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Abstract: Heave compensation systems are essential for operations’ safety, reliability, and efficiency
in harsh offshore environments. This paper investigates the vibration suppression problem of a
type of deep-sea robot with the length of time variation and harsh operating environments for
active heave compensation systems, where hydraulic heave compensators implement actuators
with input nonlinearity, model coupling, and unknown nonlinear disturbances. A robust adaptive
output feedback control scheme based on the backstepping control method is designed to eliminate
deep-ocean robot vibration, where the adaptive law handles the system parameter uncertainty.
Meanwhile, a nonlinear disturbance observer (NDO) is introduced to overcome the effects of random
disturbances and model coupling. In addition, the stability of the whole system is proved according
to Lyapunov’s theory, and the scheme is shown to be feasible by theoretical analysis. Finally, a
comparative simulation study was conducted to validate the effectiveness of the proposed controller.

Keywords: adaptive control; nonlinear disturbance observer; output feedback; deep-sea robot lifting
system; active heave compensation

1. Introduction

With the rapid growth of modern industry, the development of marine resources
has been promoted. Still, it is a challenging task to move equipment and operations
on rough seas [1]. This challenge has stimulated and driven the rapid development of
remotely operated vehicle (ROV) technology [2]. Underwater robots are essential pieces of
technology for marine exploration and the exploitation of deep-sea resources. They allow
operators to remotely control the robots from surface vessels, making them indispensable
tools for deep-sea operations. Due to their remarkable features, such as high efficiency,
cost-effectiveness, large operating depth, and safety, underwater robots have become a
high-tech means of conducting deep-sea missions [3].

However, the marine environment is complex and volatile. The ship is subject to
significant free motion in extreme sea conditions, which includes mainly heaving, flat
rocking, transverse rocking, and longitudinal rocking motion, which will lead to dramatic
changes in the heaving motion amplitude and umbilical cable tension of the underwater
robot, seriously affecting the safety and efficiency of marine operations [4]. To address the
previous questions, heave compensation systems have been researched and developed in
the past few decades and are widely used in marine operation equipment such as for deep-
sea exploration, deep-sea salvage, and deep-sea oil and gas extraction [5]. Furthermore, they
can eliminate the lifting and sinking motion of the surface vessel relative to the underwater
robot, thus avoiding the impact load caused by the cable’s slack and effectively preventing
the damage and breakage of the cable [6]. The active heave compensation system consists
of sensors that detect the current motion state of the vessel and the underwater robot
and transmit it to the controller, which then actively compensates for it via a flexible
umbilical cable. The hydraulic unit supplies power to the controller, as shown in Figure 1,
which regulates the vertical umbilical cable length utilizing a hydraulic cylinder. Since the
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system is a distributed parameter system, and the robot heave compensation is performed
by a single control input at the hydraulic cylinder, more complex nonlinear dynamic
characteristics must be considered in the feedback control design [7].

Figure 1. Active heave compensation for ROV.

The primary function of the heave compensation system is to reduce underwater
robot vibration and prevent tension slack in the umbilical cable during offshore operations.
Woodacre et al. demonstrated the development and results of a model-predictive controller
(MPC) for a marine active heave compensation (AHC) system (a type of control system
used in offshore operations, particularly in the oil and gas industry) [8]. It is designed to
stabilize the motion of a vessel, such as a drilling rig or a floating production platform, by
compensating for the vertical movement caused by waves and currents. In this reference, a
control algorithm of the proposed hydraulic active heave compensation system is developed
using singular perturbation theory to cancel the relative motion between the spar top and
gripped preassembly bottom [9]. Under various factors, Liu et al. investigated the dynamics
of longitudinal and transverse coupling vibration of suspended riser pipes on deep-sea
drilling platforms. They showed that the longitudinal vibration of riser pipes was mainly
caused by vessels’ lifting and sinking motion on the sea surface [10]. Lee et al. investigated
the dynamic characteristics of cables. They introduced control methods such as PID, sliding
mode, and linear feedback to suppress overhead crane vibrations and reduce heaving
movements [11]. However, in the deep-ocean robot lifting system, the umbilical cable
and the underwater robot are frequently interfered with by different nonlinear elements,
including the nonlinear disturbance forces generated by undulating wave movement and
the nonlinear dynamics and uncertainties of hydraulic systems, which are insufficient to
be satisfied by the traditional control strategy [12]. Therefore, the online estimation and
adjustment of design parameters in active heave compensation systems can be a practical
approach for improving control performance [13]. Cao et al. applied adaptive control
techniques for a class of semi-strict feedback systems, which can achieve high tracking
accuracy for nonlinear systems even when the control parameters are unknown [14].
Nevertheless, conventional adaptive control is susceptible to random interference and
degraded control performance.

