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Abstract: Recently, deep learning has been widely used in ship-radiated noise classification. To
improve classification efficiency, avoiding high computational costs is an important research direction
in ship-radiated noise classification. We propose a lightweight squeeze and excitation residual
network 10 (LW-SEResNet10). In ablation experiments of LW-SEResNet10, the use of ResNet10
instead of ResNet18 reduced 56.1% of parameters, while the accuracy is equivalent to ResNet18.
The improved accuracy indicates that the ReLU6 enhanced the model stability, and an attention
mechanism captured the channel dependence. The ReLU6 activation function does not introduce
additional parameters, and the number of parameters introduced by the attention mechanism
accounts for 0.2‰ of the model parameters. The 3D dynamic MFCC feature performs better than
MFCC, Mel-spectrogram, 3D dynamic Mel-spectrogram, and CQT. Moreover, the LW-SEResNet10
model is also compared with ResNet and two classic lightweight models. The experimental results
show that the proposed model achieves higher classification accuracy and is lightweight in terms of
not only the model parameters, but also the time consumption. LW-SEResNet10 also outperforms the
state-of-the-art model CRNN-9 by 3.1% and ResNet by 3.4% and has the same accuracy as AudioSet
pretrained STM, which achieves the trade-off between accuracy and model efficiency.

Keywords: underwater acoustic target recognition; ship-radiated noise; deep learning; residual
network; attention mechanism; delta-spectral and double-delta spectral coefficients

1. Introduction

Ship-radiated noise includes airborne noise and underwater noise. Airborne noise
mainly influences human health [1,2]. For military and security reasons, we pay more atten-
tion to underwater noise. At present, deep learning methods applied to Ship-radiated noise
featuring learning and classification has become a hot research topic [3–8]. Ship-radiated
noise featuring learning and classification is an important research direction of underwater
acoustic target recognition. From the perspective of sound generation mechanisms, the
target radiated noise is considered to be mainly composed of mechanical noise, propeller
noise, and hydrodynamic noise [9]. The difference in the target radiated noise of different
types can be reflected in the following aspects: (1) mechanical noise generated by different
shipborne mechanical equipment; (2) propeller radiation characteristics being different due
to different propeller parameters; and (3) the difference in hydrodynamic noise caused by
different hull structures. Therefore, the ship-radiated noise can reflect ship attributes and
be used to classify ship categories. Compared with shallow models, deep neural networks
can learn more abstract and invariant features from a large dataset [10,11]. Therefore, deep
learning can not only automatically learn feature representations from the raw signal, but
can also perform further deep feature extraction and even feature fusion based on some
artificial feature parameters such as Mel Frequency Cepstrum Coefficient (MFCC) [12],
constant Q transform (CQT) [13], wavelet feature [14,15], DEMON spectrum and LOFAR
spectrum [16], and high-order spectral features [17,18]. Those traditional feature analysis
methods effectively reduce information redundancy and the computational cost of the
back-end model.
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Due to the difficulty and high cost of marine experiments, the effective samples of
ship-radiated noise data are insufficient [19]. The insufficient data would lead to over-
fitting of the large-scale deep network model, which is difficult to converge, ultimately
affecting the classification accuracy [20]. To solve this problem, Gao et al. [21] used a
deep convolutional generative adversarial network (DCGAN) to expand the training set,
improving the classification effect. Jiang et al. [22] proposed the modified DCGAN model
to augment data for targets with a small sample size. Using GAN to generate ship-radiated
noise data can effectively solve the problem of scarcity of samples, but the training of
generative networks is time-consuming. Yang et al. [12] proposed an improved competitive
deep belief network (DBN), which addresses the problem of insufficient training samples
by pre-training the DBN with a large amount of unlabeled ship-radiated noise. Jin et al. [23]
used a CNN pre-trained on the ImageNet dataset [24] and fine-tuned the network with fish
image data with a small sample size to effectively solve the underwater image classification
problem. These pre-training methods as transfer learning methods require considering
the similarity between data, tasks, or models and need preload model parameters. A
measurement of similarity needs to be defined. The negative transfer may occur when
the source domain data and target domain data are not similar or when the deep model
is not good enough to find a transferable feature. For our study, a lightweight network is
designed to improve classification accuracy in a small sample condition.

The large-scale residual network (ResNet) [25] is redundant in the field of computer
vision. Gao et al. [26] randomly removed many layers of ResNet during the training process,
which did not affect the convergence of the algorithm, and the removal of the middle layers
had little effect on the final results, illustrating that ResNet has redundancy. For underwater
acoustic target recognition, a depth search experiment for a multiscale residual deep neural
network (MSRDN) [27] was conducted. The results prove that the original MSRDN with
101 depths is redundant. Xue et al. [28] observed that the recognition rate will decrease
by increasing the number of residual layers, which indicates the redundancy of ResNet.
Therefore, it is feasible to reduce the model parameters while maintaining the model
performance. For our work, a reduction of the model parameter is realized by shrinking
the number of residual units in ResNet.

