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Abstract: Under the influence of variable sea conditions, a ship will have an oscillating motion
comprising six degrees of freedom, all of which are connected to each other. Among these degrees
of freedom, rolling and pitching motions have a severe impact on a ship’s maritime operations. An
accurate and effective ship motion attitude prediction method that makes the prediction in a short
period of time is required to guarantee the safety and stability of the ship’s maritime operations.
Traditional methods are based on time domain analysis, such as the autoregressive moving average
(ARMA) models. However, these models have limitations when it comes to predicting the nonlinear
and nonstationary characteristics of real ship motion attitude data. Many intelligent algorithms
continue to be applied in nonlinear and nonstationary ship attitude prediction, such as extreme
learning machines (ELMs) and the long short-term memory (LSTM) neural network, as well as other
deep learning methods, showing promising results. By using the sliding window approach, the time-
varying dynamic characteristics of the ship’s motion attitude can be preserved better. The simulation
results demonstrate that the proposed model performs well in terms of predicting the nonlinear and
nonstationary ship motion attitude.

Keywords: ship motion attitude prediction; deep learning; sliding window technique; parameter
optimization algorithm

1. Introduction

Under the influence of wind [1], waves [2], and other environmental elements, the six
degrees of freedom comprising the swaying motion of large ships can become complicated
and uncertain [3]. These factors represent a threat to ships’ offshore operations, especially
in complex environments. Methods for the short-term prediction of a ship’s motion attitude
have been proposed to predict the offshore motion of ships in the next few seconds in
real time. Such methods provide decision-making information for the accurate control of
a ship’s offshore operations and the selection of the optimal operation time to enhance
the safety and efficiency of the offshore operations. In general, there are four types of
models for predicting a ship’s motion: physical models based on the ship’s hydrodynamic
coefficients and equations, statistical models based on historical data and future data,
intelligent models based on time series analysis and intelligent algorithms [4,5], and hybrid
models [6,7].

Methods for the short-term prediction of a ship’s motion attitude that were based
on linear hydrodynamic motion equations were extensively used in early research. In
1969, Kaplan [8,9] designed a Wiener filter based on the statistical parameters of a ship’s
motion power spectrum to predict the ship’s short-term motion. However, this method has
the disadvantages of calculation complexity and low accuracy. With the development of
modern control theory, a method for the short-term prediction of a ship’s motion attitude
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based on the Kalman filter was proposed to predict it in real time [10]. However, the
accuracy and stability of the prediction method based on the Kalman filter cannot meet the
necessary requirements, especially in severe sea environments.

The methods for the short-term prediction of a ship’s motion attitude are based on
the time domain analysis approach, which is a data-driven prediction method. It only
requires the historical data of a ship’s motion to establish a time series model to predict the
ship’s extremely short-term attitude. However, methods, such as AR and ARMA, require
the ship’s motion data to be stationary and linear, which is unsuitable for realizing good
prediction results of the nonlinear or nonstationary characteristics of the ship’s motion [11].
In the past few years, methods for the short-term attitude prediction of a ship’s motion
based on machine learning (ML) models have become very popular in the context of
nonlinear or nonstationary characteristics [12–19]. These data-driven prediction methods
have gained more attention due to their superior capabilities of learning and modeling
complex nonlinear relationships, including artificial neural networks (ANNs) [20], recurrent
neural networks (RNNs) [21], support vector machines (SVMs) [22,23], random forest
(RF) [24], multi-layer perceptron (MLP) [25], feed-forward neural networks (FNNs), back-
propagation neural networks (BPNNs), and extreme learning machines (ELMs) [26–28]. Of
these, RNNs memorize the previously known information and pass this to the input, which
ensures the relation among the input information and achieves good prediction results,
especially for periodic sequences. However, relying solely on the above intelligent models
may not meet the practical requirements for an accurate prediction. Furthermore, there are
some limitations and considerations to be aware of when using a single machine learning
model to predict a ship’s motion:

1. Due to having less generalization ability, a single neural network encounters the
problems of over-fitting, vanishing gradients, and network training explosions when
faced with the complex patterns in a ship’s motion dataset.

2. When dealing with huge datasets, simple neural network models may become unsta-
ble and have low efficiency.

To overcome the shortcomings of ML methods, researchers have been inspired to
develop a promising methodology: deep learning (DL). DL, as a branch of ML, trains the
data model by utilizing multiple processing layers at multiple levels [29]. The performance
of DL models is improved by increasing the number of hidden layers, while the deeper
architecture increases the number of parameters to be optimized, which further increases
the training time of the model. The potential of DL in applications requiring predictions
has been highlighted in the recent literature. For time series forecasting, DNN models,
such as long short-term memory (LSTM), gated recurrent units (GRUs), and hybrid models
have proven to be both powerful and accurate tools. Currently, researchers are considering
hybrid models to enhance the performance of DL models. Qin et al. proposed AR-DWT-
EMD to solve the problem of the prediction of the nonlinear and nonstationary motion
of ships [30]. In [31], the decomposition and the Hilbert spectrum of the inputs (sea
waves) were compared with the decomposition and the Hilbert spectrum of the outputs
(ship movements, generated by the waves) to study the time–frequency characteristics of
the ship’s response. However, we mainly focused on the decomposition of the original
nonstationary time series to decrease the effect of noise. The decomposition extracts the
important features to improve the accuracy of the prediction. EMD can adaptively perform
time–frequency localization analysis to effectively extract the characteristic information of
the original signal. Wang et al. proposed the Bi-LSTM TPA hybrid model, which extracts
the time features from both the forward and reverse roll angle time series to improve
the prediction of the ship’s roll angle [32]. Additionally, hyperparameter inference and
optimization procedures in neural networks, such as ant colony optimization [33], PSO [34],
and the genetic algorithm [35], are used to improve the prediction performance. Yin et al.
proposed a scheme for predicting rolling based on an adaptive sliding window considering
the characteristics of the ship’s rolling motion. An online experiment on the prediction of the
ship’s rolling was conducted to verify the effectiveness of the adaptive sliding window [36].
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In [37], the simulation results showed that the combination of LSTM and PSO improved
the accuracy of the prediction of the ship’s motion. Z. Nie et al. conducted a simulation
experiment on the prediction results of support vector regression (SVR) algorithms based
on four commonly used kernel functions and compared the effectiveness and practicality
of these kernel functions in the prediction of the ship’s motion [38]. Zeguo Zhang et al.
proposed a prediction algorithm based on GPSO-ANFIS and applied it to the real-time
prediction of the ship’s rolling. The simulation results showed the advantage of the method
regarding its accuracy, stability, and real-time performance [39]. In summary, the following
issues need to be noted for the short-term prediction of a ship’s motion:

1. To complete the short-term prediction, a few seconds of ship motion attitude data are
derived by the proposed model.

2. The sliding window technique is introduced to turn time series predictions into
supervised learning for ML methods. Each window is utilized to train and update the
model. After each computation is completed, the window shifts to a new position by
one step.

3. Because of the nonstationary characteristics of time-series data, the prediction accuracy
is affected by the unstable mean and variance of datasets. Therefore, to obtain better
prediction results, the present work needs to use a data pre-processing method to
reduce the effect of nonstationary characteristics.

4. Considering the practicality of predictive models, the proposed model needs to
guarantee high-accuracy results when faced with multi-step-ahead predictions.

In this paper, aiming to reduce the nonlinear and nonstationary ship motion char-
acteristics and obtain the optimal parameter of the neural network, a hybrid multi-step
prediction model is proposed by combining the LSTM model with EMD, and adaptive PSO
is proposed to predict ship motion attitude in a few seconds. The EMD method is employed
for dealing with nonlinear and nonstationary time series, and the LSTM approach is used
for training and predicting the derived ship attitude, while the parameter optimization
algorithm based on PSO is utilized to maximize the performance of the prediction model
by adjusting the parameters of the LSTM neural network. Additionally, time series datasets
can be framed into supervised learning for multi-step predictions by utilizing the sliding
window technique.

The rest of this paper is organized as follows. Section 2 gives a brief description of
EMD and the sliding window approach. In Section 3, the hybrid ship attitude prediction
model is established by EMD and the LSTM neural network with the sliding window
approach. In Section 4, the proposed model is implemented in a real-time ship motion
attitude data experiment, and the model’s performance is tested using at different datasets.
Conclusions are derived in Section 5.

2. Basic Knowledge
2.1. Empirical Mode Decomposition Method

Affected by various random and uncertain factors, noise exists in the measured ship
motion data and interferes with the valid signals. It overlays and obscures the best-
expected results when processing the original observation data. Therefore, it is crucial to
apply denoising techniques to the raw data prior to the ship motion attitude prediction
processing in order to enhance the accuracy of the subsequent forecast. EMD decomposes
the signal into a finite number of eigenmode functions (IMFs), discards the noisy IMFs,
and reconstructs the remaining IMFs to denoise the raw data. Since EMD is based on the
time-scale characteristics of the data itself and does not require a given basis function in
advance, it has obvious advantages when dealing with nonsmooth and nonlinear time
series. The process of decomposition involves the following steps:

• Find all maximum and minimum points of the time series x(t) and then fit a curve
with a cubic spline function to obtain the upper and lower envelope of x(t), which
can be represented, respectively, as u(t) and l(t).



J. Mar. Sci. Eng. 2023, 11, 466 4 of 24

• Calculate the average of u(t) and l(t) to obtain the mean envelope mx, which is shown
as Equation (1):

mx =
u(t) + l(t)

2
. (1)

• New time series hx can be calculated as

hx = x(t)−mx. (2)

• Judge if hx is satisfied with the condition of IMFs. Repeat Steps (1), (2), and (3) if it
is not satisfied until the mean envelope tends to zero. Then, the first intrinsic modal
function im f1 is obtained.

• By subtracting im f1 from the original time series x(t), the new time series rx1 without
high frequency is derived.

• By repeating the above process, the intrinsic modal function {im f2, im f3, ..., im fn} is
obtained. When the rxn cannot be decomposed, it is represented as the residual of
x(t).

After the above steps, the original time series x(t) can be represented as

x(t) =
n

∑
i=1

im fi + rxn, (3)

where rxn represents the trend of x(t), and it is without a high-frequency component.
During the whole process of EMD, one of the cyclic processes is the shifting process

in which the optimal time of shifting and decomposition needs to be considered. Addi-
tionally, the two termination criteria include the component termination condition and the
decomposition termination condition.

The shifting is the process of obtaining the IMF component, and the basic method is to
continuously find extreme points from the original signal and continue shifting according
to the decomposition steps until a certain condition is met. The purpose of this process is to
reduce the asymmetry of the signal so that the waveform tends to be symmetric around the
zero mean line, so as to meet the basic characteristics of the component. Additionally, the
instantaneous frequency can be calculated by transformation. In order to ensure that the
components obtained by the decomposition have sufficient original physical significance
of frequency modulation (FM) and amplitude modulation (AM), the number of shifting
cycles should not be excessive. Too many cycles will over-smooth the component and
make it a constant amplitude FM signal, which loses the original physical meaning. On the
other hand, too few shifting cycles will make the resulting component not entirely meet
the basic characteristics of the component and do not obtain accurate instantaneous and
meaningful frequency.