Robust control is particularly suitable for systems with unknown bounded pertur-
bations. It has been widely used to overcome engineering challenges [15] such as motor
control, robot control, etc. Xing et al. designed a robust adaptive control for a flexible
manipulator system with uncertain disturbance effects, and the controller effectively sup-
pressed the flexible manipulator’s deformation [16]. Facing the uncertainty of the system,
Islam et al. investigated robust sliding mode control to achieve the accurate tracking of the
flexible manipulator, which significantly reduces the impacts of unknown disturbances [17].
Li et al. proposed an ADRC-ESMPC dual-loop controller to be used in an active lift–sink
compensation system based on a hydraulic valve, and the simulation demonstrated the
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validity of the controller [18]. Yu et al. applied state-constrained variable structure control
to an active heave compensation system and verified the effectiveness of the controller
through experiments [19].

On the other hand, disturbance observer-based control techniques have progressed
over the past decades. They handle uncertainties in the model and compensate them feed-
forwardly [20–22]. Sun et al. proposed an observer-based state feedback control scheme to
reduce the vibration of flexible cables without measuring the velocity signal of the feedback
control, and the results showed that the method is more efficacious [23]. The strict form of
feedback is achieved by backstepping, but the iterative computation of backstepping leads
to a “complexity explosion” [24]. To avoid the repeated differentiation of higher-order
terms, Kim et al. used a dynamic surface control method to make the design of the controller
facile by introducing a first-order filter to change the differentiation operation into a simple
algebraic process [25]. Shi et al. combined a BP neural network and a PID controller
and applied them to the active–passive integrated heave compensation model, and the
hook displacement compensation rate of the crane device could reach more than 90% [26].
However, most heave compensation studies have focused only on fixed-length umbilical
cables and ignored time-varying-length umbilical cables. Currently, during the lowering
and retrieval phases of the robot, it is equally threatened by waves that cause the slack or
breakage of the cable. Therefore, there is an urgent need for an active heave displacement
compensation method that can be applied to time-varying-length umbilical cable lifting
systems. To overcome the above difficulties, this article establishes a theoretical model of
an active heave compensation system for deep-ocean robots and designs a controller based
on the model to realize the displacement compensation of deep-sea robots under unknown
external perturbations and internal coupling.

The other parts of the paper are arranged as follows. Section 2, a mathematical model
of the active heave compensation system for deep-sea robots, is established based on
Hamilton’s principle. The nonlinear disturbance observer (NDO) and the robust adaptive
feedback control are designed according to the backstepping control in the following section.
Section 4 carries out a comparison of the simulation results to prove the effectiveness of the
proposed control method. Finally, some conclusions are presented.

2. Dynamic Modeling
Vibration Control Equations

Considering the working principle of the active heave compensation system, the
umbilical cable lifting system is represented by a typical distributed parameter model.
Among them, the critical variables in the model are listed Table 1. And some other symbols
are shown as Appendix A (Table A1).

In this paper, the ROV lowering direction is chosen as the coordinate positive direction,
and then the varying length of the vertical cable during the ROV lowering and raising
can be represented as l(t), and then the running speed and acceleration are, respectively,
expressed as v(t) =

.
l(t) and a(t) =

..
l(t). Neglecting the lateral vibration of the ROV, the

longitudinal vibration displacement of the vertical section of the umbilical cable is defined
as u(x, t), and the introduction of differential operators “ D/Dt” is expressed as

D
Dt

=
∂

∂t
+ v(t)

∂

∂x
(1)

The kinetic energy of the ROV active lifting and sinking compensation system is
mainly composed of the kinetic energy of the umbilical cable, the hydraulic cylinder piston,
and the kinetic energy of the ROV.
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Table 1. System parameter nomenclature.

Symbol Definition Symbol Definition

mp Quality of the robot mt Quality of the piston
u(x, t) Vibration of cable at x xp Piston displacement

ut(x, t) Partial differentiation
with t ρ Hydraulic oil density

ux(x, t) Partial differentiation
with x Ap Active area

l(t) Time-varying length xv
Valve spool

displacement
ρl Linear density Kq Flow Gain

c Viscous damping Kc
Flow-pressure

coefficient

βe
Hydraulic oil bulk

modulus of elasticity Cd Flow coefficient

ps Supply pressure wv
Throttle window area

gradient

Bp Damping coefficient Ctp
Total leakage

coefficient

The potential energy in the system is composed of two main parts; one is the elastic
potential energy of the umbilical cable, and the other is the gravitational potential energy
of the ROV and the umbilical cable. The entire potential energy and the total virtual work
are obtained as follows

