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Abstract: In recent years, wave energy has gained attention for its sustainability and cleanliness. As
one of the most important parameters of wave energy, significant wave height (SWH) is difficult
to accurately predict due to complex ocean conditions and the ubiquitous chaotic phenomena in
nature. Therefore, this paper proposes an integrated CEEMDAN-LSTM joint model. Traditional
computational fluid dynamics (CFD) has a long calculation period and high capital consumption, but
artificial intelligence methods have the advantage of high accuracy and fast convergence. CEEMDAN
is a commonly used method for digital signal processing in mechanical engineering, but has not
yet been used for SWH prediction. It has better performance than the EMD and EEMD and is
more suitable for LSTM prediction. In addition, this paper also proposes a novel filter formulation
for SWH outliers based on the improved violin-box plot. The final empirical results show that
CEEMDAN-LSTM significantly outperforms LSTM for each forecast duration, significantly improving
the prediction accuracy. In particular, for a forecast duration of 1 h, CEEMDAN-LSTM has the most
significant improvement over LSTM, with 71.91% of RMSE, 68.46% of MAE and 6.80% of NSE,
respectively. In summary, our model can improve the real-time scheduling capability for marine
engineering maintenance and operations.

Keywords: wave forecast; significant wave height (SWH); complete ensemble empirical mode
decomposition with adaptive noise (CEEMDAN); CEEMDAN-LSTM model

1. Introduction

Surface gravity waves are an important physical phenomenon to be considered in
activities such as marine engineering [1,2], renewable energy [3,4], navigation [5,6], scour
protection [7,8], offshore wind foundations [9,10] and breakwaters [11,12]. Especially,
significant wave height (SWH) is a commonly used statistical wave height in engineering
construction [13]. The results of SWH prediction can be used as a reference and support for
many marine engineering operations. For example, short-term roll and sway predictions
of semi-submersible [14], and ship motion trajectory predictions [15]. Consequently, real-
time forecasting of random waves is essential in marine engineering and renewable wave
energy [16].

So far, a number of important wave height prediction models have been developed
by experts and scholars in various countries. From the early analysis of wave heights
from a mathematical and statistical perspective, it was argued that wave height data
obeyed the Rayleigh distribution [17]. There is also the importance of estimating and
testing the parameters of the distribution in statistical models [18]. Subsequently, numerical
simulations based on computational fluid dynamics (CFD) became popular [19]. However,
its long calculation period and high capital consumption limit the application of CFD for
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SWH prediction. In recent years, time series models have been applied to the prediction of
wave height history series [20,21].

In order to solve the non-linear prediction problem in SWH, some wave height predic-
tion models based on linear or non-linear artificial intelligence or hybrid models have been
proposed and have been widely used and accepted in engineering practice. Özger aimed to
propose a forecasting scheme that enables forecasts up to 48 h ahead of time [22]. The group
method of data handling as a data learning machine method is used to forecast the SWH for
the next 3, 6 and 12 h [23]. Ali et al. designed and evaluated a machine learning model to
forecast SWH for the eastern coastal zones of Australia [24]. Kim et al. proposed a method
for a real-time One-week Wave Forecast of Nearshore Waves (OWFNW) at 13 stations on
the Japanese coast [25]. Camus et al. explored the potential of a state-of-the-art seasonal
forecast system to predict wave conditions, particularly SWH [26]. Raj et al. used features
of ocean waves, such as the zero-up crossing wave period, peak energy wave period, sea
surface temperature and significant lags, for SWH forecasting [27]. Zilong et al. proposed a
new data-driven model that uses deep learning for the effective spatio-temporal prediction
of wave heights in important areas of the western Pacific. The data-driven model shows
good potential in accurately capturing fuzzy patterns and features in both spatial and
temporal dimensions, and has a significant advantage over numerical wave models in
terms of computational efficiency [28]. Other experts and scholars have used different
models for prediction [29,30]. The results show that wave prediction is better using a
hybrid training model compared to a single neural network model [31–33].

For non-linear and non-stationary waves, pre-processed data train models with higher
accuracy than unprocessed ones. Therefore, a hybrid integrated model combining pre-
processing techniques with a single prediction model becomes a better method for predict-
ing waves [34]. Ali and Prasad were able to improve the wave height prediction model
by combining the extreme learning machine (ELM) model with the improved complete
ensemble empirical mode decomposition method with adaptive noise (ICEEMDAN) to
design the ICEEMDAN-ELM model [24]. Luo et al. proposed the Bi-LSTM with attention
(BLA) model to predict wave heights in the Atlantic hurricane region. By comparing the
BLA model with Bi-LSTM, LSTM and LSTM with attention models, it was found that the
BLA model had the best and most stable prediction performance [35]. Liu et al. designed
a deep-learning wave prediction (deep-WP) model based on probabilistic strategies for
the short-term prediction of random waves by processing sequences with probabilistic
strategies. The validation results show that the deep-WP model has the ability to predict
non-linear random waves in real time [36].

For non-linear and non-stationary problems such as wave height prediction, a data
pre-processing technique called Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise (CEEMDAN) performs well in analyzing non-linear and non-smooth
datasets. Several studies have been conducted on the incorporation of the surface CEEM-
DAN method for air quality index [37], solar radiation prediction [38], wind speed se-
quence [39], and so on, with good improvements. These showed that CEEMDAN technol-
ogy can handle non-linear and non-stationary sequences very well when compared with
Recurrent Neural Networks (RNN),

Therefore, to avoid the shortcomings of existing wave height prediction methods,
the SWH sequence is pre-processed using the CEEMDAN method. Compared with RNN
models, long short-term memory (LSTM) inherits the advantages of the RNN model and
effectively solves the problem of gradient explosion and gradient disappearance in RNN
by using the unique structure of gates. Consequently, the LSTM is combined with the
CEEMDAN algorithm to build an integrated CEEMDAN-LSTM prediction model to predict
the SWH of non-stationary waves at ShiDao monitoring station along the east coast of China.
Section 2 introduces the principles of LSTM, CEEMDAN, the integrated CEEMDAN-LSTM
model and model error evaluation indicators. Section 3 presents the dataset and the pre-
processing of data through statistics. In Section 4, we propose new filter formulations for
SWH outliers based on improved violin box plots. This includes the pre-processing of data
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based on the CEEMDAN algorithm and performing non-stationary analysis on the data.
In Section 5, numerical simulations are carried out with the integrated CEEMDAN-LSTM
prediction method, and the prediction results are discussed and analyzed. In Section 6,
concluding remarks are presented.

2. Theories for CEEMDAN to Optimize LSTM
2.1. Long Short-Term Memory (LSTM)

As an improved Recurrent Neural Network (RNN), long short-term memory (LSTM)
inherits the advantages of the RNN model and effectively solves the problem of gradient
explosion and gradient disappearance in the RNN by using the unique structure of gates [40].

The LSTM consists of multiple cyclic cells, the inputs of which contain the input data at
the current moment, the state vector of cyber cells at the previous moment and the hidden
layer output vector. LSTM first calculates the discarded information of the cell through the
forgetting gate, as shown in Equation (1).

ft = σ
(

W f · [ht−1, Xt] + b f

)
(1)

where, W f is the weight matrix of the forgetting gate; into a longer vector; [ht−1, Xt] means
connecting two vectors into a longer vector; b f is the offset term; ft is the output of the
forgetting gate.

The forgetting gate reads Xt and ht−1, the size of the output value represents the
degree of forgetting and assigns a value to the cell state Ct−1. The size of ft is between [0, 1].
The smaller the value is, the higher the degree of forgetting is.