2.2. Sliding Window Approach

A sliding window is a fixed-size window that will circle the values around a point
in the time series to obtain an interval that is used to calculate statistical indicators for
data of a specified length. The sliding window width has an immediate effect on the
model prediction. The window length is used to weigh the amount of input data and
the length of historical information included. However, too much input data will lead to
complex calculations and slow down the training of the neural network. Less input data
tend to include less historical information, making it difficult to reflect the cycle pattern.
The application of the sliding window technique in multi-steps is shown in Figure 1.

Datasets can be framed into supervised learning for prediction by sliding windows,
and data from each window are utilized to train and update the model. After completing
each computation, the window shifts to the next new position.

Since the selection of the key parameters of LSTM has a great influence on the accu-
racy of ship motion attitude forecasting, these parameters need to be selected reasonably.
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The particle swarm optimization (PSO) algorithm has the advantages of simple structure,
high precision, fast convergence speed, and ability to deal with nonlinear and multivariable
problems, which are effective tools for the selection of LSTM model parameters.
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Figure 1. Sliding window approach for multi-step.

3. Short-Term Ship Motion Prediction Algorithm based on EMD and Adaptive
PSO–LSTM
3.1. LSTM Neural Network Parameter Optimization for Ship Attitude Prediction

The long short-term memory (LSTM) neural network, which is a novel recurrent
neural network, was proposed by Hochreiter and Schmidhuber [40]. As a deep learning
model, LSTM learns the pattern from historical data accurately by utilizing the selective
memory capability of machine learning and digging into the intrinsic patterns of known
time series to achieve its short-term forecasting of time series. The advantage of LSTM is
to solve the problem of gradient disappearance compared with other types of recurrent
neural networks by introducing the concept of state units and gates into the neural network.
As a result, it has better adaptability in data analysis compared with the RNN network.
The structure of the LSTM unit is shown in Figure 2:

 σ

1th −

f

 :,:


tf

 σ

ti 

i c

tanh  σ

o



tanh

C

H th

tx

tc

to

Forgotten 

Gate

Input 

Gate

Output 

Gate


1tc −

~

tc

Figure 2. LSTM cell structure.
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Each neural unit contains three gate control structures which are forgotten gate, input
gate, and output gate. The selective transmission of data information is controlled by
these gates, and the output of the sigmoid layer is a value between zero and one, which
describes the ratio of information transmission. The valid information at the last epoch in
ft is discarded and retained by the forgotten gate. Current valid information it is stored in
the input gate, which determines the update of the cell state. The output layer determines
the information that needs to be output as ot in the LSTM neural unit. The output value of
the hidden layer ht and the unit state ct at the current epoch are determined by the output
value of the hidden layer at the previous epoch ht−1, the unit state ct−1, and the input value
at the current epoch xt.

Since the input is determined by the output of the previous epoch ht−1, the input of the
network at the current epoch xt and the activation function sigmoid control the information
transfer ratio. The calculation process of the forget gate is shown as follows.

ft = σ(Wfht−1 + Ufxt + b f ), (4)

where Wf and Uf represent the weight matrix, b f denotes the bias term, and σ is the
activation function. Since the input of the sigmoid function is determined by the output at
the previous epoch ht−1 and the input of the network at the current epoch xt, the calculation
process of the input gate is shown as follows.

it = σ(Wiht−1 + Uixt + bi), (5)

where it represents output, Wi, Ui represent the weight matrix, and bi denotes the bias
term. The tanh function is utilized to update the cell state and create a new candidate vector
in the input gate. Then, the input of the memory cell c̃t is obtained as follows:

c̃t = tanh(Wcht−1 + Ucxt + bc), (6)

where Wc, Uc represent the weight matrix, and bc is the bias term. Since the input is
determined by the output of the previous moment ht−1 and the input of the network at the
current moment xt, the output of gate ot is obtained from the activation function sigmoid.
The output gate is calculated as follows.

ot = σ(Woht−1 + Uoxt + bo), (7)

where Wo, Uo represent the weight matrix, and bo denotes the bias term. We combine the
partial information retained in the forget gate with the input gate to form a new cell unit ct
as follows.

ct = ft � ct−1 + it � ct. (8)

Next, ct will be sent to the tanh function through the output gate to determine the
output value of the hidden layer at the current epoch ht, which can be derived by ht =
ot� tanh(ct), where� denotes the element-wise vector product. In general, LSTM includes
two kinds of hidden states: a slow state ct to solve the vanishing gradient problem and a
fast state ht to make complex decisions over short periods of time.

The PSO algorithm is an appropriate method for parameter selection in the LSTM
model, thanks to its benefits, such as straightforward structure, high accuracy, fast con-
vergence rate, and the capacity to address nonlinear and multivariable problems. PSO
describes the members of the group as particles, and the fitness of all particles is determined
in space through a fitness function. In the early stage of evolution, both the position and
speed of each particle are initialized randomly. The particles cooperate with each other
during the flight and adjust their speed and positions in time according to the motion state
of themselves and their companions in order to land on a better position. However, each
particle is a solution of the solution space in PSO. Each particle knows its own position
and the information of other particles. It adjusts its position and speed through its optimal
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position and area of the group, and then the global optimal solution is derived. The speed
and position of the PSO are updated as follows:

vt+1
i,j = wvt

i,j + c1r1(
∧

yt
i,j−xt

i,j) + c2r2(
∗
yt

j −xt
i,j), (9)

xt+1
i,j = xt

i,j + vt+1
i,j , (10)

where w is the inertia weight, c1 and c2 are learning factors, r1 and r2 are independent

random numbers distributed between zero and one, and vt
i,j, xt

i,j,
∧

yt
i,j, and

∗
yt

j are the velocity
component, position component, individual optimal value, and group global optimal value
of the i-th particle in the j-th dimension in the t-th iteration, respectively.