Meanwhile, large-scale deep models have the problem of high computation costs [29].
For practical applications, the trade-off between accuracy and model efficiency is nec-
essary. The efficiency is defined with lower computation cost or time cost. To develop
efficient deep models, recent works in the field of computer vision usually focus on struc-
tural design [30,31], low-rank factorization [32], and knowledge distillation [33,34]. For
underwater acoustic target recognition, Lei et al. [35] proposed that avoiding high computa-
tional costs is an important future direction of underwater acoustic information processing.
Jiang et al. [22] proposed the S-ResNet model to obtain good classification accuracy while
significantly reducing the complexity of the model and achieving a good trade-off be-
tween classification accuracy and model complexity. Meanwhile, the parameters and
floating-point operations (FLOPs) of the model are used to measure the model’s complexity.
However, on the actual equipment, due to a variety of optimization calculation opera-
tions, the theoretical parameters and FLOPs cannot accurately measure the actual time
consumption of the model [31]. Therefore, for our study, in addition to using the theoretical
parameters, we will also measure the complexity of the model according to the actual time
consumption. Tian et al. [36] designed a lightweight MSRDN using lightweight network
design techniques, in which 64.18% of parameters and 79.45% of FLOPs are reduced from
the original MSRDN with a small loss of accuracy. Meanwhile, the time cost under the
same hardware and software platforms was conducted. For our study, we will measure
time costs on different platforms.

Our study utilizes the structural design technique to design our lightweight network.
Lightweight networks are defined as having fewer model parameters or faster run times.
The proposed model, namely lightweight squeeze and excitation residual network 10
(LW-SEResNet10), aims to inhibit overfitting and achieve high accuracy and high efficiency.
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Firstly, shrinking the number of residual units in the ResNet reduces the number of parame-
ters. Secondly, the attention mechanism called “squeeze-excitation” (SE) block [37] with low
parameters is introduced into the proposed model. The attention mechanism [38] can help
the network give different weights to each part of the input features, extracting more critical
and important information. The attention mechanism is integrated into a residual unit
structure, which helps to capture the correlation between features, and the representation
generated by convolution networks can be strengthened. Thirdly, the ReLU6 activation
function [39] is employed to increase the model stability. The ReLU6 activation function
does not introduce additional parameters. Moreover, the 3D dynamic MFCC feature is used
as the input of the proposed model. The 3D dynamic MFCC feature effectively compresses
the raw time-domain information of the target radiated noise signal, while extracting the
higher-order dynamic time information of the signal. To verify the lightweight nature
and superiority of our proposed model, we compare the proposed model with the ResNet
and the classical lightweight network models MobileNet V2 [30] and ShuffleNet V2 [31]
in the field of computer vision in terms of parameters, time consumption, accuracy, and
noise mismatch.

The remainder of this article is organized as follows. Section 2 provides an overview
of our ship-radiated noise classification method in detail. Experiments are presented in
Section 3, and Section 4 concludes this article.

2. System Overview

This section mainly describes the proposed ship-radiated noise classification frame-
work. The first part introduces the proposed lightweight model. The second part introduces
the extraction method of the 3D dynamic MFCC feature.

2.1. The Design of the Proposed Model
2.1.1. Residual Network (ResNet)

ResNet [25] is proposed to deal with deep neural network degradation. In contrast
with ordinary neural networks, the ResNet model implements a cross-layer connection
by residual unit structure. The architecture of the residual unit is shown in Figure 1. The
basic residual unit is shown in Figure 1a. It can be seen that the residual unit contains two
types of connections; one is a non-linear mapping connection similar to an ordinary neural
network, which generally consists of two to three convolutional layers, and the other is a
short-cut connection. The input of a residual unit is denoted as x, the nonlinear mapping as
F(x) (i.e., the residual mapping), and H(x) as the computed result of the residual unit, then
their arithmetic relationship can be expressed as:

H(x) = x + F(x)
= x + wNδ(wN−1(δ(. . . δ(w1x))))

(1)

where w1, w2, . . . , wN are the weights of convolutional layers and δ is the ReLU activa-
tion function. When the residual unit performs the backpropagation, the gradient is
expressed as:

∂H(x)
∂x

= 1 +
∂(wNδ(wN−1(δ(. . . δ(w1x)))))

∂x
(2)