The input gate is partially obtained from the input Xt and ht−1 to obtain the current it,
which generates the updated neuron state information Ct. The current state information ht
is also calculated from the inputs Xt and ht−1 [41]. The input gate is calculated following
Equation (2). 

it = σ(Wi · [ht−1, Xt] + bi)

C̃t = tanh(Wc · [ht−1, Xt] + bc)

Ct = ftCt−1 + itC̃t

(2)

where Wi and Wc are the weight matrix of the input gate, bi and bc are the deviation vectors
of the output gates, C̃t is the current input cell state. The network structure diagram of
LSTM is shown in Figure 1.
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Figure 1. The network structure diagram of LSTM.

Figure 1 shows the forgetting gates and the input gates going to the output gates after
a cell state update. Due to its optimized structure, the LSTM can selectively remember the
important information and forget the unimportant information. The gradient vanishing
problem of the RNN is improved.

2.2. Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN)

Huang et al. proposed an empirical mode decomposition (EMD) method for transform-
ing a non-linear sequence into a set of smooth sequences consisting of multiple intrinsic
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mode functions (IMFs) and a residual [42]. However, the EMD method may lead to
mode confounding, and Wu et al. proposed ensemble empirical mode decomposition
(EEMD) [43]. The CEEMDAN algorithm obtains the final first-order IMF by performing an
average calculation after obtaining the first-order IMF [44]. This operation is repeated for
the residual part of the signal, effectively avoiding the transfer of noise from high to low
frequencies and overcoming the large reconstruction error in the EEMD algorithm [45,46].
The process of CEEMDAN is described as follows:

1. Let X(t) be the original significant wave height (SWH) of ShiDao effective data, and
add white noise Ni(t) to the load data to form a signal comprising the noise, as shown
in Equation (3),

Xi(t) = X(t) + X0Ni(t), i = 1, 2, . . . , n (3)

where t is various points in time, i represents the ith white noise added to original
data, X0 is the standard noise deviation, Ni(t) is Gaussian white noise, Xi(t) is the
newly generated signal.

2. Decompose the Xi(t) by Equations (4) and (5) to obtain the 1st IMF and calculate the
corresponding residual r1(t).

IMF1(t) =
1
n ∑n

i=1 IMFi
1(t) (4)

r1(t) = X(t)− IMF1(t) (5)

3. Gaussian white noise Ni(t) is added to the residual r1(t). The residual expression
of adding white noise for the ith time is ri

1(t) = r1(t) + Ni(t). The second-order IMF
component is determined. EMD decomposes ri

1(t) with white noise for the ith time to
obtain IMFi

2(t). The IMF2(t) is expressed as Equations (6) and (7).

IMF2(t) =
1
n ∑n

i=1 IMFi
2(t) (6)

r2(t) = r1(t)− IMF2(t) (7)

4. Similarly, the kth IMF of CEEMDAN and the kth residual rk(t) can be obtained as
Equations (8) and (9).

IMFk(t) =
1
n ∑n

i=1 IMFi
k(t) (8)

rk(t) = rk(t)− IMFk(t) (9)

5. The decomposition process will iterate until it reaches a point where the residual is a
monotonic function that cannot be decomposed. Whereas R(t) is the final residual, as
shown in Equation (10).

X(t) = ∑k
n=1 IMFn(t) + R(t) (10)

2.3. Numerical Algorithms of the Integrated CEEMDAN-LSTM Joint Model

In natural seas, a wave is a time series with non-stationary characteristics and complex
irregular non-linear variations. In general, irregular waves are a difficult analytical problem
in marine and offshore engineering, and can be numerically solved by computational fluid
dynamics (CFD), but they also have the disadvantage of long computational cycles and
huge capital expenditure [47].

The combination of CEEMDAN and LSTM models provides an effective method for
predicting non-smooth and irregular non-linear waves. The process of wave forecasting
using the CEEMDAN-LSTM method is summarized as consisting of three main steps, as
shown in Figure 2. The first step is to decompose the wave height time series data with
missing values removed into several sets of simple, smooth intrinsic mode functions (IMFs)
and residuals based on the CEEMDAN algorithm. The second step is to separately predict
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each IMF component using the LSTM model. Finally, the predictions for each component
are aggregated to obtain the final prediction. The significant wave height forecasts were
made based on forecast windows of 1, 3, 6 and 24 h.
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2.4. Error Evaluation Indicators

In order to reasonably evaluate the performance of the forecasting model, three metrics,
Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Nash-Sutcliffe Efficiency
Coefficient (NSE), are used in this paper to assess the performance of the model. Of these,
the RMSE and MAE are more sensitive to the response to errors in very large or very
small values in the series, and the NSE provides an assessment of the goodness of fit of
the predicted and actual values. The smaller the value of RMSE and MAE, the better the
prediction. NSE is between negative infinity and 1, with NSE close to 1 indicating accurate
and credible model results; NSE close to 0 indicates that the model results are close to the
mean level of the observed values, but with large process errors; and when NSE is much
less than 0, the model is not credible.

RMSE =

√
1
n ∑n

i=1

(
Xi − X′i

)2
, (11)

MAE =
1
n ∑n

i=1

∣∣Xi − X′i
∣∣, (12)

NSE = 1− ∑n
i=1
(
Xi − X′i

)2

∑n
i=1
(
Xi − Xi

)2 , (13)

where Xi and X′i are the actual and predicted values of this time series in time period i, and
n is the number of testing samples.

3. Study Area and Data
3.1. Description of Study Area

To investigate the wave effects of forecast models with different statistical characteris-
tics, we used the National Marine Data Center, National Science and Technology Resource
Sharing Service Platform of China (http://mds.nmdis.org.cn/, accessed on 8 November
2022) to obtain significant wave height (SWH) data from the ShiDao site in Shandong
province along the east coast of China. The locations of the east coast of China measured in
this paper are shown in Figure 3.

http://mds.nmdis.org.cn/
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The data from the Shidao site used in this paper covers the period 2013.1.1–2022.7.31,
with 73,819 data items. The measured data from the National Marine Data Center, National
Science and Technology Resource Sharing Service Platform of China were used. Due to
measurement instrumentation and recording bias, we removed missing and extreme outlier
values from the data and obtained 68,068 effective data. Table 1 lists the locations of the
measured waves and the data information.

Table 1. Spatial location and data statistics.

Monitoring Station Positon Data Duration Dataset Effective Data

ShiDao 36.89◦ N 122.43◦ E 2013.1.1–2022.7.31 73,819 68,068

In this paper, the integrated CEEMDAN-LSTM joint model is validated using data
from ShiDao monitoring station in this table as input.

3.2. Significant Wave Height Datasets Preprocessing

The theoretical foundations of both CEEMDAN and LSTM have been established.
In order to avoid training errors in the training set being mixed with the test set, which
ultimately results in prediction errors. The first 90% of the dataset was classified as the
training set and the last 10% was classified as the test set. For the ShiDao dataset, there
were 61252 and 6806 data, respectively. Figure 4 shows the time history data and statistical
information of significant wave height for ShiDao monitoring station.
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As in Figure 4, the mean value of the ShiDao dataset is 5.52, the standard deviation is
2.92 and the mode is 4.00, with a total of 22,509.00 values. The kurtosis value 11.49 is much
larger than 3.00, and the probability density distribution curve is sharper and the shape of
the peak is steeper than the normal distribution. This indicates, on the one hand, that the
distribution of the SWH data has a large number of extreme values. On the other hand,
all but the extreme values are concentrated around the mode value of 4.00. The steeper
distribution of SWH also poses greater difficulty in terms of prediction. The skewness
value is well above 0.00, indicating that the SWH data distribution is positively skewed
(right skewed). Consequently, SWH data greater than the mean value of 5.52 accounts for
more than half of the data, while the right-hand side of the curve trails off for a long time
due to a few outliers being too large.