The value of w affects the model’s optimization ability. In order to avoid premature
convergence of the model, an adaptive PSO method is adopted in this paper. It adaptively
adjusts the inertia weight as follows.

w =

{
wmin − (wmax−wmin)( f− fmin)

favg− fmin
, f ≤ favg

wmax, f > favg
, (11)

where wmax, wmin are maximum and minimum of w, respectively; f is the current fitness
value of the particle; fmin and favg represent the current minimum fitness of all particles
and the average fitness value, respectively.

Since ship motion data have the characteristics of instability, nonlinearity, and periodic
uncertainty, an adaptive PSO–LSTM is proposed in this paper. In the novel model, an
adaptive PSO is utilized to optimize the network hyperparameters. The whole process of
the adaptive PSO–LSTM method is shown as follows.

• Preprocess the ship historical movement data.
• Initialize the particle swarm parameters, including the determination of the population

size, number of iterations, learning factors, and limited intervals for particle position
and velocity.

• Initialize the LSTM network structure, which refers to the determination of the number
of neurons in each layer of the network and the number of hidden layers. It also divides
the data into training samples, validation samples, and test samples.

• Determine the fitness function and select the optimal particle fitness value by cal-
culating and comparing the fitness value of each particle. The fitness value f iti of
population individuals xi with LSTM model parameters is defined as Equation (12).

f iti =
1
2
(

1
M

m

∑
m=1

ym −
∧

ym

ym
+

1
N

n

∑
n=1

yn −
∧
yn

yn
), (12)

where M and N represent the number of training samples and verification samples,

respectively; ym and
∧

ym represent the true value and the prediction value of the

training sample, respectively; yn and
∧
yn represent the true value and the prediction

value of verification samples, respectively.
• Calculate and evaluate the particle fitness value according to the difference of the

particle fitness value. The global optimal position and the local optimal position of the
particle are both determined.

• Update the velocity and position of the particles based on Equations (9) and (10).
• Determine whether the particles meet the conditions for the iteration termination. If

the maximum number of iterations is reached, the optimal parameters are assigned
to the LSTM, and the training is performed and outputs the short-term ship motion
prediction value. Otherwise, it returns to Step 5 to continue execution until the
termination condition is met.
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• The optimal results obtained are assigned to the connection weights of the LSTM
network, and this prediction model is trained to output the optimal solution for time
series prediction.

The flowchart of the adaptive PSO–LSTM method is shown in Figure 3.

Optimization Parameters:
Start

End

Training sample 

data preprocessing

Initialization parameters 

of  LSTM network

Initialization parameters 

of the particle swarm

Calculating adaptive 

weights

Fitness calculating and 

compare

Update particle velocity 

and position

The maximum 

number of iterations

Optimized model 

parameters

Parameters assigned to 

LSTM neural network 

and prediction

Yes

No

Figure 3. The flowchart of adaptive PSO–LSTM prediction method.

Most previous studies have only used the fitting error of the training sample as the
fitness value and ignored the effect of the testing sample data, which results in over-fitting in
the neural network. This leads to the model prediction result not being optimal. Therefore,
the fitting error of the training sample and the verification error of the verification sample
should be considered in the fitness function.

3.2. EMD–LSTM Model Based on Sliding Window Approach

The ship motion time series is regarded as a nonlinear signal sequence. EMD has
certain advantages in dealing with the end effect and reducing the effect of system noise.
Therefore, it was selected to decompose the original sequence before prediction, which
improves the model’s fitting performance. This part of the prediction is based on the LSTM
neural network with the sliding window. The adaptive PSO is used to optimize the value
of network hyperparameters in the LSTM model, which cannot be selected objectively and
scientifically. As a result, the whole process is summarized as follows:

• Decompose the raw ship motion sequence into multiple specific subsequences by
utilizing the EMD algorithm.
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• Divide the dataset into the training set and the testing set and predict each sub-model
component separately with a sliding window and optimized LSTM neural network.

• Weight and reconstruct the prediction of each sub-model to obtain the final predic-
tion results.

The flowchart is shown in Figure 4:

Parameters optimization

Initialize particle swarm 
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Sliding window
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LSTM prediction 
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1[ ]1 l 2 l nx ,x ,...,x+ + +

Determine the particle 

evaluation function

Update the velocity and 

position

Optimal parameters

maxIter>ItermaxIter>Iter

Figure 4. The overall structure of the proposed hybrid prediction model.

4. Experiment Results and Analysis
4.1. Experiment Design and Parameter Settings

Experiments were conducted to verify the effectiveness of the prediction model pro-
posed in this paper. The experimental data used in this study were collected from an
inertial measurement unit (IMU) installed on a large ship and divided into two categories
in total: static state data set and motion state data set. The “static state” and “motion state”
represent the state of the ship when we measured the experimental data of ship attitude.
“Static state” means that the ship is docked at the port. “Motion state” means that the
ship is sailing at a certain speed. To ensure the reliability and accuracy of the proposed
algorithm, it was necessary to select the datasets in different states and different timestamps.
The detailed description of the datasets is shown in Table 1. The sampling frequency of
the IMU was 4 Hz. The scene of raw data acquisition is shown in Figure 5. The first 80%
of the data was used for training and the rest was used for testing. Figures 6–10 show the
different datasets of raw roll angle and pitch angle of the ship.