Due to the existence of constant 1, the phenomenon of gradient disappearance during
backpropagation is avoided. ResNet learns F(x) + x by iteration training, rather than
learning H(x) directly. Learning the residual F(x) is easier to converge than learning the
mapping between x, and H(x) directly, and can achieve higher classification accuracy.
Figure 1b shows the downsampled residual unit, with dashed lines indicating short-cut
connections. In ResNet, not all residual units have pooling layers, so a convolutional layer
is needed to implement downsampling. This is implemented by setting the stride of the
convolutional layer to 2 (s = 2) to change the shape of the residual mapping. Meanwhile,
since the residual units are to be summed, the shape and dimension of the input x and the
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residual mapping F(x) must be consistent. When the residual mapping F(x) is downsampled,
downsampling of x is required in the short-cut connection, which is implemented by setting
a 1 × 1 convolution layer with a stride of 2 (s = 2) and then adding the downsampled x
and F(x).
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2.1.2. The Proposed Lightweight Squeeze and Excitation Residual Network
10 (LW-SEResNet10)

In this study, ResNet18 is shrunk in order to reduce the number of parameters. The
proposed model is shown in Figure 2. The 18-layer ResNet is reduced to 10 layers (including
nine convolutional layers and one fully connected layer). The input is the extracted 3D
dynamic MFCC feature, and the classification layer is a fully connected layer (FC) with
LogSoftmax, which outputs the probability distribution of each sample corresponding to
all classes as the basis for judging the sample classes. The LogSoftmax function can be
expressed as follows:

LogSoftmax(xi) = log( exp(xi)
N
∑

j=1
exp(xj)

)i = 1, 2, . . . , N

= log(exp(xi))− log(
N
∑

j=1
exp(xj))

= xi − log(
N
∑

j=1
exp(xj))

(3)

where x denotes the output of the fully connected layer and the dimension is N. N corre-
sponds to the number of classes. LogSoftmax(xi) is the probability that the predicted sample
x belongs to class i. The logarithm behind Softmax changes the multiplication to addition
to reduce the amount of calculation while ensuring the monotonicity of the function.

In Figure 2, the nine convolutional layers are named Conv1 to Conv9, k denotes the
size of the convolutional kernel, s denotes the stride, and 64, 128, 256, and 512 are the
number of convolutional kernels. Max pooling (Maxpool) and averaging pooling (Avgpool)
are implemented for downsampling. Batch normalization (BN) operation is applied behind
the convolutional layer. By normalizing the data of each batch, the network convergence
speed is accelerated while preventing the gradient from disappearing and exploding in the
network. Since ReLU uses x for linear activation in the region of x > 0, which may cause
values that are too large after activation and affect the stability of the proposed model. To
offset the linear growth part of the ReLU activation function, this paper uses the ReLU6 [39]
activation function instead of the ReLU activation function. ReLU6 limits linear activation
to a range of 0 to 6, preventing the values from exploding. The ReLU6 activation function
can be expressed as follows:

ReLU6(x) = min(max(0, x), 6) (4)



J. Mar. Sci. Eng. 2023, 11, 432 5 of 17J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 5 of 18 
 

 

 
Figure 2. The proposed model, LW-SEResNet10. 

In Figure 2, the nine convolutional layers are named Conv1 to Conv9, k denotes the 
size of the convolutional kernel, s denotes the stride, and 64, 128, 256, and 512 are the 
number of convolutional kernels. Max pooling (Maxpool) and averaging pooling (Avg-
pool) are implemented for downsampling. Batch normalization (BN) operation is applied 
behind the convolutional layer. By normalizing the data of each batch, the network con-
vergence speed is accelerated while preventing the gradient from disappearing and ex-
ploding in the network. Since ReLU uses x for linear activation in the region of x > 0, which 
may cause values that are too large after activation and affect the stability of the proposed 
model. To offset the linear growth part of the ReLU activation function, this paper uses 
the ReLU6 [39] activation function instead of the ReLU activation function. ReLU6 limits 
linear activation to a range of 0 to 6, preventing the values from exploding. The ReLU6 
activation function can be expressed as follows: 

ReLU6( ) min(max(0, ),6)x x  (4)

In addition, the proposed model integrates the SE block [37] operation as an attention 
mechanism after the Conv2 layer to capture the channel dependencies, the specific frame-
work shown in Figure 3. Firstly, a global averaging pooling operation [40] aggregates fea-
ture maps (the output of the Conv2 layer) to generate channel statistics, which is named 
the “squeeze” operation. The “squeeze” formula is expressed as follows: 

1 1

1
( , )