4. Research Results of the Integration Section
4.1. Novel Filter Formulation for SWH Outliers with Improved Violin-Box Plot

For machine learning and data analysis, the quality of the data is very important. The
data in this paper are obtained from actual buoy observations, which are then transmitted in
delayed mode and recorded in ASCII character format. As a result, problems such as buoy
sensor failures or data transmission errors are inevitable. In order to better characterize the
data, a novel filter formulation for SWH outliers is proposed. We first visualized the data
using a violin plot and frequency distribution histogram, as shown in Figure 5.
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steeper distribution of SWH also poses greater difficulty in terms of prediction. The skew-
ness value is well above 0.00, indicating that the SWH data distribution is positively 
skewed (right skewed). Consequently, SWH data greater than the mean value of 5.52 ac-
counts for more than half of the data, while the right-hand side of the curve trails off for a 
long time due to a few outliers being too large. 
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Figure 5. Violin plot and frequency distribution histogram of effective data.

In Figure 5, the violin plot is a combination of a box plot and a kernel density plot,
providing us with a way to identify outliers. The white dots on the violin plot represent
the median, the thick black bars represent the interquartile range, and the narrow black
bars represent the upper and lower adjacencies. Furthermore, the shape of the violin plot
shows the overall distribution of the data, which is similar to the results of the frequency
distribution histogram. The differences between the specific violin and box plots are shown
in Figure 6.

From Figure 6, the violin and box plots give similar information, with the box plot
giving additional mean values and the violin plot giving additional information on the
distribution of the data. Although normally for machine learning values above the upper
and lower adjacency can be considered as outliers and discarded. However, due to the
non-linear and non-stationary nature of the SWH data, the volatility is much more dramatic
than in normal statistics. The upper bound amplitude is much higher than the upper
adjacency of the common statistical range and is real. It is very unjustified to simply discard
some data in a crude manner. Therefore, a novel filter formulation for SWH outliers is
proposed in this paper by manually checking the measured data from ShiDao monitoring
station to remove the missing and extreme outlier values. The box plot of SWH effective
data over the years is shown in Figure 7.
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Figure 7. Box plot of SWH effective data for calendar year.

The SWH effective data from 2013 to 2021, measured in the field and manually cali-
brated, is shown in Figure 7. There is no need to assume in advance that the data obey a
specific form of distribution. Without any restrictions, the data can be visualized as raw
shapes and some common features can be obtained. The data for 2022 is not presented as
an effective analysis as it is not yet complete. We can observe that the upper and lower
adjacency of the SWH data for all years are around 11 m and 2 m. The mean is around 6 m
and the median is less than the mean by about 5 m. The remaining small portion of the
data is between 11 m and 35 m. Accordingly, a novel filter formulation for SWH outliers
with an improved violin-box plot is proposed to check and modify the SWH outliers, and
the procedure is as follows.

P25% − PD ≤ yi ≤ P75% + 15PD
yi < P25% − PD

yi > P75% + 25PD

Yi = yi
Yi = P50% − ymin

Yi = ymax − 5P50%

, (14)

where, P25%, P50% and P75% are the 25% quantile, 50% quantile and 75% quantile, respec-
tively, yi and Yi are the actual and corrected data, ymax and ymin are the maximum and
minimum values, respectively, and let PD = P75% − P25%.

The above novel filter formulation works extremely well for positive deviations in
SWH data. It may also be applicable for SWH data from other areas of the eastern coast of
China. Furthermore, the procedure proposed in the formula is of great interest for other
non-linear or non-stationary data.
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4.2. Decomposition Results of CEEMDAN

The results of the EMD decomposition algorithm are shown in Figure 8. The EEMD
and CEEMD decomposition algorithms reduce the modal aliasing of EMD decomposition
by adding pairs of positive and negative Gaussian white noise to the signal to be decom-
posed. However, these two algorithms will always leave a certain amount of white noise in
the eigenmode component of the decomposed signal, which affects the subsequent analysis
and processing of the signal. The CEEMDAN is an improvement on the EMD and avoids
the problem of residual white noise in IMFs of EEMD and CEEMD, as shown in Figure 9.
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Figure 8. Comparison of ShiDao effective data in the time domain for the IMFs component of SWH
sequence by EMD algorithm.

Figures 8 and 9 show the SWH time history data after processing by EMD and CEEM-
DAN. There are eighteen IMFs and one residual for EMD and seventeen IMFs and one
residual for CEEMDAN. For the ShiDao effective data, we can obtain some conclusions
from Figures 8 and 9.

1. In Figure 9, the CEEMDAN decomposition of IMF1-IMF7 contains high frequency
sinusoidal intermittent signals. IMF8-IMF13 are intermediate frequency sinusoidal
intermittent signals. IMF14-IMF17 and the residual are low frequency broad period
signals. In this way the signals can be classified. Similarly, the EMD algorithm divides
the IMFs components into IMF1-IMF8, IMF9-IMF14 and IMF15-IMF18, respectively.
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2. From IMF14 onwards, in Figure 9, the signal period increases and gets larger. Local
signal surges from a global perspective disappear and the curve becomes increas-
ingly smooth. It can be said that IMF14-IMF17 contain almost no noise at high and
medium frequencies. This shows that CEEMDAN has a good processing effect on
SWH sequences. A similar phenomenon is observed from IMF15 of EMD onwards.
This indicates that CEEMDAN can obtain noise-free IMF components with fewer
decomposition steps compared to EMD.

3. For the EMD, divergence occurs at the end. For example, IMF13, IMF14 and IMF15
in Figure 8. Whereas, in Figure 9, on the other hand, this does not occur for all IMF
components. This indicates that CEEMDAN handles data boundaries much better
than EMD. Consider the fact that the upper (lower) envelope of the decomposition
process is obtained from the local extremely large (small) values of the signal by three
times spline interpolation. However, it is not possible for the endpoints of the signal to
be at either a very large or a very small value at the same time. As a result, the upper
and lower envelopes diverge at both ends of the data sequence and this divergence
gradually increases as the operation proceeds, which is why divergence is a common
problem with IMF14-16 in EMD. As the scatter in the decomposition makes the results
less scientific, we suspect that this also has a negative impact on the accuracy of the
prediction results. However, CEEMDAN does not suffer from such a shortcoming.
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Figure 9. Comparison of ShiDao effective data in the time domain for the IMFs component of SWH 
sequence by CEEMDAN algorithm. 
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The results of the IMFs obtained by EMD and CEEMDAN for the ShiDao effective
data in the frequency domain are shown in Figures 10 and 11.
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SWH sequence by EMD algorithm.

According to Figures 10 and 11, it can be seen that the individual IMFs obtained after
EMD and CEEMDAN can be distributed at different frequencies. In Figure 10, we find that
the EMD decomposed components show a more pronounced modal mixing: specifically,
the peaks of the individual IMF components’ spectra all overlap. This is evident in IMF1-
IMF8 in Figure 10. On the contrary, after the CEEMDAN decomposition, it can be seen
from Figure 11 that the peaks of all IMF components do not overlap and that all IMF peaks
correspond to different frequencies. This shows that the CEEMDAN algorithm can improve
and avoid the modal mixing phenomenon in the EMD algorithm. Thus, the original SWH
data are decomposed into high frequency sinusoidal intermittent signals, intermediate
frequency sinusoidal intermittent signals and low frequency broad period signals.

Consider that the data is monitored in real time on an hourly basis at the ShiDao
monitoring station. Therefore, in terms of physical significance:

1. The high frequency sinusoidal intermittent signals IMF1-IMF7 can reflect the essential
characteristics of SWH data. For example, a tidal cycle (approximately 24 h and
50 min) is accompanied by a high tide and a low tide, which is reflected in one cycle
of the high frequency sinusoidal interval signal.

