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Abstract: With the increasing number of applications for both surface and underwater autonomous
vehicles, a great amount of control methods and guidance principles has been developed over the
years. This work proposes a review of the most common of these methods. It is mainly focused
on model-based nonlinear control methods and guidance principles. Notably, this work details
examples and variations of model-based linearizing controllers, applications of line of sight guidance,
sliding mode controllers and several other less common control methods for both fully-actuated and
underactuated vehicles. Additionally, this work proposes an alternative definition of underactuation
with respect to the task allowing for a better understanding of the consequences of underactuation
on control. Comparison of fully-actuated and underactuated cases shows how control laws can be
used to solve the problems of underactuation and what mechanisms can be used to compensate for
the lack of actuation on a degree of freedom. The reviewed methods are compared and discussed
with respect to their capabilities, limitations and suitability for typical tasks.

Keywords: marine vehicles; AUVs; underactuated robots; control review; model-based control; PID
control; feedback linearization; line of sight; sliding mode control; differential flatness

1. Introduction

This work presents a review of model-based control methods and guidance principles
for autonomous marine vehicles. Some of the most common methods found in literature
are presented. Detailed examples are given for each of these methods. The idea behind this
work is to offer a guide towards the choice of a control method or a guidance principle
for an autonomous marine vehicle. It is centered on the methods themselves and does not
necessarily compare the application or simulation results.

For each method, a general introduction based on the presentation of a basic example
is given before examples in the marine context are presented. This work focuses on the
study of marine craft both on the surface and underwater whether they are fully actuated
or underactuated. As seen in the following, surface vessels can be considered as a reduced
case of underwater vehicles constrained in the horizontal plane. In other words, surface
vehicles are not different from underwater craft, which motions out of the horizontal plane
are neglected and considered naturally stable.

First, this work introduces the most intuitive guidance method for marine vessels:
Line of Sight Guidance [1–3]. This guidance principle is inherited from naval tradition and
mimics the behavior of an experienced boat pilot. Although it is not specific to marine
craft, Line of Sight guidance is the go-to method for the most common applications for
autonomous marine vehicles. In comparison to the other methods introduced later in this
work, LOS is slightly different since it is a guidance method and not a control method.
Guidance algorithms are used to calculate new sets of references for the vehicle to track
instead of the trajectory. The guidance calculations are usually based on the error signals
on non actuated degrees of freedom and give references for actuated degrees of freedom
that would not be part of the task. Most often with marine vehicles, LOS guidance is used
to calculate heading references with sway errors.
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Then, examples of the different control methods are presented beginning with the
PID-based controllers [4,5]. PID-based controllers are very common when working with
linear systems and, when working with nonlinear systems, need to be associated with
various linearization techniques to perform at best. Some of them are presented and notably
model-based feedback, feedforward, and hybrid linearizations. In the underactuated case,
examples of additional manipulation allowing compensation of non actuated degrees of
freedom are presented.

The next control method presented here is Sliding Mode Control (SMC) [6–8]. SMC
is another very common control method for both linear and nonlinear systems offering
good robustness to external disturbances and model approximations as well as theoretical
finite-time convergence. Note that, as for the PID-based control methods, in the case of
nonlinear systems, SMC must be used in association with linearizing techniques. Several
formulations exist for SMC as the Terminal Sliding Mode [9] or the Super Twisting Sliding
Mode [10], each showing different properties and advantages. The examples also show
that SMC can be applied in the underactuated case and that the construction of the sliding
mode control law itself can be tuned to have a guidance role as well.

The last control technique introduced in this work is Differential Flatness [11,12].
Differential flatness shows very good performances and robustness when it is applied to
nonlinear systems. The few examples of differential flatness application to marine craft
show promising results.

Additional control methods can be found in [1,13–16] among many others. We did
not retain some approaches that are promising but on which we found very few references,
such as [17]. In addition, these last few years, some new control techniques based on
machine learning are developed. Because they are still recent and not found so often in the
literature, these methods are not depicted in this work either.