H W

c c
i j

z u i j
H W  


   (5)
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In addition, the proposed model integrates the SE block [37] operation as an atten-
tion mechanism after the Conv2 layer to capture the channel dependencies, the specific
framework shown in Figure 3. Firstly, a global averaging pooling operation [40] aggregates
feature maps (the output of the Conv2 layer) to generate channel statistics, which is named
the “squeeze” operation. The “squeeze” formula is expressed as follows:

zc =
1

H ×W

H

∑
i=1

W

∑
j=1

uc(i, j) (5)

where zc ∈ Rc denotes the channel statistics and C is the number of channels. H and
W are the height and width of the feature maps. The feature maps are expressed as
U = [u1, u2, . . . , uc]. The result of this step is to collect the global information of all feature
maps on ship-radiated noise signals.
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Secondly, the “excitation” operation fully captures the channel dependence on all
feature maps on ship-radiated noise signals. Two fully connected operations (FC1 layer
and FC2 layer) with nonlinear activation function ReLU6 encode and decode the chan-
nel statistics, respectively. The operations, as an unsupervised autoencoder, reconstruct
channel statistics adaptively, which represents the channel information effectively. A sig-
moid activation function is inserted to normalize the reconstructed channel statistics. The
“excitation” formula is expressed as follows:

s = σ(W2δ(W1z)) (6)

where s denotes the channel statistics after the “excitation” operation, δ denotes the ReLU6
function, σ denotes a sigmoid activation function, W1 ∈ R

C
r ×C and W2 ∈ RC× C

r . r denotes
the reduction ratio, which is set to 8.

The “excitation” operation can be regarded as a soft threshold, which is similar to
the gate mechanism of long short-term memory, applied to complete the network "forget"
and “memory” functions. Finally, the dot product operation is performed on the channel
statistics and U (the feature maps after the Conv2 layer) to recalibrate the channel weights
U. The soft threshold mechanism enables highlighting the weight of important information
in channel statistics. These two operations can be regarded as an attention mechanism for
channel information.

The SE block introduces additional parameters only from the two fully connected
layers of the gating mechanism and occupies only a small part of the capacity of the network
model. Without considering the bias, the total number of weight parameters introduced by
the two fully connected layers can be expressed by the following equation:

parameters =
2
r

S

∑
S=1

C2
S (7)

where r is the reduction ratio and S is the number of residual units (S = 1,2, . . . , S). Cs is the
dimensions of the output channels. In the proposed model, the SE block is added only after
the Conv2 layer in the first residual unit. Since the Conv2 layer outputs 64 channels and the
reduction ratio is set to 8, the additional parameter introduced is 1024 bytes, or 0.001 MB.

2.2. Feature Extraction

In contrast with image information, ship-radiated noise signals are nonstationary time
sequences, random with time. If the time-domain signal as the input of a network model is
used, the end-to-end method simplifies the procedure of the classification method but has
a much higher computation cost than the back-end model. Feature extraction in advance in
the network front-end can greatly reduce the computational cost of the back-end model.

In this study, the 3D dynamic MFCC is applied as the input of our proposed network
models. The extraction procedure is shown in Figure 4. The first step is to extract the MFCC
feature. The frame length is set to 2048. Frame overlap is 75% length of the frame length,
existing between two frames. Hanning window is used before Fourier transforms for each
frame of signal. The window length is equal to the frame length. A short-time Fourier
transform is applied to each frame, and the power spectrum is obtained by summing
the squares. The short-term power spectrum is a comprehensive characterization of ship-
radiated noise characteristics, including 2D spatial information in frequency and time
domains. The short-term power spectrum of each frame is filtered by the 128 Mel filter
banks and a logarithm is obtained to obtain the Mel-spectrogram. The logarithmic scale is
commonly used for Mel-spectrograms to fit the human sense of hearing factor presenting a
linear distribution below 1000 Hz and logarithmic growth above 1000 Hz [41]. The MFCC
feature was obtained by discrete cosine transform of the logarithmic Mel-spectrogram [42].
The shape of the MFCC is (128 × N), where N is the number of frames. For the 5s acoustic
signal with the sample rate of 22,050 Hz, the shape of the MFCC is (128 × 216).
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Figure 4. The 3D dynamic MFCC feature extraction block diagram.

The MFCC feature is static. To add dynamic information to the static MFCC feature,
we add the delta feature and double-delta feature to form a multi-dimensional dynamic
feature, which is performed by a local estimation of the difference operation of the input
MFCC feature along the time axis. The delta feature and double-delta feature provide
information on the dynamics of the feature over time. Assuming that the MFCC at frame t
is Ct, the corresponding delta-spectral feature Dt is defined as follows [43]:

Dt = Ct+m − Ct−m (8)

where m denotes the number of adjacent frames. Dt denotes the delta coefficient of MFCC at
frame t, which is calculated by the static coefficients Ct+m and Ct−m. Similarly, double-delta
MFCC is defined based on a subsequent delta operation on the delta MFCC. The extracted
MFCC, delta MFCC, and double-delta MFCC were combined to obtain the 3D dynamic
MFCC. The final input feature shape of the proposed network models is (128 × 216 × 3).
Figure 5 shows the time-domain waveform and its extracted MFCC, delta MFCC, and
double-delta MFCC features of a Sailboat’s radiation noise in the ShipsEar [19] database.
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3. Results
3.1. Experimental Data

We used the ShipsEar [19] database to evaluate the performance of the proposed
models. ShipsEar is a database of real ship-radiated noise recordings on the Spanish
Atlantic coast. All the access data are permitted by the authors. The database contains a
total of 90 recordings of 11 vessel types and one background noise class. The 11 vessel types
are combined into four classes, each of which contains one or more vessels. The details are
listed in Table 1.