2. The intermediate frequency sinusoidal intermittent signals IMF8-IMF13 reflect the
medium- and long-term meteorological influences of the monsoon and ocean currents
on the SWH data, alternating between weekly and monthly cycles.
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3. In the modeling and analysis processes, the low frequency signals IMF14-IMF17 can
be seen as a very small energy loss of the high frequency intermittent signals.
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5. Analysis of Substantiation Results

Although LSTM, as a particular type of RNN, has been widely used for time series
prediction due to its powerful ability to selectively remember and forget information.
However, LSTM, like all methods, is limited by its mathematical basis and the inability
of science to fully observe physical phenomena. Therefore, it is necessary to add other
tools. In this paper, we test the LSTM and integrated CEEMDAN-LSTM models with SWH
effective data obtained from the ShiDao monitoring station off the east coast of China
using the National Marine Data Center, National Science and Technology Resource Sharing
Service Platform of China. The first 90% of the dataset was classified as the training set
and the last 10% was classified as the test set. For the ShiDao effective dataset, there were
61,252 and 6806 data, respectively. The model uses a rolling mechanism to iteratively
predict n future values from the input data (n = 1,3,6,24 corresponding to 1, 3, 6 and 24 h
ahead, respectively). The real SWH data from the next iteration step is then used as the
known input to the model to continue the prediction with a rolling forecast. Due to the
large amount of data, overfitting is less likely to occur. However, in order to increase the
applicability of the model and further reduce the possibility of overfitting, a dropout layer
was set up with 50% random discarding used to prevent overfitting [48].
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5.1. Summary of Model Parameter Settings

In order to make the article scientifically sound and reproducible, we list the parame-
ters of the CEEMDAN-LSTM. For the CEEMDAN algorithm: the sampling frequency is set
to 1, the standard deviation of the additional Gaussian noise is set to 0.2, the number of
times the signal is averaged is 100 and the maximum number of iterations is set to 1000.

The prediction accuracy of a neural network can be improved by adding more layers or
more neurons. However, in some cases, adding more layers and neurons is not conducive
to improving the accuracy of a neural network while increasing the training time. In this
study, the number of layers of hidden neurons in the LSTM network structure model was
set to 2. The first layer of the LSTM hidden layer contained 200 neurons and the second
layer contained 100 neurons. The hidden layer of the first LSTM outputs ht, which is passed
as input to the second LSTM layer, and into the hidden layer of the second LSTM layer. This
is followed by a dropout, where 50% of the neural network units are randomly discarded
to prevent overfitting. Finally, there is a fully connected layer with only one neuron, and
the output size of the fully connected layer is equal to the size of the prediction result. The
regression layer computes the half-mean-square-error loss to check the convergence of the
network.

The model was implemented using the MATLAB Deep Learning Toolbox. In this net-
work, training was performed based on the adaptive moment estimation (Adam) optimizer.
For the three datasets in this paper, the number of iterations of the maximum Epochs is 500
and the mini Batch Size is 16. The initial learn rate, learn rate drop factor and learn rate
drop period were 0.005, 0.2 and 100, respectively, with a piecewise learn rate schedule.

5.2. Error Evaluation Indicators Quantify the Degree of Improvement

Using the error evaluation indicators in Equations (11)–(13), we were able to quantify
the improvement of CEEMDAN-LSTM over LSTM. Table 2 presents the results of the error
evaluation indicators analysis to determine the effectiveness of LSTM and CEEMDAN-
LSTM for 1-, 3-, 6- and 24-h forecast windows.

Table 2. Comparison of ShiDao measured and predicted values by error evaluation indicators
between CEEMDAN-LSTM and LSTM with degree of improvement for the 1-, 3-, 6- and 24-h forecast
windows.

Forecast
Durations (h)

LSTM CEEMDAN-LSTM Degree of Improvement

RMSE (m) MAE (m) NSE RMSE (m) MAE (m) NSE RMSE (%) MAE (%) NSE (%)

1 0.7693 0.1096 0.9312 0.2162 0.0346 0.9946 71.90% 68.46% 6.80%
3 0.8297 0.1154 0.9234 0.2693 0.0430 0.9916 68.75% 62.70% 7.39%
6 0.8940 0.1206 0.9167 0.3225 0.0515 0.9879 66.17% 57.29% 7.76%

24 0.9720 0.1290 0.9016 0.4825 0.0770 0.9729 53.44% 40.31% 7.91%

By expanding the prediction window, it can be easily observed from Table 2: The
RMSE and MAE of both LSTM and CEEMDAN-LSTM are steadily increasing, while the
NSE is decreasing. This all indicates that model performance gradually decreases as the
forecast duration increases. However, using any of RMSE, MAE or NSE to measure the
performance of CEEMDAN-LSTM is significantly higher than the predictions of LSTM at
each forecast duration. The extent of the improvement of CEEMDAN-LSTM over LSTM
clearly demonstrates that over increasingly longer time scales, the integrated CEEMDAN-
LSTM joint model is able to slow down error growth and maintain a good correlation
with the observations. At 1 h, the error evaluation indicators showed the most significant
increase, corresponding to 71.90% for RMSE, 68.46% for MAE and 6.80% for NSE. Even
with a 24-h advance, CEEMDAN-LSTM still improves by 53.44%, 40.31% and 7.91% over
LSTM in terms of RMSE, MAE and NSE. Consequently, the impact of CEEMDAN-LSTM
on the results of short-term forecasts is significant.
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5.3. Statistical Tests of Prediction Results

The Friedman test [49] and post hoc Nemenyi test [50] were added to ensure the
rationality of the results. The Friedman test is a non-parametric test of whether there
are significant differences between multiple overall distributions using rank. The main
hypothesis of the principle is that there is no significant difference in the distribution of
multiple populations from multiple pairing samples [51]. Before performing the Friedman
test, the data was first tested for normal distribution. Due to the large volume of data, the
Kolmogorov-Smirnov test was used. If the data did not conform to a normal distribution,
then the Friedman test could be used; otherwise the ANOVA was used. The post hoc
Nemenyi test could be followed up with multiple comparisons.

After testing, the sample N were greater than 5000 using the K-S test, the significance
p-value was 0.001, which presented significance at the level and rejected the original
hypothesis. Therefore, Tables 3–6 show the results of the mathematical statistics tests,
the data did satisfy the normal distribution and could be subjected to the Friedman test,
the results of which are shown in Tables 3 and 5. Then, the post hoc Nemenyi test was
used to carry out two-by-two multiple comparisons, the results of which are shown in
Tables 4 and 6.

Table 3. The Friedman test results using LSTM.

Serial
Number Variable Name Sample Size Median Standard

Deviation
Statistical
Quantities p Cohen’s f

Value

1© Measurement 6806 5.000 2.934

6967.366 0.001 0.020

2© Prediction (1 h) 6806 4.679 2.833

3© Prediction (3 h) 6806 4.645 2.824

4© Prediction (6 h) 6806 4.491 2.788

5© Prediction (24 h) 6806 4.541 2.711

Table 4. The post hoc Nemenyi test using LSTM for multiple comparisons.