One of the interests of this work is to see what consequences underactuation may
have on the control and how control laws can be used to “solve” actuation flaws. To this
end, most of the control laws in this work are first presented in the fully-actuated case and
then underactuated examples are given. Doing so allows for comparing the different strate-
gies used in the underactuated case with the fully-actuated case. To enable comparisons
between the different methods, it is mandatory to set for a definition of underactuation.
Therefore, a definition of this notion with respect to its task as well as a basic example of
the consequences of underactuation are given in this work.

This work is organized as follows. Section 2 briefly introduces the model used for
representation of the marine vehicles. Section 3 gives the definition of underactuation
used in this work as well as a basic example to show the consequences of underactuation.
Section 4 presents the Line Of Sight guidance principle and application examples for both
surface and underwater vehicles. Section 5 focuses on the use of model-based linearization
and PID control for marine vessels. Section 6 displays examples of the use of Sliding
Mode Control in its various aspects for fully-actuated and underactuated vehicles. Finally,
Section 7 presents a few examples of differential flatness in the context of marine vehicles.

2. Model of Marine Vehicles

For ease of understanding and comparison of the following references, the kinematic
and dynamic models of a marine vehicle are introduced in this section. In the following,
equations and quotes from the references are adapted to the model given here. This model is
heavily inspired by the model given by T. I. Fossen [18] and is widely used in the literature.

This work deals with both surface vessels and underwater vehicles. Looking at
the models used in the literature for surface vessels and underwater vehicles, one can
think of the surface case as a reduction of the underwater case in the horizontal plane.
In fact, the main difference between the two cases lies in the choice of neglecting certain
terms. However, behavioral differences could be expected between the two cases. Notably,
the differences in the inner structure of the model matrices typically used in one case or
the other can lead to different reactions when exposed to certain control signals. Such
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differences could also be expected between different hull structures or mass distributions;
in fact, they are mainly related to the dynamic couplings in the model, but they will not be
studied in detail in this work. The following examples are presented for generic vehicles or
following the assumptions made in the reference work. The models given in this section are
defined in the case of an underwater vehicle moving through 6 degrees of freedom space.

2.1. Framework

In the studies presented here, two different frames are mainly used: R0 and RB. First,
R0(O, x0, y0, z0) is the usual earth-fixed North-East-Down reference frame. In most of
the references, the desired trajectory or the waypoints to reach are defined in R0. Then,
RB(OB, xB, yB, zB) is a mobile body-fixed frame centered on OB attached to the vehicle.
Traditionally, OB is taken in the principal planes of symmetry of the hull of the vehicle.
Nonetheless, OB does not necessarily concur with either the center of gravity PG or the
center of buoyancy PB. The generic framework is presented in Figure 1.

O

x0 y0

z0

OB

xB
Surge

yB
Sway

Pitch

zB Heave

Yaw

Roll

η1

Figure 1. Generic framework.

2.2. Kinematic Model

The position of the vehicle is given by the coordinates of the center of the mobile
frame OB in R0. Let us define the position and orientation vector η = [η1

T η2
T ]T with

η1 = [x y z]T the position of OB in R0 and η2 = [φ θ ψ]T the orientation of RB with
respect to R0 represented with the Euler Roll–Pitch–Yaw angles convention. Note that
the Euler angle representation introduces a singularity in θ = π

2 . This singularity is of no
consequence in most applications, but, for the few cases in which such a configuration could
be reached, a non-singular description of the vehicle’s orientation such as quaternions can
be used [16]. Nonetheless, such descriptions come at the cost of an additional parameter.

It is useful to introduce here the error representation chosen in this work. Error vectors
will be denoted ei with i the name of the considered variable and always calculated as
the difference between the desired and actual values of a variable. As an example, the
position and orientation error vector is given as eη(t) = ηd(t)− η(t), where ηd(t) is the
desired value of η(t). It is also worth noting that the signs of the equations drawn from the
references are adapted to follow this convention unless the opposite is specified.
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To complete the definition of RB, let us introduce the velocity vector of the vehicle
expressed in RB with respect to R0: ν = [ν1