Table 1. The details of the five classes on the ShipsEar database.

Class Target The Number of Samples

Class A Background noise recordings. 224

Class B Dredgers/Fishing boats/Mussel
boats/Trawlers/Tugboats 52/101/144/32/40

Class C Motorboats/Pilot boats/Sailboats 196/26/79
Class D Passenger ferries. 843
Class E Ocean liners/Ro-ro vessels. 186/300

The database is preprocessed. All recordings are resampled to 22,050 Hz. We frame
all signals according to a fixed frame length of 5 seconds, which results in 2223 labeled
sound samples. The next step is to divide sample sets. Considering the imbalance of the
ShipsEar samples, the model accuracy will be degraded, thus the classes in each sample
set are evenly distributed when dividing sample sets. The total sample (2223 samples) is
divided into the training set, validation set, and testing set according to the ratio of 7:2:1,
and the sample size is 1556, 445, and 222, respectively.

3.2. Hyperparameter and Cost Function Setup

The optimizer of stochastic gradient descent (SGD) [44] with momentum (set to 0.9)
and L2 regularization (set to 4× 10−5) is applied for training the models, which effectively
suppresses sample noise interference. The total training process is set to 30 epochs (the
number of iterative training). The learning rate of the training process is the initial learning
rate (set to 0.001) multiplied by the Cosine Learning Rate Decay function [45], which speeds
up the training progress. The minibatch size is set to 4. The cross-entropy error [46] is used
as the cost function.

3.3. Evaluation Metric

The performance of all neural models used in this study is evaluated by accuracy.
Accuracy is computed by the following expression:

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

where TP is the number of positive classes predicted to be positive, FN is the number of
positive classes predicted to be negative, FP is the number of negative classes predicted to
be positive, and TN is the number of negative classes predicted to be negative.

For the noise mismatch experiment, the performance of all neural models is evaluated
by F1-score, which is computed as:

P = TP
TP+FP

R = TP
TP+FN

F1− score = 2 ∗ P∗R
(P+R)

(10)

where P is Precision and R is Recall. F1-score can be regarded as a weighted average of
Precision and Recall.
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3.4. Experimental Results

Experiment results are taken by using Ubuntu 18.04.1 x64 operating system with
Intel(R) Core(TM) i9-9920X CPU@3.50 GHz, NVIDIA GeForce GTX 2080 Ti. To provide
an efficient implementation, the proposed model (together with the other models) is
parallelized on the graphics processing unit (GPU) using CUDA and NVIDIA CUDA® Deep
Neural Network library (cuDNN) 7.6.3 over the PyTorch 1.7 framework. The experiment
results are discussed in this section.

3.4.1. Ablation Experiments

To demonstrate the performance of the proposed model, we conducted some abla-
tion experiments.

• Model ablation experiments:

The essence of the attention mechanism is to recalibrate the original feature map by
capturing the channel dependence of the feature map. In the proposed model, the attention
mechanism is derivable, and the weight of attention can be updated by the backpropagation
algorithm. Therefore, the attention mechanism is highly migratable and can be integrated
after the convolutional layers (Conv1 to Conv9) in the proposed model. Table 2 compares
the effect of the position of the attention mechanism on the proposed model. The validation
accuracy is employed to verify model performance. Since the testing set is not involved in
model training, the testing accuracy can evaluate the model performance objectively.

Table 2. The effect of the position of the attention mechanism on model accuracy and parameters.

Model Validation Accuracy Testing Accuracy Parameters

LW-SEResNet10 (1) 0.948 0.964 4.682M
LW-SEResNet10 (2) 0.964 0.968 4.682M
LW-SEResNet10 (3) 0.948 0.968 4.682M
LW-SEResNet10 (4) 0.960 0.964 4.685M
LW-SEResNet10 (5) 0.962 0.964 4.685M
LW-SEResNet10 (6) 0.960 0.968 4.697M
LW-SEResNet10 (7) 0.960 0.968 4.697M
LW-SEResNet10 (8) 0.960 0.964 4.744M
LW-SEResNet10(9) 0.964 0.964 4.744M

LW-SEResNet10 (2,4,6,8) 0.955 0.968 4.765M
LW-SEResNet10 (3,5,7,9) 0.960 0.964 4.765M