Table 1. The description of different raw datasets.

Dataset
The Start

Duration (s)

Roll Angle (◦) Pitch Angle (◦)

Time of
Record

Data

Average
Value

Maximum
Value

Minimum
Value

Average
Value

Maximum
Value

Minimum
Value

#1

20
December

2014
12:10:21.000

250 −0.543618911 −0.530798 −0.553233 −0.00710956 −0.004698 −0.010346

#2

20
December

2014
16:30:59:000

250 −0.560047567 −0.543898 −0.579896 −0.006100966 −0.004592 −0.007791
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Table 1. Cont.

Dataset
The Start

Duration (s)

Roll Angle (◦) Pitch Angle (◦)

Time of
Record

Data

Average
Value

Maximum
Value

Minimum
Value

Average
Value

Maximum
Value

Minimum
Value

#3

20
December

2014
12:30:00:000

1500 −0.621413551 −0.534555 −0.636779 −0.006321536 −0.003541 −0.00883

#4
11 March

2015
12:48:22:250

300 0.729984617 8.2649 −6.5716 −0.04718685 0.8845 −0.9738

#5
19 April

2016
16:12:56:027

300 0.437897983 1.6867 −1.2942 −0.738008183 −0.3692 −1.1086

Figure 5. The scene of raw data acquisition.
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Figure 6. Dataset 1: The raw roll and pitch angle of the ship.
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Figure 7. Dataset 2: The raw roll and pitch angle of the ship.
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Figure 8. Dataset 3: The raw roll and pitch angle of the ship.
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Figure 9. Dataset 4: The raw roll and pitch angle of the ship.
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Figure 10. Dataset 5: The raw roll and pitch angle of the ship.

4.2. Prediction Performance Evaluation of Adaptive PSO Algorithm and Hybrid Model

To test the performance of the adaptive PSO algorithm, two standard test functions
were chosen for both PSO and adaptive PSO. The two functions are expressed in Table 2.
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Table 2. Test functions to test the performance of the adaptive PSO algorithm.

Name Test Function Expression

Rosenbrock f (x, y) = (1− x)2 + 100(y− x2)
2

Griewank f (xi) =
N
∑

i=1

xi
2

4000−
N
∏
i=1

cos
(

xi√
i

)
+ 1

The Griewank function has local minima, the number of which is related to the
dimensionality of the problem, and the minimum is obtained at (0, 0 . . . 0). It is a nonlin-
ear multimodal function with a very wide search space and can be used to test particle
swarm algorithms.

The Rosenbrock function is a nonconvex function used to test the performance of the
optimization algorithm. Each contour of the Rosenbrock function is roughly parabolic
in shape, and its full-domain minimum is also located in a parabolic-shaped valley (a
banana-shaped valley). It is easy to find this valley, but it is quite difficult to find the
minimum value of the full domain because the values within the valley do not vary much.
Its full domain minimum is located at the point (x, y) = (1, 1) with the value f (x, y) = 0.
Sometimes, the coefficient of the second term is different, but it does not affect the location
of the full domain minimum.

The parameters in PSO and adaptive PSO were set as follows. The maximum pop-
ulation size was 100; the maximum number of iterations was 100; maximum particle
velocity Vmax = 5; learning factors were set as cmax = 2.1, cmin = 0.8; and inertia weight
was wmax = 0.9, wmin = 0.4, respectively. Figure 11 indicates the optimization results
of the above test functions. It is obvious that the adaptive PSO algorithm showed better
performance in finding the best individual fitness with less iteration and faster convergence.
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Figure 11. Optimization iteration results of different test functions: (a) Rosenbrock test function; (b)
Griewank test function.

The ship motion varies greatly due to the environment at sea. Dense and highly fluc-
tuating data may obscure the less fluctuating parts, resulting in missing details. Therefore,
the data need to be normalized to eliminate the dimensional difference between different
dataset inputs and scale them according to a certain ratio within the set interval. Both
the sample set and target set should use the same normalization standard to ensure the
consistency of neural network training and prediction. The formula of normalization is
as follows:

XN =
xi − xmin

xmax − xmin
(b− a) + a, (13)

where XN is normalized data, xmax and xmin represent max and minimum of the data
sequence xi, respectively. Here, xi can be set from a to b. It is set in the range from 0 to 1 in
this paper.
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Once the ship motion prediction is completed, it needs to be de-normalized, as indi-
cated in Equation (14):

xi = (xmax − xmin) ∗ XN + xmin. (14)

Mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean
square error (RMSE) were utilized to evaluate the fitting performance of the established
model between the true value and the prediction value, respectively. These three kinds of
evaluation indexes are shown as

MAE =
1
n

n

∑
i=1
|xi −

∧
xi |, (15)

MAPE =
1
n

n

∑
i=1

|xi −
∧
xi |

xi
× 100%, (16)

RMSE =

√√√√ 1
n

n

∑
i=1

(xi −
∧
xi)

2

. (17)

For the purpose of evaluating the prediction performance of this model, the differ-
ence between the target sequence and prediction sequence is presented to evaluate the
performance of the hybrid model.

4.3. Roll Angle Prediction Results and Analysis

To ensure the fairness of the experiment, the initial parameters are set to remain the
same, and the detailed model parameter settings are listed in Table 3. In order to prove the
effectiveness of the hybrid prediction model proposed in this paper, adaptive PSO–LSTM
and EMD–LSTM were selected as comparison models. Additionally, the BP neural network,
ELM, LSTM, and its variant neural networks were selected to prove the effectiveness in
short-term ship motion attitude prediction.