Ek =
1
2

ρl

∫ l

0

(
Du(x, t)

Dt
+ v
)2

dx +
1
2

mtut(0, t)2 +
1
2

mp

(
Du(l, t)

Dt
+ v
)2

(2)

Ep =
1
2

EA
∫ l

0
u2

x(x, t)dx−
∫ l

0
ρl gu(x, t)dx−mpgu(l, t) (3)

W = (Fl + dt(t))u(0, t) + dp(t)u(l, t)− Bput(0, t)− C
Du(l, t)

Dt
− c

∫ l

0

Du(x, t)
Dt

dx (4)

where EA is the axial tensile stiffness of the umbilical cable, and the symbol g is the
acceleration of gravity. Fl is expressed as hydraulic compensation system external load
force, dt(t) is expressed as an unknown disturbance to the hydraulic system, and dp(t) is
expressed as the boundary disturbance force on the ROV. Bp is defined as the hydraulic
cylinder piston damping coefficient. C indicates the ROV underwater damping coefficient,
and c represents the damping coefficient of the vertical section of the umbilical cable.
Therefore, the kinetic equation can be reduced to a partial differential equation and two
boundary conditions

ρl

(
D2u(x,t)

Dt2 + a
)
+ c Du(x,t)

Dt − EAuxx(x, t) = ρl g, ∀x ∈ (0, l)× [0, ∞)

mtutt(0, t) + Bput(0, t)− EAux(0, t) = Fl + dt(t), x = 0

mp

(
D2u(l,t)

Dt2 + a
)
+ C Du(l,t)

Dt + EAux(l, t) = mpg + dp(t), x = l

(5)

where D2u(x,t)
Dt2 = utt + 2vuxt + aux(x, t) + v2uxx.

Since Equation (5) is a partial differential equation with infinite degrees of freedom
and many parameters are time-varying, it is complicated to solve it directly. Therefore,
the infinite partial differential equations are generally transformed into finite-dimensional
ordinary differential equations using the newly modified assumption modal method for
this class of partial differential equations. Then, the ordinary differential equations are
solved by numerical methods.

Therefore, a new variable ξ is defined to normalize the original variable x for the
transformation of the time-varying domaininto a fixed domain [0, 1] of ξ, where ξ = x/l(t).
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Assume that the solution of the system can be approximated by a limited number of linear
compositions of known modal functions û(ξ, t)

û(ξ, t) = F0(ξ)u(0, t) + F1(ξ)u(l, t) +
n

∑
i=1

ψi(ξ)qi(t) (6)

where F0(ξ)u(0, t) + F1(ξ)u(l, t) is used to approximate the boundary condition term, and
n
∑

i=1
ψi(ξ)qi(t) to approximate internal longitudinal vibration. ψi(ξ) and qi(t) denote the trial

function and the time-dependent generalized coordinate vector only, respectively, which
can be expressed as ψ(ξ) = [ψ1(ξ), ψ1(ξ), . . . , ψn(ξ)]

T , q(t) = [q1(t), q2(t), . . . , qn(t)]
T ,

where the variable n is the positive integer. To satisfy the geometric boundary conditions,
F0(ξ) and F1(ξ) are chosen as F0(ξ) = 1− ξ, F1(ξ) = ξ, ψi(ξ) =

√
2 sin(iπξ), i = 1 ∼ n.

Before solving for the ROV active heave compensation system, an approximate solu-
tion of the equation is first expanded by the partial derivatives in the equation, using ξ and
t as independent variables. Combining Equation (6) with Du(l, t)/Dt, we obtain

D2u(l, t)
Dt2 =

(
ûtt +

2v
l
(1− ξ)ûξt +

v2

l2 (1− ξ)2ûξξ +
al − 2v2

l2 (1− ξ)ûξ

)∣∣∣∣
ξ=1

= ûtt(1, t) (7)

Substituting Equations (6) and (7) into Equation (5), update the boundary condition
equations

m
..
u(0, t) + Bp

.
u(0, t)− K[u(1, t)− u(0, t)] = U(t) + Fl + d2(t), ξ = 0

M
..
u(1, t) + C

.
u(1, t) + K[u(1, t)− u(0, t)] = mp(g− a) + d1(t), ξ = 1

(8)

where M and m are expressed as M =
(

mp + ρl l
∫ 1

0 F1(ξ)dξ
)

and m =
(

mt + ρl l
∫ 1

0 F0(ξ)dξ
)

,
respectively. K is the time-varying stiffness of the umbilical cable, expressed as

K = EA/l(t). d1 and d2 are uncertainty terms, d1(t) = −K
n
∑

i=1
ψT

i (1)qi(t) + dp(t), d2(t) =

K
n
∑

i=1
ψT

i (0)qi(t) + dt(t).

