAR and DTC methods on 26 September. Different
trajectories in Figure 9 are shown in different colors. The dots of the same color represent a
possible target. From the density of trajectories in Figure 9, it can be found that the DTC
method has more continuous trajectories than the 2D-OS-CFAR method, in which the DTC
method has 245 trajectories with an average length of 17, while the 2D-OS-CFAR method
has 204 trajectories with an average length of 16. The results show that the detection
performance of the DTC method is better than that of the 2D-OS-CFAR method.
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Table 3 shows the results of the associated trajectories of the matched targets for the
five methods. Under the same number of detected targets, the number of trajectories
from the matched targets by the DTC method is 31.7%, 19.5%, 31.7% and 26.2% more than
that of the 2D-CA-CFAR, 2D-OS-CFAR, 2D-VI-CFAR and 2D-FOD-CFAR, respectively,
and the average length is longer than 2D-CA-CFAR and 2D-VI-CFAR, and shorter than
2D-OS-CFAR and 2D-FOD-CFAR. The results of the associated trajectories show that the
detection performance of the DTC method is superior to these CFAR methods.

Table 3. The results of the associated trajectories from the matched target using five methods.

Method Number of Associated Trajectories Average Length

2D-CA-CFAR 186 15.65
2D-OS-CFAR 205 16.68
2D-VI-CFAR 186 15.30

2D-FOD-CFAR 194 16.88
DTC-Method 245 16.62
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4.4. Generalization Ability

In order to further study the generalization ability of the DTC method, the predic-
tion model trained by the radar data acquired on 27 September is applied to the data of
4 October, 5 October, 1 November, and 2 November for target classification. Meanwhile,
when obtaining training samples, by adjusting the number of matching targets, the classifier
with the function similar to CFAR is realized. The relationship between the number of
detection targets and the matching rate is shown in Figure 10. The number of detection
targets in the horizontal axis from less to more corresponds to the number of training
samples of 2160, 3228, 4072, 4892, respectively. The detection performance is similar over
four days, which demonstrates that the DCT method is robust with the measured radar
data on different dates. As the number of detection targets increases, the matching rate
decreases gradually. The reason for this is that with the big increase in the number of
detection targets, the number of false targets is far more than the number of AIS targets,
resulting in an overall low matching rate for all methods. As can be seen from Figure 10,
the detection performance of the DTC method is better than that of the other four CFAR
methods, which indicates that the DTC method has generalization ability.
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5. Discussion

In practice, if needed, other estimation methods of clutter intensity can be extended
to extract features of training samples, but the more features that are used, the more time
that is taken to train the classifier and predict new data. Therefore, robust features can be
selected for model training by field test results. Using an Intel i5-9400 CPU, the proposed
DTC method takes 281.47 s to process the first 30 range bins of the 617 field measured data
obtained on 26 September 2015. The mean time of processing of each field data is about
0.46 s. The detection time of the DTC method refers to the time taken by the prediction stage
after model training was completed. In addition, a large proportion of low SNR targets
included in the training samples will result in low feature discrimination, which further
leads to the increase in false alarms in prediction results. The experimental results show
that the number of prediction targets corresponding to the number of training samples of
2000–5000 is 9000–65,000, and the appropriate number of training samples can be selected
for adjusting false alarms in a real-time application. When the number of training samples
is equal to 2160, Table 4 shows the experimental results of the DTC method with PCA and
without PCA over two days. After PCA keeps enough components to explain 95% variance,
the number of targets detected by the DTC method increased by more than half, and the
matching rate decreased by nearly 15%. One possible reason is that the PCA reduction
dimension will lose part of the information which can precisely distinguish the sample
space. After losing the information, the sample space cannot be sufficiently distinguished
and the accuracy of the detection results declines.

Table 4. Experimental results of the DTC method with PCA and without PCA.

Time (Day/Month) 26 September 27 September

Method Detected
Number

Matched
Number

Matching
Rate (%)

Detected
Number

Matched
Number

Matching
Rate (%)

DTC with PCA 26,198 7292 27.83 21,345 5196 24.34
DTC without PCA 13,014 5509 42.33 8351 3285 39.33

6. Conclusions

By using prior AIS information to obtain training samples set and calculating the SNR
feature of target in the range dimension, Doppler dimension and R-D dimension based on
the CA, OS, TM, CMLD methods, the DTC method is applied to HFSWR target detection.
By adjusting the number of training samples, the DTC method can realize target detection
similar to CFAR. The matching rate of the DTC method is more than 5% higher than that
of the other four CFAR methods, the number of weak targets matched with AIS is more
than 2.3 times higher than that of the four CFAR methods, and the number of associated
trajectories is 19% more than that of the four CFAR methods. The experimental results
show that the DTC method has good generalization ability by integrating multiple features
and that it can improve the detection accuracy of a single CFAR method and the ability to
detect weak targets.
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