T ν2
T ]T , where ν1 = [u v w]T is the vector of

linear velocities, and ν2 = [p q r]T is the vector of angular velocities.
The kinematic model of the vehicle is then given by the equation:

η̇ = J(η2)ν (1)

where η̇ is the first time derivative of vector η, and J(η2) is defined in this representation
as [1]:

J(η2) =

[
J1(η2) 0

0 J2(η2)

]
(2a)

J1(η2) = R(z0, ψ)R(y0, θ)R(x0, φ) (2b)

J2(η2) =

1 sin φ tan θ cos φ tan θ
0 cos φ − sin φ
0 sin φ/ cos θ cos φ/ cos θ

 (2c)

where R(χ, λ) being the rotation matrix of angle λ around axis χ. Additional definitions of
J2(η2) can be found in [1,16,18] for the quaternion representation.

Some control methods presented later in this work require the definition of a tracking
point E. The tracking point is the point of RB following the task. In some applications, the
tracking point could be the focal point of a camera or the grasping point of a manipulator.
Depending on the application, the tracking point could be either fixed or moving in RB.
In this work, E is taken as a fixed point of coordinates [εx εy εz]T in RB. Therefore, a
solid kinematics law gives the linear velocities of E and angular velocities of the vehicle
expressed in RB w.r.t. R0 as νE:

νE = Tν (3)

with

T =



1 0 0 0 εz −εy
0 1 0 −εz 0 εx
0 0 1 εy −εx 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (4)

2.3. Dynamic Model

Dynamic modeling of marine craft has been widely studied over the years, and
many formulations exist with different levels of accuracy. In this work, the most common
formulation of the model in the control community is used even if it is not the most accurate
one from a hydrodynamics point of view. It is the one generally used in underwater robotics.
In this context, hydrodynamic inaccuracies are seen as perturbations that will be rejected,
in practice, by robust control of the craft. The dynamic model of the system in the marine
environment is given by [16,19]

Mν̇ + C(ν)ν + D(ν)ν + g(η) = τ (5)

where τ is the generalized vector of propulsive forces and moments, M is the matrix of
mass, inertia and added mass, C(ν) is the matrix of Coriolis and centripetal terms including
hydrodynamic effects, D(ν) is the damping matrix, and g(η) is the vector of gravitational
forces and moments.
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In (5), the hydrodynamic effects are linearly superposed to the rigid mass effects.
The mass and Coriolis matrices are therefore defined as:

M = Mb + Ma and C = Cb + Ca

Matrices Mb and Cb refer to the mass effects of the rigid body while Ma and Ca are the hy-
drodynamic effects applied to the vehicle and called added mass effects. The interested reader
can refer to [18–21] for more details about added mass coefficients, matrices structures for
different vehicles and hull shapes as well as calculation and approximation methods for
those coefficients.

2.4. Actuation Vector and Propulsive Configuration

The actuation vector τ in (5) is the vector of generalized forces and moments generated
by the vehicle’s propulsion expressed in RB. The wrench τ is defined as:

τ =



X
Y
Z
K
M
N

 (6)

with X, Y and Z the propulsion forces on axis xB, yB and zB, respectively, and K, M and N
the moments around xB, yB and zB, respectively.

The thrusts produced by each thrusters of the vehicle or, in the case of reconfigurable
thrusters, produced by equivalent stationary virtual thrusters are summed up in the
vector of forces u, where each row is the propulsion force of one thruster. The vector τ is
calculated as:

τ = Bu (7)

where B is the Thruster Configuration Matrix (TCM) detailed in [22,23], and u is a vector
containing the propulsive thrusts. Matrix B defines the propulsive configuration of the
vehicle. As an example, we consider an underwater vehicle equipped with 4-fixed thrusters:
P1 and P2 longitudinal at the stern and P3 and P4 vertical in the middle of the hull. We call
this configuration the “RSM”robot, and it is displayed in Figure 2. The TCM matrix of the
RSM propulsive configuration is:

B =



1 1 0 0
0 0 0 0
0 0 1 1
0 0 P3y P4y
0 0 0 0
−P1y −P2y 0 0

 (8)

where Pij is the coordinate of thruster i on the j axis of RB.
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Figure 2. Propulsive configuration of the RSM robot.