Pairing
Variables

Median ± Standard Deviation
Statistical
Quantities

p Cohen’s d
Pairing 1 Pairing 2 Pairing Difference

(Pairing 1–Pairing 2)

1© pairing 2© 5.000 ± 2.934 4.679 ± 2.833 0.321 ± 0.101 51.686 0.001 0.015

1© pairing 3© 5.000 ± 2.934 4.645 ± 2.824 0.355 ± 0.109 25.375 0.001 0.009

1© pairing 4© 5.000 ± 2.934 4.491 ± 2.788 0.509 ± 0.146 60.732 0.001 0.041

1© pairing 5© 5.000 ± 2.934 4.541 ± 2.711 0.459 ± 0.223 10.234 0.001 0.010

2© pairing 3© 4.679 ± 2.833 4.645 ± 2.824 0.034 ± 0.009 26.311 0.001 0.007

2© pairing 4© 4.679 ± 2.833 4.491 ± 2.788 0.188 ± 0.045 112.418 0.001 0.058

2© pairing 5© 4.679 ± 2.833 4.541 ± 2.711 0.138 ± 0.123 41.452 0.001 0.026

3© pairing 4© 4.645 ± 2.824 4.491 ± 2.788 0.154 ± 0.036 86.108 0.001 0.051

3© pairing 5© 4.645 ± 2.824 4.541 ± 2.711 0.104 ± 0.114 15.141 0.001 0.020

4© pairing 5© 4.491 ± 2.788 4.541 ± 2.711 0.050 ± 0.078 70.967 0.001 0.033

where Cohen’s d value indicates the effect size. 0.20 or below indicates a small effect, 0.20 to 0.50 indicates a small
effect, 0.50 to 0.80 indicates a large effect, and 0.80 or above indicates a large effect.
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Table 5. The Friedman test results using CEEMDAN-LSTM.

Serial
Number Variable Name Sample Size Median Standard

Deviation
Statistical
Quantities p Cohen’s f

Value

1© Measurement 6806 5.000 2.934

6.223 0.183 0.001

2© Prediction (1 h) 6806 4.752 2.922

3© Prediction (3 h) 6806 4.694 2.921

4© Prediction (6 h) 6806 4.65 2.921

5© Prediction (24 h) 6806 4.627 2.926

Table 6. The post hoc Nemenyi test using CEEMDAN-LSTM for multiple comparisons.

Pairing
Variables

Median ± Standard Deviation
Statistical
Quantities

p Cohen’s d
Pairing 1 Pairing 2 Pairing Difference

(Pairing 1–Pairing 2)

1© pairing 2© 5.000 ± 2.934 4.752 ± 2.922 0.248 ± 0.012 2.775 0.285 0.002

1© pairing 3© 5.000 ± 2.934 4.694 ± 2.921 0.306 ± 0.013 2.775 0.285 0.002

1© pairing 4© 5.000 ± 2.934 4.650 ± 2.921 0.350 ± 0.013 2.821 0.268 0.002

1© pairing 5© 5.000 ± 2.934 4.627 ± 2.926 0.373 ± 0.008 2.783 0.282 0.002

2© pairing 3© 4.752 ± 2.922 4.694 ± 2.921 0.058 ± 0.001 0.000 0.900 0.000

2© pairing 4© 4.752 ± 2.922 4.650 ± 2.921 0.102 ± 0.001 0.046 0.900 0.000

2© pairing 5© 4.752 ± 2.922 4.627 ± 2.926 0.125 ± 0.004 0.008 0.900 0.000

3© pairing 4© 4.694 ± 2.921 4.650 ± 2.921 0.044 ± 0.000 0.046 0.900 0.000

3© pairing 5© 4.694 ± 2.921 4.627 ± 2.926 0.067 ± 0.005 0.008 0.900 0.000

4© pairing 5© 4.650 ± 2.921 4.627 ± 2.926 0.023 ± 0.005 0.038 0.900 0.000

The results of the Friedman test include the median, statistic and Cohen’s f-value.
When the p-value is significant (p < 0.05), the original hypothesis is rejected, indicating that
there is a significant difference between the two sets of data and that the difference can be
analyzed on the basis of median ± standard deviation, and vice versa, indicating that the
data do not show variability. Cohen’s f-value was used to indicate the effect size, with the
threshold for differentiation of small, medium and large effect sizes being: 0.1, 0.25 and
0.40, respectively.

The table of results analyzed using Friedman’s test shows that the significant p-value
is 0.001. Therefore, the statistical result is significant, indicating that there is a significant
difference between the individual Variable names. The magnitude of the difference Cohen’s
f value was: 0.02, a very small degree of difference.

The post hoc Nemenyi test was used to compare two variables, and all the results
showed a p-value of 0.001, showing significance at the level and rejecting the original
hypothesis; therefore, there is a significant difference between the two variables. For
CEEMDAN-LSTM, the same test procedure as above was used.

The results of the Friedman test analysis showed that the significant p-value was 0.183,
and therefore, the statistical results were not significant. It means that there is no significant
difference between Measurement, Prediction (1 h), Prediction (3 h), Prediction (6 h) and
Prediction (24 h). The magnitude of the difference Cohen’s f value was: 0.001, a very small
degree difference.

The post hoc Nemenyi test was used to compare two variables. From Table 6, it
can be seen that the significance p-values are 0.285, 0.268,0.282 and 0.900, which present
insignificance at the level. The original hypothesis cannot be rejected, and therefore, there
is no significant difference between the two variables. From the results of the Friedman
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test and post hoc Nemenyi test, the LSTM prediction results were tested to be significant
at the p-value level, while the CEEMDAN-LSTM prediction results were tested to be
non-significant at the p-value level. This indicates that CEEMDAN-LSTM significantly
improved the prediction performance.

5.4. Analysis of Substantiation Results through Data Visualization

A fixed sliding data window with a sample size of 800 h SWH records was designed as
the model identification sample, and the corresponding 800 h data was taken for experimen-
tal validation. The results are realistic in Figure 12, the effectiveness of LSTM-based and
CEEMDAN-LSTM predictions of SWH for 1-, 3-, 6- and 24-h windows can be examined.
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Figure 12. Comparison of LSTM (blue) and CEEMDAN-LSTM (red) SWH (m) forecasts with (a) 1-,
(b) 3-, (c) 6- and (d) 24-h window measured values (black). Subplots provide a closer examination of
the offset between measured and predicted values in (e) 1-, (f) 3-, (g) 6- and (h) 24-h windows.

From Figure 12, it is easy to see that CEEMDAN-LSTM predicts the change in SWH
trend significantly better than LSTM. The difference in prediction accuracy between the
two methods was small at 1 h of prediction, and it was not easy to distinguish between
the two as being clearly superior or inferior. However, the prediction errors of the LSTM
sharply accumulated over time, as observed in the later forecast durations. For example, in
Figure 12b–d, the forecast durations are set to 3, 6 and 24 h. The LSTM and CEEMDAN-
LSTM forecasts are progressively inconsistent with the observations, and the forecasts
become progressively worse. The deviation in the LSTM predictions (blue line) from the
measured values can be clearly seen in Figure 12d. This is particularly true in the case of
large SWH measured values; for example, for peaks around 700 h.

Therefore, we have zoomed in on the 640-h to 760-h window. The advantages of the
CEEMDAN-LSTM can be seen more clearly in Figure 12e–h. The CEEMDAN-LSTM (red
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line) tries to fit the local oscillations in the SWH measured values around 640 h, whereas the
LSTM (blue line) is fitted with a smooth curve averaging the amplitude of the oscillation
region. Thus, we believe that the CEEMDAN-LSTM responds more aggressively to local
oscillatory mutations and that the LSTM does not try to fit such oscillations. Hence, the
CEEMDAN-LSTM is clearly the best at predicting the 3 h in Figure 12e. As the forecast
duration increases, the CEEMDAN-LSTM results are larger in magnitude compared to the
measured values, while the LSTM continues to make no effort to fit any oscillations. A
similar phenomenon is observed for the peak at 710 h.

All of the above demonstrates that the LSTM itself cannot accurately predict SWH
values. However, the CEEMDAN-LSTM is better adapted to the prediction of extreme
value points when the SWH is rapidly changing.