To facilitate the design of the hydraulic compensation system, it is necessary to simplify
the system, and several assumptions can be made:

1. Ignoring the effect of system piping pressure loss and dynamic properties;
2. Neglecting servo valve flow leakage;
3. The system supply pressure is stable and unchanging and oil tank pressure is 0.

Figure 2 shows the principal graph of the hydraulic compensation system. The
compensation system is mainly made up of hydraulic cylinders and servo valves, as
the servo valve often moves near the steady-state operating point, so the servo valve
spool moves to the right as the positive direction. The servo valve flow equation can be
expressed as

QL = Kqxv − Kc pL (9)

where xv is the servo valve spool displacement, Kq is the servo valve flow gain, and Kc is
the servo valve flow-pressure coefficient.

Kq = Cdwv

√
1
ρ
[ps − sgn(xv)pL] (10)

Kc = −
Cdwv|xv|

√
1
ρ (ps − sgn(xv)pL)

2(ps − pL)
(11)

pL is the hydraulic cylinder load pressure drop, which can be expressed as pL = pA − pB,
where Cd is the servo valve flow coefficient, wv is the servo valve throttle window area
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gradient, ρ is the hydraulic fluid density, and ps is the oil supply pressure. The symbol
sgn(·) is a signed function.

Figure 2. Hydraulic compensation system.

Since the dynamic response speed of the hydraulic cylinder is much smaller than the
dynamic response speed of the servo valve, omitting the servo valve dynamics model does
not decrease the precision of the system, so the dependency between the spool displacement
and the control input voltage can be written as xv = kvuv, where kv indicates the servo
valve control voltage-spool displacement conversion coefficient, and uv expresses the
servo valve control current. Therefore, the servo valve flow equation is further written as
QL = Kqkvuv − Kc pL. When a hydraulic piston is in the neutral position of the cylinder
at the initial moment and performs a small amplitude displacement, and in the course
of work to satisfy ps = pA + pB, the hydraulic cylinder flow continuous formula can be
written as

QL = Ap
dxp

dt
+ Ctp pL +

Vt

4βe
· dpL

dt
(12)

where Ap indicates the effective piston area, Ctp expresses the total system leakage coeffi-
cient, Vt indicates the total effective volume of the cylinder, and βe is the bulk modulus of
elasticity of hydraulic fluid. xp indicates piston displacement, and xp = u(0, t).

The hydraulic cylinder used in the compensation system is a servo cylinder, and
compared with the external load, the Coulomb friction between the piston and cylinder
barrel of the hydraulic cylinder is negligible; therefore, based on Newton’s second law, the
load force balance equation for a hydraulic system is as follows

m
dx2

p

dt
= pL Ap − Bp ·

dxp

dt
− Fp (13)

where m indicates hydraulic system equivalent mass, Bp is the viscous damping factor, and
Fp indicates external load force, consisting of system gravity and umbilical cable tension,
expressed as Fp = −mg− K

(
u(1, t)− xp

)
.

Substituting Equations (10)–(13), and defining the state variable as x1 = u(1, t),
x2 =

.
u(1, t), x3 = u(0, t), x4 =

.
u(0, t) and x5 = pL, the ROV active heave compensa-

tion system is represented by the state space equation

.
x1 = x2.
x2 = x3 + f2(x1, x2, x3) +

1
M d1(t)

.
x3 = x4.
x4 = b4x5 + f4(x1, x3, x4) +

1
m d2(t)

.
x5 = f5(x4, x5) + b5uv

(14)
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where di(t), i = 1, 2 represents unknown disturbances external to the system, and the re-
maining variables can be expressed as f2(x1, x2, x3) = −x3 − C

M x2 − K
M (x1 − x3) + (g− a),

b5 = 4βekvCdwv
Vt
√

ρ

√
ps − sign(xv)pL, b4 =

Ap
m , f4(x1, x2, x3) = − Bp

m x4 + K
m (x1 − x3) + g,

f5(x4, x5) = −
4βe Ap

Vt
x4 −

4βe(Ctp+Kc)
Vt

x5.