Table 3. Settings of different model parameters.

Model Parameters Values

BP Number of Hidden Neurons 10
ELM Transfer Function sine function

Number of Hidden Neurons 10
LSTM Hidden Units 10

MaxEpochs 250
Initial learning rate 0.01

numFeatures 1
numResponse 1

droprate 0.2
activation function sigmoid, tanh

MiniBatchSize 128
Optimizer Adam

Bi-LSTM Number of Hidden Neurons 10
Activation function sigmoid, tanh

SAE-LSTM SparsityProportion 0.6
Number of Hidden Neurons 10

Proposed EMD decomposition 7Imfs + res.(take roll angle in
dataset1 as an example)

Sliding window length 10
LSTM layer the same as LSTM model

Taking Dataset 1 as an example, different benchmark models of roll angle prediction
are shown in Figures 12 and 13. It is obvious that LSTM and its variant neural networks
have better performance compared with the BP neural network and ELM, which proves
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the superiority of the deep learning method and that the LSTM neural network has higher
accuracy. The errors between the predicted values and the recorded values for each method
are shown in Figures 14 and 15. Additionally, the statistical results of errors in Dataset 1 are
shown in Table 4, where LSTM, EMD–LSTM, and the adaptive PSO–LSTM method were
selected to make comparisons with the proposed method to prove that EMD and adaptive
PSO improved the LSTM neural network and had better adaptability. Although the input
of the dataset is changed, the network structure can also be changed at the same time
to achieve the best prediction performance. However, the above results are for one-step
predictions. In practical engineering applications, short-term prediction of ship motion
attitude generally requires multi-step-ahead predictions. This result means the prediction
error ahead of different steps is based on the former observed value and current prediction
value and has error accumulation, which is inevitable.
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Figure 12. Roll angle prediction results in the training set of Dataset 1.
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Figure 13. Roll angle prediction results in the testing set of Dataset 1.
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Figure 14. Roll angle prediction error results in the training set of Dataset 1.

In this paper, one-step , two-step, and three-step-ahead predictions were set aiming
at all the datasets. The roll angle prediction errors of different models are shown in
Table 5. As for dataset 1, ELM and the proposed method indicate the obvious error
accumulation phenomenon, and the error result shows that almost all the datasets using the
selected methods showed error accumulation as the number of predicted steps increases.
Theoretically speaking, error accumulation is inevitable, but in practical prediction, not all
neural networks demonstrate such situations, especially when using different datasets.
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Figure 15. Roll angle prediction error results in the testing set of Dataset 1.



J. Mar. Sci. Eng. 2023, 11, 466 16 of 24

Table 4. Statistical results of roll angle prediction errors in Dataset 1.

Method MAE (×10−5) MAPE (×10−6) RMSE (×10−5)

LSTM 2.85 6.42 4.63
adaptive PSO–LSTM 2.51 4.60 2.79

EMD–LSTM 2.74 5.00 3.06
proposed 1.40 2.60 1.62

Table 5. The roll angle prediction errors of different models.

Dataset Model
RMSE (×10−5) MAE (×10−5) MAPE (×10−5)

1 Step 2 Steps 3 Steps 1 Step 2 Steps 3 Steps 1 Step 2 Steps 3 Steps

#1

BP 13.9865 10.9504 17.7120 11.4120 8.1201 14.2360 0.1063 0.0768 0.1345
ELM 21.9596 30.6676 32.0620 17.7876 24.4303 25.5310 0.1657 0.2311 0.2414

LSTM 6.5631 6.5619 6.8207 5.2209 5.2104 5.5277 0.0486 0.0492 0.0522
Bi-LSTM 6.8805 18.9087 7.8066 5.4891 15.2301 6.0338 0.0511 0.1441 0.0570

SAE-
LSTM 16.2097 15.4307 17.7260 12.9579 12.5685 14.3710 0.1208 0.1189 0.1360

Proposed 1.6200 2.2500 2.8930 1.4000 3.8520 3.9050 0.0262 0.0254 0.0295

#2

BP 24.1841 24.6001 28.3410 18.0727 19.9550 23.5170 0.1635 0.1831 0.4260
ELM 21.0534 42.2065 77.0902 27.0664 33.9358 46.4172 0.17 0.3110 0.0753

LSTM 24.0533 24.1604 15.7080 14.8452 17.3944 18.2150 0.1346 0.1573 0.2160
Bi-LSTM 22.5563 25.7633 29.266 15.9178 17.0951 22.981 0.144 0.1597 0.2109

SAE-
LSTM 55.6759 26.9501 44.3218 18.7665 21.5600 35.3644 0.1638 0.1979 0.3240

Proposed 15.5211 18.426 19.7256 13.2542 14.9812 17.3158 0.02845 0.03249 0.03674

#3

BP 16.2574 16.5112 17.2154 7.8379 8.4329 9.1245 1.9280 2.6220 2.6270
ELM 15.3113 16.2548 18.7512 8.1729 8.2146 8.7512 1.9220 3.5140 3.2140

LSTM 8.3712 9.2140 9.7451 6.1535 6.8421 7.1500 0.1006 0.1920 0.5320
Bi-LSTM 11.3180 12.0541 12.9542 6.1678 6.9874 7.5413 0.1230 0.3610 0.6210