In Table 2, the (1) to (9) after the model name indicate the position of the attention
mechanism after the corresponding convolutional layers (Conv1 to Conv9). We also inves-
tigated the effect of adding the attention mechanism at multiple locations on the model
performance. The LW-SEResNet10 (2,4,6,8) represents adding four attention mechanisms
between two convolutional layers of all residual units. The LW-SEResNet10 (3,5,7,9) rep-
resents adding four attention mechanisms after two convolutional layers of all residual
units. As can be seen from Table 2, the LW-SEResNet10 (2) and LW-SEResNet10 (9) achieve
optimal validation accuracy. The LW-SEResNet10 (2), LW-SEResNet10 (3), LW-SEResNet10
(6), LW-SEResNet10 (7), and LW-SEResNet10 (2,4,6,8) achieve optimal testing accuracy.
The LW-SEResNet10 (1), LW-SEResNet10 (2), and LW-SEResNet10 (3) have the lowest
parameters. Therefore, the LW-SEResNet10 (2) has the optimal validation accuracy and
testing accuracy, while the number of model parameters is the lowest, which is the most
efficient combination structure. Further, the experimental results show that the addition
of the multiple attention mechanisms not only fails to yield a gain in accuracy, but also
increases the number of model parameters.

As can be seen from Table 3, compared with ResNet18, ResNet10 has no significant
change in the validation accuracy and testing accuracy while reducing 56.1% parameters,
which indicates that ResNet 18 has redundancy in the ShipsEar dataset. The effect of
the attention mechanism and the ReLU6 activation function in the proposed model on
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the model performance is also shown in Table 3. The attention mechanism introduced
0.001M parameters, accounting for 0.2‰ of the model parameters. The training process
of the four models is shown in Figure 6. It can be seen that the addition of the ReLU6
activation function and the attention mechanism inhibits the overfitting of the proposed
model, respectively. The attention mechanism adaptively recalibrates the extracted depth
feature, which enhances the stability of the depth feature.

Table 3. The experiment results on model accuracy and parameters.

Model Activation Function Validation Accuracy Testing Accuracy Parameters

LW-SEResNet10 ReLU6 0.964 0.968 4.682M
LW-SEResNet10 ReLU 0.955 0.950 4.682M

ResNet10 ReLU6 0.953 0.955 4.681M
ResNet10 ReLU 0.944 0.932 4.681M
ResNet18 ReLU 0.946 0.928 10.661M
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• Feature ablation experiments:

Furthermore, we make a horizontal comparison of the static Mel-spectrogram feature
and MFCC feature, and their 3D dynamic features. Table 4 compares the accuracy of the
proposed model under different features. The experimental results show that the four
Mel-filtered time-frequency features can show the inherent attributes of the target signals,
making the target separable. The proposed model combined with the 3D dynamic MFCC
feature has the highest classification accuracy. MFCC feature fully simulates the auditory
characteristics of human ears and has good classification performance. Considering the
complexity of the marine environment, the radiated noise in the target signals is non-
stationary. The delta feature and double-delta feature extract the correlation of MFCC
adjacent time frames, capture the time-varying characteristics in the complex marine
environment, and show good performance in our classification task.

Table 4. The accuracy of the proposed model under different features.

Feature Validation Accuracy Testing Accuracy

MFCC 0.960 0.955
3-D dynamic MFCC 0.964 0.968

Mel-spectrogram 0.935 0.932
3-D dynamic Mel-spectrogram 0.921 0.932
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Results for classification accuracy for the proposed model under CQT [47] feature are
depicted in Table 5. The 64, 84, and 120 under the dimension in Table 5 denote the number of
frequency bins of CQT, while the 216 denotes the number of frames. It can be seen that the
impact of different dimensions on accuracy is small. The logarithmic scale is used for CQT,
which significantly improves the accuracy. The best classification effect is obtained when the
sample dimension is 84× 216× 1. The experimental results are consistent with the literature [48],
that is, CQT feature is better than the Mel-spectrogram feature. From the overall results in
Tables 4 and 5, it can be observed that overall accuracy results remained better for the 3D
dynamic MFCC feature as compared to other features, with an accuracy of 0.964.

Table 5. Accuracy comparison for CQT feature.

Feature Dimension Logarithmic Scale Validation Accuracy Testing Accuracy

CQT

64 × 216 × 1 0.813 0.820
64 × 216 × 1 √ 0.948 0.941
84 × 216 × 1 0.831 0.811
84 × 216 × 1 √ 0.955 0.950
120 × 216 × 1 0.834 0.829
120 × 216 × 1 √ 0.939 0.941

3.4.2. Comparison Experiments

In this part, the proposed model is compared with ResNet and two classical
lightweight network models in terms of the model parameters, time consumption, and
classification accuracy.