3. Control Design
3.1. Trajectory Planning

Trajectory planning is the fundamental problem of the axial motion of deep-sea robots.
The trajectory generation with given characteristics ensures that the robot can achieve
the expected velocity and displacement within the specified time in the deep sea. The
trajectories of the initial and final axial velocities are both zero, the first and last segments
are parabolas, and the middle segment is linear. Then, the function of the axial motion is
defined as

l(t) =


l(0) + 1

2
vmax

tb
t2 , 0 < t ≤ tb

l(0)− 1
2 tbvmax + vmaxt , tb < t ≤ t f − tb

l
(

t f

)
− 1

2
vmax

tb
(t− t f )

2 , t f − tb < t ≤ t f

(15)

From Equation (15), the trapezoidal velocity of the system is symmetrical as shown in
Figure 3, where the displacement at the middle time is equal to the average value of the

displacement at the initial and final displacement, namely, l
(

1
2 t f

)
=

l(0)+l(t f )
2 .

Figure 3. Motion curve.

3.2. Nonlinear Disturbance Observer

The disturbance observer observes and predicts various disturbances in the system
and corrects the estimate according to the deviation of the estimated disturbance from the
actual disturbance. The equation of state of a non-linear time-varying control system can
be represented by states x1 and x2{ .

x1 = x2.
x2 = f (u, x1, x2, t) + d(t)

(16)

where f represents a non-linear function of x, and d(t) is the sum of the disturbances
generated by the system coupling and the external unknown disturbances. Then, the
estimated disturbance is designed to be{ .

z(t) = −σ(x)x2(t)− σ(x)[p(x) + f (u, x1, x2, t)]
d̂(t) = z(t) + p(x)

(17)

where z(t) and σ(x) represent the intermediate variables and the gains of estimated dis-
turbances d̂(t), respectively, and p(x) can be designed as a nonlinear function, e.g., σ(x)x1,
(σ(x) > 0). The observer gain L can be designed as L = ∂p/∂x1 = σ(x). It is seen that the
disturbance observer satisfies the exponential convergence condition, and thus the stability
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of the disturbance observer itself can be demonstrated. The nonlinear disturbance observer
makes the entire system stable without relying on the higher-order differentiation of state
variable x2.

3.3. Controller Design

We expect the target to have zero robot vibration during the lifting and lowering of the
robot, namely, yd = 0. However, the unknown interference is bounded,

∣∣∣d̃i(t)
∣∣∣ ≤ di, di > 0.

To simplify the process, the tracking error variable can be designed as ei = xi − αi,
i = 1, . . . , 5, and αi is an intermediate control variable be designed as α1 = yd. A low-pass
filter is designed to prevent the “complexity explosion” problem arising from repeated
differentiation; τi

.
αi + αi = αi, αi(0) = 0, 0 < τi < 1, αi, and αi denote input and output

variables, respectively.
Defining the filtering error as α̃i, we have α̃i = αi − αi,

.
α̃i =

.
αi −

.
αi = − α̃i

τi
−

.
αi.

Because
.
αi is bounded

∣∣ .
αi
∣∣ ≤ Bi(x1, x2, x3, x4, yd, y(i)d ), Bi > 0, we apply Young’s inequality

ab ≤ 1
2 a2 + 1

2 b2, and then α̃i
.
α̃i ≤ − 1

τi
α̃2

i +
α̃2

i B2
i (x1,x2,x3,x4,yd ,y(i)d )

2ε + 1
2 ε, where ε represents a

very small positive constant.
To enable the robot’s tracking error to converge to zero, we construct the Lyapunov func-

tion of the tracking error e1 as V1(t) = 1
2 e2

1. Then, the derivative of V1(t) is
.

V1(t) = e1
.
e1 =

e1(
.
x1 −

.
yd) = e1(x2 −

.
yd). Next, by designing virtual control variable α2 = −c1e1 +

.
yd, we

obtain
.

V1(t) ≤ −c1e2
1 + e1e2, where c1 is a positive constant. At the next design step, e2

enables the inequality to hold. The Lyapunov function that constructs the tracking error
e2 is

V2(t) = V1(t) +
(

1
2

e2
2 +

1
2

d̃2
1(t) +

1
2γ1

δ̃2
1(t)

)
(18)

where d̃1(t) = d1(t)− d̂1(t), γ1 is the design parameter, and γ1 > 0. δ̃1(t) indicates robust
control parameters and is used to correct for the prediction error of unknown disturbances
d̃1(t). The third and fourth terms in Equation (18) are applied to demonstrate the robustness
of the nonlinear disturbance observer d̂1(t) and the adaptive law for the upper bound of
the design disturbance error δ̃1(t), respectively.

Taking the derivative of V2(t) yields
.