SAE-
LSTM 18.7051 19.0124 21.0244 6.6167 7.1593 8.1736 0.1830 0.6270 0.8240

Proposed 6.2451 7.6214 9.0215 5.2154 5.9241 6.8314 0.0980 0.1670 0.3450

#4

BP 55.1250 55.8125 56.0124 21.2154 22.4375 23.4571 2.9853 3.0427 3.6125
ELM 50.5120 51.0321 51.8742 23.6451 23.9461 24.6518 2.4127 2.4672 2.6523

LSTM 37.0120 37.6200 38.3124 15.2243 16.0214 16.9572 1.1245 1.2451 1.3526
Bi-LSTM 40.1520 42.0158 42.6547 16.2751 16.9542 17.9512 1.4267 1.5134 1.5142

SAE-
LSTM 47.0420 48.3219 47.0124 16.9585 17.9561 18.6412 1.3421 1.4000 1.4873

Proposed 25.0450 26.0127 27.6541 14.3214 14.9546 15.3125 0.8713 0.8971 1.0821

#5

BP 51.017 52.4275 52.9781 22.8124 23.1245 23.9971 2.6452 2.9451 3.8451
ELM 50.423 51.4379 53.1245 21.4648 22.9875 23.7815 2.1252 2.3215 2.4025

LSTM 38.042 38.4512 39.4124 17.5145 17.4516 18.9155 1.4652 1.4824 1.6715
Bi-LSTM 42.024 42.3721 43.7512 17.6891 17.9815 18.6785 1.3425 1.6541 1.7512

SAE-
LSTM 43.127 44.1289 45.0124 18.7512 18.7912 19.1544 0.9842 1.0245 1.6522

Proposed 32.045 32.7818 33.1587 15.4215 15.9754 16.3242 0.9421 1.0134 1.6452

Figures 16 and 17 show the error distribution of one-step-ahead, two-step-ahead, and
three-step-ahead predictions with different models in a more visual way. The ELM method
and BP neural network had a higher error in the three-step-ahead prediction, which may
be due to the simple network structures.
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Figure 16. Roll angle prediction error distribution of Dataset 1.
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Figure 17. Roll angle prediction error distribution of Dataset 2.

4.4. Pitching Angle Prediction Results and Analysis

Taking Dataset 1 as an example, different benchmark models for pitching angle predic-
tion results are shown in Figures 18 and 19. Figure 18 indicates prediction results in 200 s,
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and Figure 19 shows the testing data in 50 s. It can be seen that LSTM and BiLSTM had
better fitting performance. In order to prove that EMD and adaptive PSO are both effective
methods in improving LSTM for short-term ship attitude prediction, EMD–LSTM and
adaptive PSO–LSTM were chosen for comparison, and the statistical results of errors are
shown in Table 6. As a whole, adaptive PSO–LSTM had lower MAE and RMSE compared
with EMD–LSTM, which means that adaptive PSO improves adaptability by adjusting
network parameters dynamically and has more accurate results. Although the MAPE
result is different from the MAE and RMSE results, the two method prediction results are
similar and can be ignored. EMD is mainly used to reduce the nonstationary characteristic
before dividing fixed window length time series data into training and testing datasets.
The proposed model had the lowest error results and can further prove the validity of
short-term prediction. The error results between the prediction and the recorded values for
each method are shown in Figures 20 and 21. Similar to roll angle prediction experiments,
pitching angle prediction of all the datasets is shown in Table 7, which shows that the pro-
posed model outperforms the other methods in terms of one-step-ahead, two-step-ahead,
and three-step-ahead prediction with the lowest error results. Still, the error accumulation
is obvious.

Both Figures 22 and 23 show the error distribution of the one-step-ahead, two-step-
ahead, and three-step-ahead predictions of pitching angle with different models in a
more visual way, and MAPE distribution shows an increasing trend. Compared with the
previous model, the BP neural network still had the higher error results in multi-step-
ahead predictions. It is worth noting that the SAELSTM method also had poor prediction
performance, which demonstrates that complex networks do not always result in better
predictions. On the contrary, this may cause a long overall prediction time.

0 100 200

-0.010

-0.008

-0.006

-0.004

72.0 72.5 73.0 73.5 74.0

-0.00718

-0.00716

-0.00714

-0.00712

-0.00710

-0.00708

-0.00706

pi
tc
h 
an
gl
e(
°
)

time(s)

 BP
 ELM
 LSTM
 Bi-LSTM
 SAE-LSTM
 Proposed
 observed value

p
i
t
c
h
 
a
n
g
l
e
(
°

)

time(s)

 BP
 ELM
 LSTM
 Bi-LSTM
 SAE-LSTM
 Proposed
 observed value

Figure 18. Pitch angle prediction results in the training set of Dataset 1.
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Figure 19. Pitch angle prediction results in the testing set of Dataset 1.
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Figure 20. Pitch angle prediction error results in the training set of Dataset 1.



J. Mar. Sci. Eng. 2023, 11, 466 20 of 24

200 220 240

-5.0

-4.5

-4.0

-3.5

-3.0

E
r
r
o
r

time(s)

 BP
 ELM
 LSTM
 Bi-LSTM
 SAE_LSTM
 Proposed

Figure 21. Pitch angle prediction error results in the testing set of Dataset 1.
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Figure 22. Pitch angle prediction error distribution of Dataset 1.
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Figure 23. Pitch angle prediction error distribution of Dataset 2.

Table 6. Statistical results of pitch angle prediction errors in Dataset 1.

Method MAE (×10−5) MAPE (×10−5) RMSE (×10−5)

LSTM 2.36 1.54 3.76
adaptive PSO–LSTM 0.59 0.81 0.76

EMD–LSTM 1.44 0.20 1.82
proposed 0.366 0.49 0.46

Table 7. The pitch angle prediction errors of different models.