In order to compare the prediction effectiveness of the two methods more objectively,
the prediction error histogram is shown in Figure 13. Errors larger than 4 m are grouped
together, while errors smaller than−4 m are grouped together, and the total frequency of each
occurrence (the number of occurrences of an error of a particular magnitude) is shown.
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Figure 13. Comparison of ShiDao measured and predicted values by LSTM (blue) and CEEMDAN-
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As the forecast duration progresses (as shown in Figure 13a–d, where forecast errors
are given for 1-, 3-, 6- and 24-h windows in turn), the forecast errors for both methods grad-
ually increase. The error distribution of the LSTM shows a normal distribution, although
these errors are generally concentrated between ±2 m and especially between ±0.5 m.
However, it is clear that the frequency of ±0.5 m errors also decreases with time. This
implies that the LSTM prediction effect rapidly diminishes with forecast duration. Unlike
the normal distribution of LSTM, the distribution of CEEMDAN-LSTM forecast errors is
more concentrated and is around±0.5 m in Figure 13a–c. The number of CEEMDAN-LSTM
errors greater than±0.5 m under a Figure 13d forecast duration of 24 h is also much smaller
than that of LSTM. This shows that the integrated CEEMDAN-LSTM joint model not only
has a significantly higher prediction accuracy than the LSTM, but also performs better in
terms of the distribution of cumulative errors.

The measured and predicted values in the high, intermediate and low frequency IMFs
are depicted in Figure 14. For reasons pertaining to space, only five IMFs are plotted.
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It can be seen from Figure 14a that the prediction of the high frequency (HF) compo-
nent IMF1 is slightly worse, but the subsequent intermediate and low frequency compo-
nents are almost in line with the measured value, as in Figure 14b–e. However, the fact 
that the predicted values of IMF1 also capture the main trend of the measured value is an 
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It can be seen from Figure 14a that the prediction of the high frequency (HF) component
IMF1 is slightly worse, but the subsequent intermediate and low frequency components
are almost in line with the measured value, as in Figure 14b–e. However, the fact that the
predicted values of IMF1 also capture the main trend of the measured value is an important
reason why CEEMDAN-LSTM has better prediction results compared to LSTM. Comparing
the negative fit of the LSTM model to the fluctuating trend of the data in Figure 12e–h, the
CEEMDAN-LSTM handles the situation much better. Therefore, it can be concluded that
the CEEMDAN-LSTM model can significantly improve prediction quality. The main reason
for this is that the LSTM is unable to capture HF signals, but after CEEMDAN decomposes
a given signal into IMFs components, the underlying trend of the data can be separated
from the HF signal in the form of intermediate and low frequencies, thus significantly
improving the predictive power. In the case of HF IMFs, studies have shown that they
may contain wind direction and speed information. Further research on HF signals may
therefore improve the accuracy of SWH forecasts [52,53]. This provides a direction for
improving the interpretability of the integrated CEEMDAN-LSTM joint model and for
further improvements.

5.5. Performance of SWH Predictions on Wave Energy

As an important source of clean energy, wave energy estimation has considerable
sensitivity to SWH (which is W ∝ H2

s ·Tp) [54]. Here, the predictions of the integrated
CEEMDAN-LSTM joint model can be substituted into H2

s to estimate wave energy. Slight
deviations in the resulting predictions have a corresponding two times the deviation from
the total energy estimate. As the CEEMDAN-LSTM outperforms the LSTM for the 1-,
3-, 6- and 24-h cases, and has an outstanding prediction performance for the 1-h forecast
duration, its accurate prediction is crucial for the development and commercial viability of
wave energy conversion as a clean energy source.
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Figure 15 provides an example of a wave energy estimate. Here, the SWH measured
values (black) are 5 m, the wave period is 2–6 s and the upper-estimate and lower-estimate
offsets are about 0.5 m.
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5-m SWH measured values (black) in 2–6-s wave period.

It can be seen from Figure 15 that, for a wave period of 1 m, the estimated wave energy
is between 10 and 15 kW/m. Similarly, for a wave period of 2 m, the estimated wave
energy is between 20 and 30 kW/m. Applying a similar example from Figure 15 to the
predicted results of the integrated CEEMDAN-LSTM joint model, wave energy estimates
can be made from our model. The results of wave energy estimation by CEEMDAN-LSTM
for the Figure 12e–h subplot time window (640–760 h) are plotted against the measured
values in Figure 16 here so that the wave period is 5 s. It can be seen that the wave energy
obtained from the CEEMDAN-LSTM prediction of the SWH prediction is almost identical
to that obtained from the measured values, especially in the 710-h peak region. This proves
that it is feasible to use the results of the integrated CEEMDAN-LSTM joint model for wave
energy estimation.
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6. Comparison with the Work of Peers

We believe that comparison with peer work is important, and therefore, here we
have chosen two models to compare with our CEEMDAN-LSTM, MFRFNN [55] and
VMD-MFRFNN [56]. We chose to uniformly use the RMSE at 1 h ahead to evaluate the
performance of the models. The results are shown in Table 7.

Table 7. Comparison of the performance of CEEMDAN-LSTM with other models.

Source Model Forecast Durations (h) RMSE (m)

The research work of
Nasiri and Ebadzadeh

MFRFNN 1 0.5493

VMD-MFRFNN 1 0.2182

Our research work
LSTM 1 0.7693

CEEMDAN-LSTM 1 0.2163

Table 7 shows that the performance of MFRFNN is superior to that of the traditional
LSTM. The two integrated algorithms, VMD-MFRFNN and CEEMDAN-LSTM, are very
similar in performance. The CEEMDAN-LSTM proposed in our study is slightly better.
Given that both MFRFNN and VMD-MFRFNN are very high performing prediction algo-
rithms, we can conclude that the integrated CEEMDAN-LSTM joint model still performs
reasonably well compared to the advanced prediction models. Therefore, CEEMDAN-
LSTM has important implications for SWH forecasting.

7. Conclusions

The prediction of SWH is crucial for the development and exploitation of marine en-
ergy, the construction and maintenance of marine projects and maritime activities. Making
accurate SWH forecasts is not only a challenging problem for predicting nonlinear and
nonstationary series, but it is also highly relevant to the development of marine energy
and the conduct of marine engineering and maritime activities. It is for this reason that
an equally wide range of physically based numerical fluctuation and statistical models
have been developed to implement short- and long-term SWH predictions. In this paper,
we developed an integrated CEEMDAN-LSTM joint model to improve the predictions of
the single LSTM model by comparing it with the SWH model, in terms of the symbiotic
relationship between CEEMDAN and LSTM networks and the different responses to data
fitting. This was used to improve the single LSTM model predictions. The contributions of
this research paper are as follows.

1. This paper proposes a novel filter formulation for SWH outliers based on an improved
violin-box plot, which is able to filter SWH data with positive skewed distribution.
It may also be applicable to SWH data from other regions along the eastern coast of
China. In addition, the process proposed in this formulation is also of great interest
for other nonlinear or nonstationary data.

2. When the CEEMDAN-LSTM model is used for SWH forecasting, the forecasts show
the general trend of the waves and better capture fluctuations in local peaks and
troughs, and the forecast accuracy is greatly improved.

3. Through the CEEMDAN algorithm, the original SWH data is decomposed into high
frequency sinusoidal intermittent signals, intermediate frequency sinusoidal intermit-
tent signals and low frequency broad period signals.

4. The integrated CEEMDAN-LSTM joint model outperforms the LSTM in terms of
accuracy, as CEEMDAN is able to decompose the original nonlinear and nonstationary
SWH into various IMFs, thus enabling the LSTM to better capture changes in trends.