• The comparison between parameters and accuracy:

The comparison between the number of model parameters and the accuracy is performed.
Table 6 shows the testing accuracy of the multiple network models under different features.
Table 7 shows the number of parameters of multiple models. MobileNetV2 and ShuffleNetV2
are two classic lightweight neural networks, which introduce depth-wise separable convolu-
tion to reduce the model parameters. The numbers after the MobileNetV2 and ShuffleNetV2
in Tables 6 and 7 represent different model versions. The different model versions have
different model parameters. Taking the 3D dynamic MFCC feature as an example, the number
of model parameters and model accuracy are not positively correlated. Among them, the
more parameters of the ResNet model, the lower the accuracy. The parameters of the proposed
model are similar to MobileNetV2 (1.4), and its accuracy is much higher than MobileNetV2
(1.4). Mel-spectrogram and MFCC obtained 0.857 and 0.868 accuracy when using STM without
pre-training, respectively [8]. Compared with STM, LW-SEResNet10 obtained a 7.5% accuracy
gain under Mel-spectrogram and an 8.7% accuracy gain under MFCC. STM uses the AST [49]
as the model. The parameters of the AST baseline model are 86 M. The parameters of the
proposed model are 4.682 M, which is 5.4% of the model parameters in AST.

Table 6. The testing accuracy of the multiple network models under different features.

Model MFCC 3D Dynamic MFCC Mel-Spectrogram 3D Dynamic Mel-Spectrogram

ShuffleNetV2 (0.5) 0.824 0.856 0.676 0.748
ShuffleNetV2 (1.0) 0.833 0.833 0.811 0.788
ShuffleNetV2(1.5) 0.838 0.856 0.784 0.833
ShuffleNetV2 (2.0) 0.838 0.815 0.797 0.793
MobileNetV2 (1.0) 0.887 0.878 0.815 0.779
MobileNetV2 (1.4) 0.824 0.874 0.793 0.847

ResNet18 0.919 0.928 0.914 0.910
ResNet34 0.901 0.910 0.874 0.824
ResNet50 0.851 0.793 0.680 0.707

LW-SEResNet10 (proposed) 0.955 0.968 0.932 0.932
STM [8] 0.868 0.857
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Table 7. The number of parameters of multiple models.

Model Parameters (M)

ShuffleNetV2 (0.5) 0.339
ShuffleNetV2 (1.0) 1.200
ShuffleNetV2(1.5) 2.369
ShuffleNetV2 (2.0) 5.107
MobileNetV2 (1.0) 2.127
MobileNetV2 (1.4) 4.124

ResNet18 10.661
ResNet34 20.301
ResNet50 22.429

LW-SEResNet10 (proposed) 4.682
STM (AST) [49] 86

• The comparison between different features:

For a certain neural network model, the accuracy corresponding to different features
can reflect the degree of dependence of the network model on different features. A good
classification model does not depend on a certain feature, that is, robustness [35]. Figure 7
shows the testing accuracy of the multiple network models under different features. Taking
the ResNet model as an example, for ResNet50, the accuracy varies greatly under different
features. For ResNet18, the accuracy varies a little under different features. Therefore, the
ResNet18 network has low dependence on these features. The proposed model exhibits
similar performance to ResNet18 in terms of feature dependence. In addition, it can be seen
that the matching optimal features are different for different models. The MFCC-based
features generally perform better than the Mel-spectrogram-based features.
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• The comparison between time consumptions:

To achieve a comprehensive consideration of the time consumption, we also conducted
a set of experiments using the central processing unit (CPU). Figures 8 and 9 show the
training time (the average time of 30 epochs) and inferred time using the CPU and GPU,
respectively, for multiple network models. Training time refers to the time it takes the
model to perform one epoch on the training set and validation set. Inferred time refers to
the time consumed on the testing set. In Figure 8, the proposed model has the shortest
training time on the GPU and has a similar training time to ShuffleNetV2 (1.0) on the CPU.
In Figure 9, the proposed model has the shortest inferred time on the GPU and has a similar
inferred time to ShuffleNetV2 (1.5) on the CPU.
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We noticed in Figures 8 and 9 that on the GPU, the time consumption of ShuffleNetV2
and MobileNetV2 with lower parameters is longer than that of ResNet18. One important rea-
son is that, for ShuffleNetV2 and MobileNetV2, depth-wise separable convolution is employed
for reducing the model parameters. Depth-separable convolution divides a convolutional
operation into a depth-wise convolution layer and multiple point-wise convolution layers,
which increases the number of convolutional layers. The CPU generally uses serial compu-
tation, and the higher Cache hit rate in exchange for the increased number of layers speeds
up the computation. However, on a GPU, using parallel computation with sufficiently large
video memory does not improve the speed of depth-wise separable convolution. Therefore,
the ShuffleNetV2 and MobileNetV2 are more suitable for implementation on the CPU. The
proposed LW-SEResNet10 performs efficiently on both CPU and GPU.
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• Optimization and comparing the performance of various models:

Comparing the performance of various models on the ShipsEar database, we observe
that the performance of LW-SEResNet10 is relatively poorer than the newest STM + Au-
dioSet [8]. To further optimize the proposed model, we use the adaptive moment estimation
(Adam) [50] optimizer used in the article [8,17,51]. The optimizer uses L2 regularization
(set to 4× 10−5). The LW-SEResNet10 could achieve an accuracy of 0.977, which is con-
sistent with the newest STM + AudioSet. We can see in Table 8 that the proposed model
exceeds the Baseline [19] by 22.3%, ResNet [51] by 3.4%, and the CRNN-9 [17] by 3.1%.
In addition, we also compared the parameters of LW-SEResNet10 and STM. The STM +
AudioSet pre-trains the model using an already trained network, which is the Audioset
dataset model trained on AST [49]. As mentioned above, the parameters of the proposed
model are 5.4% of the model parameters in AST. To sum up, the LW-SEResNet10 achieves
optimal accuracy, significantly reduces the computation cost of the model, and realizes the
trade-off between accuracy and model efficiency.

Table 8. The accuracy and parameters of different models.

Model Accuracy Parameters (M)

Baseline [19] 0.754
ResNet + 3D [51] 0.943

CRNN-9 [17] 0.946
STM + AudioSet [8] 0.977 86 (AST [49])

LW-SEResNet10 + SGD 0.968 4.682
LW-SEResNet10 + Adam 0.977 4.682

3.4.3. Noise Mismatch Experiment

When the sample is disturbed, whether the deep model can still maintain a high
classification performance is a measure of the robustness of the model. To measure the
noise robustness of all models, we conducted a noise mismatch experiment. To construct
noise mismatch conditions, we added white Gaussian noise with SNRs (signal-to-noise
ratios) of −20 dB, −15 dB, −10 dB, −5 dB, 0 dB, 5 dB, 10 dB, 15 dB, and 20 dB to the testing
dataset. We take the 3D-dynamic MFCC feature of the testing dataset under different
SNRs as the input of the trained network models to test the classification performance.
Table 9 shows the F1-score of various models under different SNRs. It can be observed that
the models with residual structures obtain higher F1-scores. The models without residual
structures are more sensitive to white Gaussian noise. The experimental results indicate that
the residual structures can suppress white Gaussian noise, and the residual-based model is
noise-robust in our ship-radiated noise classification task. The proposed model performs
better in noise mismatch conditions compared with the two classic lightweight models.

Table 9. The F1-score of multiple models under different SNRs.

Model/SNR(dB) −20 −15 −10 −5 0 5 10 15 20

ShuffleNetV2 (0.5) 0.056 0.127 0.139 0.215 0.298 0.372 0.478 0.619 0.703
ShuffleNetV2 (1.0) 0.050 0.130 0.155 0.169 0.275 0.374 0.453 0.532 0.584
ShuffleNetV2(1.5) 0.060 0.050 0.118 0.199 0.275 0.421 0.532 0.614 0.702
ShuffleNetV2 (2.0) 0.042 0.036 0.090 0.147 0.244 0.386 0.486 0.635 0.756
MobileNetV2 (1.0) 0.036 0.047 0.076 0.173 0.338 0.461 0.598 0.685 0.744
MobileNetV2 (1.4) 0.036 0.036 0.057 0.091 0.244 0.417 0.540 0.650 0.715

ResNet18 0.216 0.237 0.380 0.525 0.654 0.708 0.762 0.838 0.864
ResNet34 0.230 0.313 0.432 0.508 0.564 0.622 0.715 0.781 0.803
ResNet50 0.216 0.186 0.194 0.263 0.391 0.521 0.612 0.708 0.751

LW-SEResNet10
(proposed) 0.183 0.172 0.238 0.309 0.438 0.546 0.690 0.816 0.848
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4. Conclusions

This paper proposes a lightweight ship-radiated noise classification network model,
called LW-SEResNet10. Through model design, the high accuracy and efficiency of the
classification model are realized. Based on ResNet, the model is lightweight by shrinking
the number of residual units. The attention mechanism and ReLU6 activation function
are used as techniques to suppress model overfitting to improve model classification
performance. In addition, the model input uses a 3D dynamic MFCC feature to optimize
the overall classification system. The experimental results on the ShipsEar database prove
the effectiveness of the system.

In the experiment, the multiple models of classification accuracy and efficiency, the
dependence of multiple models on features, and the influence of training and testing noise
mismatch on classification performance are analyzed. A large number of experiments
ensure the progressiveness of the proposed method. As a classic network, the ResNet is
still superior after model compression and design, and it can meet the demand for high
accuracy and efficiency in the field of ship-radiated noise classification.
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