V2(t) = −c1e1
2 + e1e2 + e2

.
e2. Taking the deriva-

tive of e2, we receive
.
e2 = e3 + α3 + f2(x1, x2, x3) + d1(t) −

.
α2. Based on the nonlinear

disturbance observer control theory, the virtual control variable α3 is designed as

α3 = −(c2 +
1
2
)e2 − e1 − f2(x1, x2, x3) +

.
α2 − d̂1(t)− δ̂1(t)sign(e2) (19)

where c2 indicates a positive design constant. Bringing α3 into Equation (19) and using
Young’s inequality, the derivative of V2(t) is represented as

.
V2(t) ≤ −c1e1

2 − c2e2
2 + e2e3 + δ̃1(t)|e2|+

1
2

α̃3
2 (20)

Because the estimated disturbance error d̃1(t) = d1(t)− d̂1(t) has a definite bounded
error

∣∣∣d̃1(t)
∣∣∣ ≤ δ1(t), we obtain

.
V2(t) ≤ −c1e2

1 − c2e2
2 + e2e3 + δ̃1(t)

(
|e2| −

1
γ1

.
δ̂1(t)

)
− K1d̃2

1(t) +
1
2

α̃2
3 (21)

To guarantee the stability of the system and to minimize the prediction error, the

updated law for the robust control parameter should be designed as
.
δ̂1(t) = γ1|e2|. To
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ensure the boundedness of δ̂1(t), the projection correction function is designed to replace
the update of this control rate as follows

Projδ̂(·) =


0 if δ̂i ≥ δmax and · > 0
0 if δ̂i ≤ δmin and · < 0
· otherwise

(22)

Applying Equation (22), the following inequality can be obtained: δ̃1(·) ≤ δ̃1Projδ(·);
then, Equation (21) is updated to

.
V2(t) ≤ −c1e2

1 − c2e2
2 + e2e3 − K1d̃2

1(t) +
1
2 α̃2

3. Similarly,

design the dummy control variable α4 as α4 = −
(

c3 +
1
2

)
e3 − e2 +

.
α3. The Lyapunov

function that constructs the tracking error e3 is V3(t) = V2(t) + 1
2 e3

2. Then, the derivative
of V3(t) is

.
V3(t) =

.
V2(t) + e3

.
e3. Bringing α4 to

.
V3(t) and applying Young’s inequality,

we receive
.

V3(t) ≤ −c1e2
1 − c2e2

2 − c3e2
3 + e3e4 − K1d̃2

1(t) +
1
2

α̃2
3 +

1
2

α̃2
4 (23)

Similarly, from the disturbance observer control theory, the virtual control variable α5
is designed as

α5 =
1
b4

(
−
(

c4 +
1
2

)
e4 − e3 − f4(x1, x3, x4)− d̂2(t)− δ̂2sgn(e4) +

.
α4

)
(24)

The Lyapunov function for the construction of tracking error e4 is

V4(t) = V3(t) +
(

1
2

e2
4 +

1
2

d̃2
2(t) +

1
2γ2

δ̃2
2(t)

)
(25)

where d̃2(t) = d2(t)− d̂2(t), γ2 is the design parameter, and γ2 > 0. δ̃2(t) indicates a robust
control parameter and is used to correct for the estimation error of unknown disturbances
d̃2(t). The third and fourth terms in Equation (25) are applied to demonstrate the stability
of the nonlinear disturbance observer d̂2(t) and the updated law for the upper bound of
the design disturbance error δ̃2(t), respectively.

Taking the derivative of V4(t) yields
.

V4(t) =
.

V3(t) + e4
.
e4. However, taking the

derivative of e4, we obtain
.
e4 = b4e5 −

(
c4 +

1
2

)
e4 − e3 + δ2(t)− δ̂2sgn(e4). Additionally,

applying Young’s inequality, we receive

.
V4(t) =

.
V3(t) + b4e4e5 −

(
c4 +

1
2

)
e2

4 − e3e4 + δ̂2(t)e4sgn(e4) + d̃2(t)
.

d̃2(t) +
1

γ2
δ̃2(t)

.
δ̃2(t) (26)

Similarly, to guarantee the stability of the system and to minimize the prediction error,

the updated law for the robust control parameter should be designed as
.
δ̂2(t) = γ2|e4|. In

order to ensure the boundedness of δ̂2(t), the projection correction function (22) is applied
to replace the update of this control rate, then Equation (26) can be rewritten as

.
V4(t) ≤ −

4

∑
i=1

cie2
i + b4e4e5 − K1d̃2

1(t)− K2d̃2
2(t) +

1
2

5

∑
i=3

α̃2
i (27)

The final design control input is

uv =
1
b5

(
−
(

c5 +
1
2

)
e5 − b4e4 − f5(x4, x5) +

.
α5

)
(28)
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The Lyapunov function that constructs the tracking error e5 is V5(t) = V4(t) + 1
2 e2