5. When the forecast duration is 1 h, CEEMDAN-LSTM has the most significant im-
provement over LSTM, with 71.91% of RMSE, 68.46% of MAE and 6.80% of NSE,
respectively.
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6. Even with a 24-h advance, CEEMDAN-LSTM still improves 53.44%, 40.31% and 7.91%
over LSTM in terms of RMSE, MAE and NSE. CEEMDAN-LSTM is still substantially
better than LSTM.

7. Accurate SWH predictions are crucial for the development and commercial viability of
wave energy conversion as a clean energy source. The results of the CEEMDAN-LSTM
predictions have also been discussed for this paper, and the results were satisfactory.

However, the LSTM still fails to make effective predictions for rapid changes in
high frequency (HF) IMFs. This is because the HF component still contains the original
undecomposed SWH signal, which can interfere with the accuracy of the model. This may
be due to the fact that the predictions do not take into account factors such as ocean currents,
sea breeze wind speed and wind direction. Further improvements can therefore be made
to the model in this respect. Despite the abovementioned advantages of our model, we do
not take into account information on the geographical location of the ShiDao in this paper.
This means that the integrated CEEMDAN-LSTM joint model only models the temporal
information, not the spatial information. Furthermore, the waves in all regions of the earth
are not independent of each other; there is some coupling between them. Further research
from the perspective of extracting spatial information can be continued in the future.

In summary, the integrated CEEMDAN-LSTM joint model can provide more accurate
SWH predictions, which can improve real-time scheduling for fishing vessel operations,
wave energy generation or other marine engineering maintenance and operations.
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5. Chen, C.; Sasa, K.; Prpić-Oršić, J.; Mizojiri, T. Statistical analysis of waves’ effects on ship navigation using high-resolution
numerical wave simulation and shipboard measurements. Ocean. Eng. 2021, 229, 108757. [CrossRef]

6. Saetre, C.; Tholo, H.; Hovdenes, J.; Kocbach, J.; Hageberg, A.A.; Klepsvik, I.; Aarnes, O.J.; Furevik, B.R.; Magnusson, A.K.
Directional wave measurements from navigational buoys. Ocean. Eng. 2023, 268, 113161. [CrossRef]

http://mds.nmdis.org.cn/
http://mds.nmdis.org.cn/
http://doi.org/10.1016/j.ejor.2017.12.021
http://doi.org/10.3390/jmse8090705
http://doi.org/10.1016/j.cles.2022.100021
http://doi.org/10.1016/j.energy.2018.10.001
http://doi.org/10.1016/j.oceaneng.2021.108757
http://doi.org/10.1016/j.oceaneng.2022.113161


J. Mar. Sci. Eng. 2023, 11, 435 22 of 23

7. Figueiredo, R.; Fazeres-Ferradosa, T.; Chambel, J.; Rosa Santos, P.; Taveira Pinto, F. How does the selection of wave hindcast
datasets and statistical models influence the probabilistic design of offshore scour protections? Ocean. Eng. 2022, 266, 113123.
[CrossRef]

8. Wu, M.; De Vos, L.; Arboleda Chavez, C.E.; Stratigaki, V.; Whitehouse, R.; Baelus, L.; Troch, P. A study of scale effects in
experiments of monopile scour protection stability. Coast. Eng. 2022, 178, 104217. [CrossRef]

9. Zhang, Y.; Chen, Y.; Qi, Z.; Wang, S.; Zhang, J.; Wang, F. A hybrid forecasting system with complexity identification and improved
optimization for short-term wind speed prediction. Energy Convers. Manag. 2022, 270, 116221. [CrossRef]

10. Zheng, C.-w.; Li, X.-h.; Azorin-Molina, C.; Li, C.-y.; Wang, Q.; Xiao, Z.-n.; Yang, S.-b.; Chen, X.; Zhan, C. Global trends in oceanic
wind speed, wind-sea, swell, and mixed wave heights. Appl. Energy 2022, 321, 119327. [CrossRef]

11. Fazeres-Ferradosa, T.; Taveira-Pinto, F.; Vanem, E.; Reis, M.T.; Neves, L.D. Asymmetric copula–based distribution models for
met-ocean data in offshore wind engineering applications. Wind. Eng. 2018, 42, 304–334. [CrossRef]

12. Fazeres-Ferradosa, T.; Welzel, M.; Schendel, A.; Baelus, L.; Santos, P.R.; Pinto, F.T. Extended characterization of damage in rubble
mound scour protections. Coast. Eng. 2020, 158, 103671. [CrossRef]

13. Duan, W.Y.; Han, Y.; Huang, L.M.; Zhao, B.B.; Wang, M.H. A hybrid EMD-SVR model for the short-term prediction of significant
wave height. Ocean. Eng. 2016, 124, 54–73. [CrossRef]

14. Ye, Y.; Wang, L.; Wang, Y.; Qin, L. An EMD-LSTM-SVR model for the short-term roll and sway predictions of semi-submersible.
Ocean. Eng. 2022, 256, 111460. [CrossRef]

15. Nie, Z.; Shen, F.; Xu, D.; Li, Q. An EMD-SVR model for short-term prediction of ship motion using mirror symmetry and SVR
algorithms to eliminate EMD boundary effect. Ocean. Eng. 2020, 217, 107927. [CrossRef]

16. Janssen, P.A.E.M. Progress in ocean wave forecasting. J. Comput. Phys. 2008, 227, 3572–3594. [CrossRef]
17. Myrhaug, D.; Fouques, S. A joint distribution of significant wave height and characteristic surf parameter. Coast. Eng. 2010, 57,

948–952. [CrossRef]
18. Sezer, A.; Asma, S. Statistical power of an information-based test and its application to wave height data. Comput. Geosci. 2010, 36,

1316–1324. [CrossRef]
19. Nam, B.W.; Kim, J.-S.; Hong, S.Y. Numerical investigation on hopf bifurcation problem for nonlinear dynamics of a towed vessel

in calm water and waves. Ocean. Eng. 2022, 266, 112661. [CrossRef]
20. Zhao, L.; Li, Z.; Qu, L. Forecasting of Beijing PM2.5 with a hybrid ARIMA model based on integrated AIC and improved GS

fixed-order methods and seasonal decomposition. Heliyon 2022, 8, e12239. [CrossRef]
21. Yang, S.; Deng, Z.; Li, X.; Zheng, C.; Xi, L.; Zhuang, J.; Zhang, Z.; Zhang, Z. A novel hybrid model based on STL decomposition

and one-dimensional convolutional neural networks with positional encoding for significant wave height forecast. Renew. Energy
2021, 173, 531–543. [CrossRef]

22. Özger, M. Significant wave height forecasting using wavelet fuzzy logic approach. Ocean. Eng. 2010, 37, 1443–1451. [CrossRef]
23. Shahabi, S.; Khanjani, M.J. Modelling of significant wave height using wavelet transform and GMDH. In Proceedings of the 36th

IAHR World Congress, Hague, The Netherlands, 28 June 2015.
24. Ali, M.; Prasad, R. Significant wave height forecasting via an extreme learning machine model integrated with improved complete

ensemble empirical mode decomposition. Renew. Sustain. Energy Rev. 2019, 104, 281–295. [CrossRef]
25. Kim, S.; Takeda, M.; Mase, H. GMDH-based wave prediction model for one-week nearshore waves using one-week forecasted

global wave data. Appl. Ocean. Res. 2021, 117, 102859. [CrossRef]
26. Camus, P.; Herrera, S.; Gutiérrez, J.M.; Losada, I.J. Statistical downscaling of seasonal wave forecasts. Ocean. Model. 2019, 138,

1–12. [CrossRef]
27. Raj, N.; Brown, J. An EEMD-BiLSTM Algorithm Integrated with Boruta Random Forest Optimiser for Significant Wave Height

Forecasting along Coastal Areas of Queensland, Australia. Remote Sens. 2021, 13, 1456. [CrossRef]
28. Zilong, T.; Yubing, S.; Xiaowei, D. Spatial-temporal wave height forecast using deep learning and public reanalysis dataset. Appl.