Dataset Model
RMSE (×10−4) MAE (×10−4) MAPE (×10−4)

1 Step 2 Steps 3 Steps 1 Step 2 Steps 3 Steps 1 Step 2 Steps 3 Steps

#1

BP 2.4880 2.3117 3.1614 1.9340 1.8354 2.4225 1.4779 1.4434 1.8784
ELM 2.3914 1.0785 1.2083 1.4225 0.7563 0.8680 1.0949 0.6007 0.6957

LSTM 1.2950 1.7018 1.7027 0.9889 1.3026 1.3012 0.7623 1.0137 1.0121
Bi-LSTM 1.1073 1.5101 1.4217 0.8423 1.1547 1.0781 0.6527 0.9016 0.8431

SAE-
LSTM 2.0635 2.0784 2.3906 1.5800 1.6044 1.8553 1.2290 1.2487 1.4431

Proposed 1.0205 1.5426 2.4352 0.7502 0.9642 0.9852 0.7052 0.8543 0.9548

#2

BP 0.4926 0.5004 0.5021 0.3916 0.396 0.3970 0.3299 0.3394 0.3409
ELM 0.4986 0.5285 0.5295 0.3967 0.4153 0.4210 0.3342 0.3551 0.3604

LSTM 0.4079 0.4224 0.4321 0.3474 0.3272 0.3346 0.2797 0.2861 0.2932
Bi-LSTM 0.4478 0.4501 0.4521 0.3595 0.3644 0.3638 0.3043 0.3128 0.3118

SAE-
LSTM 0.8550 0.7729 0.869 0.7217 0.6985 0.6143 0.5207 0.6002 0.6103
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Table 7. Cont.

Dataset Model
RMSE (×10−4) MAE (×10−4) MAPE (×10−4)

1 Step 2 Steps 3 Steps 1 Step 2 Steps 3 Steps 1 Step 2 Steps 3 Steps

Proposed 0.3052 0.3564 0.4215 0.3025 0.3345 0.3501 0.2015 0.2341 0.2654

#3

BP 3.1247 3.4521 4.0421 2.3210 2.3954 2.9525 1.6421 1.7512 1.7834
ELM 3.4541 3.6422 3.9875 2.0423 2.3212 2.6215 1.0455 1.4245 1.4625

LSTM 2.3124 2.4215 2.5124 1.0425 1.3251 1.4236 0.6421 0.6678 0.8451
Bi-LSTM 2.6452 2.7812 2.9815 1.3451 1.3642 1.4203 0.8451 0.8945 0.9451

SAE-
LSTM 2.4215 2.6451 2.9875 1.6254 1.6355 1.8533 0.8342 0.8643 0.8965

Proposed 1.4521 1.6751 1.7235 0.9345 1.0421 1.3425 0.6421 0.6512 0.7345

#4

BP 7.1515 7.6421 8.4512 4.0451 4.3125 4.5421 2.6425 2.7562 2.7865
ELM 7.1245 7.5245 7.6154 3.4512 3.6427 3.9854 2.4514 2.6452 2.7635

LSTM 4.4512 4.6457 5.0421 2.4512 2.5634 2.8754 1.4516 1.4634 1.6552
Bi-LSTM 4.6124 4.7815 4.9871 2.9451 3.0124 3.0125 1.6421 1.7542 1.7954

SAE-
LSTM 5.1544 5.3425 5.2154 2.8754 2.9845 3.0124 1.6784 1.9780 2.0451

Proposed 3.2451 3.6452 3.9875 1.9458 2.0143 2.1345 1.3451 1.3649 1.4535

#5

BP 7.9146 8.1246 8.9578 4.0414 4.3215 4.9485 2.5861 2.6784 2.7625
ELM 7.8124 8.0451 8.6524 4.6152 4.9781 5.0145 2.5463 2.6458 2.8451

LSTM 5.6412 5.7215 5.9841 3.0154 3.4614 3.8452 1.6535 1.6854 1.7058
Bi-LSTM 5.9842 6.2451 6.3758 3.1245 3.2481 3.4585 1.6784 1.6524 1.7815

SAE-
LSTM 6.5167 7.0124 7.6255 3.4625 3.6421 4.0458 1.6736 1.7544 1.8065

Proposed 4.5671 4.6875 4.9587 2.8451 2.9845 3.0142 1.1643 1.4268 1.3815

5. Conclusions

To improve the predicted performance of roll and pitch angles in the short term, a
novel hybrid EMD-adaptive PSO–LSTM model with the sliding window approach was
proposed in this paper. Firstly, in order to solve the problem of nonlinear and nonstationary
data affecting the prediction accuracy, an EMD-based denoising method was proposed to
smooth the original ship motion time series data. Secondly, an adaptive PSO algorithm was
proposed to optimize the number of hidden units in the LSTM neural network to improve
the accuracy of ship motion attitude prediction. To properly evaluate the performance of
the proposed model, five sets of sea trial data were used for verification. The experimental
results show the superiority of the proposed algorithm.
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5. Majnarić, D.; Šegota, S.B.; Lorencin, I.; Car, Z. Prediction of main particulars of container ships using artificial intelligence
algorithms. Ocean Eng. 2022, 265, 112571. [CrossRef]

6. Kumari, P.; Toshniwal, D. Long short term memory–Convolutional neural network based deep hybrid approach for solar
irradiance forecasting. Appl. Energy 2021, 295, 117061. [CrossRef]
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