5.
Taking the derivative of V5(t) and applying Young’s inequality yields

.
V5(t) ≤ −

4

∑
i=1

cie2
i −

(
c5 +

1
2

)
e2

5 − K1d̃2
1(t)−K2d̃2

2(t) +
1
2

5

∑
i=3

α̃2
i (29)

The adaptive robust controller was designed earlier according to Lyapunov theory,
where NDO is used to compensate for the rigid–flexible coupling and unknown pertur-
bations of the system, which can be seen in Figure 4. Additionally, the stability of the
closed-loop system was proved subsequently.

Figure 4. Control scheme.

3.4. Stability Analysis

To demonstrate that the above control scheme is feasible, the stability of the control
system is now proved by constructing the Lyapunov function of the system as

V(t) =
1
2

5

∑
i=1

cie2
i +

1
2

d̃2
1(t)+

1
2

d̃2
2(t) +

2

∑
i=1

1
γi

δ̃2
i (t) +

1
2

5

∑
i=2

α̃2
i (t) (30)

Taking the derivative for V(t) and using the above series of inequalities yields

.
V(t) ≤ −

5

∑
i=1

cie2
i − K1d̃2

1(t)− K2d̃2
2(t)−

5

∑
i=2

(
1
τi
− 1

2
−

B2
i

2ε

)
α̃2

i (t) (31)

To ensure that V(t) is non-negative and
.

V(t) is non-positive, the constants ci, Ki, τi

should satisfy the following conditions ci > 0, Ki > 0, 1
τi
− 1

2 −
B2

i
2ε > 0. When k0 satisfies

the condition
{

2ci > 0, 2Ki > 0, 2
(

1
τi
− 1

2 −
B2

i
2ε

)}
> 0, Equation (31) can be rewritten as

.
V(t) ≤ −k0V(t) (32)

Multiplying the above equation by ek0t and integrating over the time domain [0, t)
gives V(0) ≤ e−k0tV(0). Because the Lyapunov function V(t) of tracking error e1, e2, e3, e4, e5
converges, e1 converges to zero with time based on Barbalat Lemma [27].

4. Simulation Results

To verify the effectiveness of the controller proposed in the previous section, the key
technical parameters of the deep-ocean robotic compensation system are selected as follows:
mp = 2000 kg, EA = 2× 107 N, ρl = 2 kg/m, and c = 10 Ns/m2. The initial length of the
umbilical cable is 10 m, and the final length is 1000 m. The umbilical cable and the robot
are initially static: u(x, 0) = 0 m and ut(x, 0) = 0 m/s. The key physical parameters of the
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system are selected as mt = 500 kg, ρ = 900 kg/m3, Ap = 0.01767 m2, kv = 1, Cd = 0.7,
wv = 0.002, Ctp = 2.3× 10−10 m3/(s·pa), Bp = 7500, ps = 15 Mpa, and βe = 1.2× 109 pa.

The hydraulic cylinder piston is initially in the neutral position xp = 0 m, and the
servo valve spool is in the zero position xv = 0 m. The piston of the hydraulic cylinder is
subjected to the disturbing force of waves on the sea’s surface, which can be expressed as
dt(t) = 1.4 sin(0.5πt) + 1.6 sin(0.7πt), and the robot is subjected to random disturbances
on the sea floor, which can be expressed as dp(t) = 1.6 sin(2πt/13). Without control, the
numerical solution of Equation (4) is obtained using the Runge–Kutta method, and then
the approximate response of the system is given in Figure 5.

Figure 5. Robot vibration displacement without control.

The diagram clearly shows the vibration of the robot at the balance position becomes
more significant with the increasing length of the umbilical cable, and the results are
consistent with the previous analysis. In deep-sea operations, factors such as varying sea
conditions and depths have different significant effects concerning the control performance
of the compensation system. Therefore, the paper uses boundary disturbances under two
waves to simulate extreme environments and verify the controller performance.

Based on the above stability analysis and several simulation tests, the design param-
eters are set for the controller: c1 = 42, c2 = 20, c3 = 4, c4 = 2, c5 = 100, τi = 0.01,
ε = 0.21, γ1 = γ2 = 0.002, and L = 80. The upper bound of the robust term δ̂i is set
to δmax = 0.01 and the lower bound is set to δmin = 0. Figures 6–10 give the simulation
results, respectively.

Figure 6. Underwater robot boundary disturbance force.
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Figure 7. Hydraulic compensation system boundary disturbance force.

Figure 8. Performance comparison of active heave compensation.