Energy 2022, 326, 120027. [CrossRef]
29. Deka, P.C.; Prahlada, R. Discrete wavelet neural network approach in significant wave height forecasting for multistep lead time.

Ocean. Eng. 2012, 43, 32–42. [CrossRef]
30. Ma, J.; Xue, H.; Zeng, Y.; Zhang, Z.; Wang, Q. Significant wave height forecasting using WRF-CLSF model in Taiwan strait. Eng.

Appl. Comput. Fluid Mech. 2021, 15, 1400–1419. [CrossRef]
31. Gao, R.; Li, R.; Hu, M.; Suganthan, P.N.; Yuen, K.F. Dynamic ensemble deep echo state network for significant wave height

forecasting. Appl. Energy 2023, 329, 120261. [CrossRef]
32. Yao, J.; Wu, W. Wave height forecast method with multi-step training set extension LSTM neural network. Ocean. Eng. 2022, 263,

112432. [CrossRef]
33. Li, X.; Cao, J.; Guo, J.; Liu, C.; Wang, W.; Jia, Z.; Su, T. Multi-step forecasting of ocean wave height using gate recurrent unit

networks with multivariate time series. Ocean. Eng. 2022, 248, 110689. [CrossRef]
34. Sun, Z.; Zhao, M.; Zhao, G. Hybrid model based on VMD decomposition, clustering analysis, long short memory network,

ensemble learning and error complementation for short-term wind speed forecasting assisted by Flink platform. Energy 2022, 261,
125248. [CrossRef]

35. Luo, Q.-R.; Xu, H.; Bai, L.-H. Prediction of significant wave height in hurricane area of the Atlantic Ocean using the Bi-LSTM with
attention model. Ocean. Eng. 2022, 266, 112747. [CrossRef]

http://doi.org/10.1016/j.oceaneng.2022.113123
http://doi.org/10.1016/j.coastaleng.2022.104217
http://doi.org/10.1016/j.enconman.2022.116221
http://doi.org/10.1016/j.apenergy.2022.119327
http://doi.org/10.1177/0309524X18777323
http://doi.org/10.1016/j.coastaleng.2020.103671
http://doi.org/10.1016/j.oceaneng.2016.05.049
http://doi.org/10.1016/j.oceaneng.2022.111460
http://doi.org/10.1016/j.oceaneng.2020.107927
http://doi.org/10.1016/j.jcp.2007.04.029
http://doi.org/10.1016/j.coastaleng.2010.05.001
http://doi.org/10.1016/j.cageo.2010.03.015
http://doi.org/10.1016/j.oceaneng.2022.112661
http://doi.org/10.1016/j.heliyon.2022.e12239
http://doi.org/10.1016/j.renene.2021.04.010
http://doi.org/10.1016/j.oceaneng.2010.07.009
http://doi.org/10.1016/j.rser.2019.01.014
http://doi.org/10.1016/j.apor.2021.102859
http://doi.org/10.1016/j.ocemod.2019.04.001
http://doi.org/10.3390/rs13081456
http://doi.org/10.1016/j.apenergy.2022.120027
http://doi.org/10.1016/j.oceaneng.2012.01.017
http://doi.org/10.1080/19942060.2021.1974947
http://doi.org/10.1016/j.apenergy.2022.120261
http://doi.org/10.1016/j.oceaneng.2022.112432
http://doi.org/10.1016/j.oceaneng.2022.110689
http://doi.org/10.1016/j.energy.2022.125248
http://doi.org/10.1016/j.oceaneng.2022.112747


J. Mar. Sci. Eng. 2023, 11, 435 23 of 23

36. Liu, Y.; Zhang, X.; Chen, G.; Dong, Q.; Guo, X.; Tian, X.; Lu, W.; Peng, T. Deterministic wave prediction model for irregular
long-crested waves with Recurrent Neural Network. J. Ocean. Eng. Sci. 2022. [CrossRef]

37. Ji, C.; Zhang, C.; Hua, L.; Ma, H.; Nazir, M.S.; Peng, T. A multi-scale evolutionary deep learning model based on CEEMDAN,
improved whale optimization algorithm, regularized extreme learning machine and LSTM for AQI prediction. Environ. Res. 2022,
215, 114228. [CrossRef]

38. Zhang, C.; Hua, L.; Ji, C.; Shahzad Nazir, M.; Peng, T. An evolutionary robust solar radiation prediction model based on
WT-CEEMDAN and IASO-optimized outlier robust extreme learning machine. Appl. Energy 2022, 322, 119518. [CrossRef]

39. Hu, C.; Zhao, Y.; Jiang, H.; Jiang, M.; You, F.; Liu, Q. Prediction of ultra-short-term wind power based on CEEMDAN-LSTM-TCN.
Energy Rep. 2022, 8, 483–492. [CrossRef]

40. Wang, N.; Nie, J.; Li, J.; Wang, K.; Ling, S. A compression strategy to accelerate LSTM meta-learning on FPGA. ICT Express 2022, 8,
322–327. [CrossRef]

41. Mushtaq, E.; Zameer, A.; Umer, M.; Abbasi, A.A. A two-stage intrusion detection system with auto-encoder and LSTMs. Appl.
Soft Comput. 2022, 121, 108768. [CrossRef]

42. Huang, N.; Shen, Z.; Long, S.; Wu ML, C.; Shih, H.; Zheng, Q.; Yen, N.-C.; Tung, C.-C.; Liu, H. The empirical mode decomposition
and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. London. Ser. A Math. Phys. Eng. Sci.
1998, 454, 903–995. [CrossRef]

43. Wu, Z.; Huang, N.E. Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method. Adv. Data Sci. Adapt.
Anal. 2009, 1, 1–41. [CrossRef]

44. Xu, K.; Niu, H. Do EEMD based decomposition-ensemble models indeed improve prediction for crude oil futures prices? Technol.
Forecast. Soc. Change 2022, 184, 121967. [CrossRef]

45. Ran, P.; Dong, K.; Liu, X.; Wang, J. Short-term load forecasting based on CEEMDAN and Transformer. Electr. Power Syst. Res.
2023, 214, 108885. [CrossRef]

46. Li, K.; Huang, W.; Hu, G.; Li, J. Ultra-short term power load forecasting based on CEEMDAN-SE and LSTM neural network.
Energy Build. 2023, 279, 112666. [CrossRef]

47. Vardaroglu, M.; Gao, Z.; Avossa, A.M.; Ricciardelli, F. Validation of a TLP wind turbine numerical model against model-scale
tests under regular and irregular waves. Ocean. Eng. 2022, 256, 111491. [CrossRef]

48. Koivu, A.; Kakko, J.-P.; Mäntyniemi, S.; Sairanen, M. Quality of randomness and node dropout regularization for fitting neural
networks. Expert Syst. Appl. 2022, 207, 117938. [CrossRef]

49. Röhmel, J. The permutation distribution of the Friedman test. Comput. Stat. Data Anal. 1997, 26, 83–99. [CrossRef]
50. Ma, J.; Xia, D.; Wang, Y.; Niu, X.; Jiang, S.; Liu, Z.; Guo, H. A comprehensive comparison among metaheuristics (MHs) for

geohazard modeling using machine learning: Insights from a case study of landslide displacement prediction. Eng. Appl. Artif.
Intell. 2022, 114, 105150. [CrossRef]
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