Figure 9. Hydraulic cylinder piston displacement.

Figure 6 shows the boundary disturbance to the deep-sea robot simulated by random
waves. Figure 7 shows the boundary disturbance to the hydraulic compensator affected by
the superposition of several different periodic delta function waves. It is noticeable from
the figure that the nonlinear disturbance observer has an excellent estimation performance.

The active compensation results of the deep-ocean robot under the proposed nonlinear
disturbance observer-based and robust adaptive output feedback controls are displayed
in Figure 8. From the graph, it is noticeable that the effect of PID control gradually
becomes worse with the increased length of the umbilical cable, whereas the control scheme
suggested above can effectively suppress vibration. The vibration amplitude gradually
converges to zero as time increases. Additionally, the maximum compensation error of the
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PID controller is about 2.2 mm, whereas the maximum compensation error of the controller
proposed in this paper is about 0.1 mm. From Figures 6 and 7, the nonlinear disturbance
observer enables the online estimation of disturbances and achieves satisfactory estimation
performance. Figures 9 and 10 show the piston rod displacement and control input voltage
of the servo valve, respectively. From this, the maximum piston displacement under PID
control is approximately 33 mm more than the control scheme proposed in this paper,
and the PID control input voltage may exceed the maximum input voltage over time and
oscillate, with harmful effects on the vibration rejection of the robot. Therefore, the robust
controller proposed above has a superior performance over conventional PID control in
terms of the effectiveness and robustness of the active heave compensation of the robot.

Figure 10. Control input voltage of the servo valve.

5. Conclusions

The robust adaptive output feedback control scheme has been designed for a type of
active heave compensation system for deep-ocean robots with variable length, non-linearity,
and uncertain random disturbances. Second-order distributed parameter control equations
for the umbilical rope lifting system were established using Hamilton’s principle, and the
equations were discretized by a newly modified assumption modal method, according to
Newton’s second law, which couples valve-controlled hydraulic cylinder compensation
systems and generates the state space equation of the system. A nonlinear disturbance
observer has been proposed to overcome the unknown disturbances and input nonlinearity,
followed by a simplified description of the design route of the adaptive robust control
algorithm and the stability validation of the system based on Lyapunov’s direct method
and cascade analysis. A comparison of different control effects shows that an increase in
the length of the umbilical cable leads to an increase in the robot’s heave displacement, and
the proposed controller is more applicable for robot heave compensation. The different
control results demonstrate the performance of the robust adaptive backstepping control
strategy, and the suggested controller can achieve better robustness and stability of the
system at the right choice of control gain. In the future, more accurate hydraulic compensa-
tion models and larger compensation depths will be considered to improve active heave
compensation accuracy.
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Appendix A

Table A1. Variable explanation table.

Symbol Definition Numerical

mp Quality of the robot 2000 kg
u(x, t) Vibration of cable at x \
ut(x, t) Partial differentiation with t \
ux(x, t) Partial differentiation with x \

l(t) Time-varying length 10~1000 m
ρl Linear density 2 kg/m
c Viscous damping 10 Ns/m2

βe Hydraulic oil bulk modulus of elasticity 1.2 × 109 pa
ps Supply pressure 15 Mpa
Bp Damping coefficient 7500
ρ Hydraulic oil density 900 kg/m3

Ap Active area 0.01767 m2

xv Valve spool displacement (Initial position) 0 m
Kq Flow Gain \
Kc Flow-pressure coefficient \
Cd Flow coefficient 0.7
wv Throttle window area gradient 0.002
Ctp Total leakage coefficient 2.3 × 10−10 m3/(s·pa)
mt Quality of the piston 500 kg
xp Piston displacement \
Ek Total kinetic energy of the system \
Ep Total potential energy of the system \
W Total virtual work of the system \

û(ξ, t) Modal function \
ψi(ξ) Trial functions \
qi(t) Generalized coordinates \
EA Axial tensile stiffness of the umbilical cable 2 × 107 N
QL Servo valve flow \
Fp External load force \
kv Spool conversion factor 1
yd Tracking target 0
αi Virtual control variables \
ei Tracking errors \

Vi(t) Lyapunov functions \
di(t) Unknown disturbances \
δi(t) Robust control term \

c1 Controller design parameters 42
c2 Controller design parameters 20
c3 Controller design parameters 4
c4 Controller design parameters 2
c5 Controller design parameters 100
τi Filter factor 0.01
ε A small positive constant 0.21

γ1, γ2 Design parameters 0.002
L Disturbance observer gain 80

δmax The upper bound of the robust term 0.01
δmax The lower bound of the robust term 0
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