Because of the rows of zeros in the TCM matrix (8), the vector of propulsive forces and
moments in RB for a vehicle such as the RSM robot will be of shape:

τ =



X
0
Z
K
0
N

 (9)

Therefore, the RSM robot is an example of an underactuated underwater vehicle for a
6-DOF task. The propulsive configuration cannot produce any force on the yB axis or
moment around the yB axis.

In the case of fixed thrusters associated with rudders, the forces and moments gener-
ated by the rudder can be expressed as a function of the rudder angle and surge thrust as
in [24], and a similar representation can be found.

3. Consequences of Underactuation on a Controlled System

In this study, it seems appropriate to relate the definition of underactuation to the task
the vehicle is evaluated on. In fact, it is common practice [5,7] to consider a subspace of the
six-dimensional space reduced to the degrees of freedom (DOF) required in the task. It is
therefore mandatory to evaluate whether or not the system is completely actuated in this
subspace. Thus, two parameters are considered when evaluating the actuation of a system:
the number of actuated degrees of freedom of the system relatively to the number of degrees
of freedom of the task and the coherence between these two sets of DOF. The number of
independent degrees of freedom constrained by the task will often be referred to as task
requirements in this work. For the first parameter, it is commonly known that a system which
has fewer actuated degrees of freedom than the requirements of the task is underactuated.
However, even if the system has as many actuated degrees of freedom as the task requires,
the two sets of DOF may not match. In such a case, a problem like trajectory tracking
becomes non-trivial and new mechanisms must be introduced in the guidance or control
of the vehicle to make the best use of the actuated degrees of freedom to perform the task.
Thus, in this case, the vehicle can also be considered underactuated. One way of seeing
this case of poorly actuated vehicles is to consider the subspace of the required DOF of the
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task. In this subspace, such a vehicle would clearly appear underactuated. As will be seen
later in this work, most traditional boats can be considered underactuated when it comes
to reaching fixed waypoints; in addition, most glider submarines are underactuated when
tracking a 3D trajectory.

The definition of the underactuated vehicle used in this work is the following:

Definition 1 (underactuated vehicle). A vehicle is considered underactuated if either:

• The vehicle has fewer actuated degrees of freedom than the task requirements;
• The vehicle has as many degrees of freedom as the task requires, but some of them are not in the

subspace defined by the task requirements.

This definition of underactuation involves the fact that underactuated vehicles are not
always controllable in the task subspace making the control problem non-trivial. While con-
trollability criteria are hardly defined for nonlinear systems, differential flatness introduced
in Section 7 is often raised as a good candidate.

As will be seen in this work, many methods exist to exploit the actuated degrees of
freedom of an underactuated vehicle at best and especially when they do not match with
the task. Although they are all different and complex, all the methods make use of a simple
mechanism referred to in this work as the compensation of one or a few non-actuated DOF
with another actuated one or ones. This is the most intuitive way to cope for the lack of
actuation over a degree of freedom, and it is in used in most terrestrial and marine vehicles
autonomous or not to this date.

A very quick generic example allows for getting a grasp of the idea of compensation
and the notion of diagonal and non-diagonal problems. Let us consider a three-dimensional
problem with state X = [x1 x2 x3]

T and input U = [u1 u2 u3]
T . In the most basic case (fully

actuated and decoupled), a simplified input–output representation of the close-loop system
can be given as u1

u2
u3

 =

λ1(X) 0 0
0 λ2(X) 0
0 0 λ3(X)

e1
e2
e3

 (10)

where λi(X) are functions of the state and its first derivatives and a certain number of
control parameters. The variables ei represent the error between xi and the desired value
on this axis xd

i . In this first case, each control input is built upon the corresponding error
signal in a one-to-one relationship, and the input–output matrix is diagonal. In such a case,
a simple proportional gain could do as the λi function. Now, let us introduce underactuation
in this simple system. One way of introducing a non-actuated degree of freedom in such a
system is to consider that, whatever the required output value, the non-actuated input is
always equal to 0. If the second degree of freedom is not actuated, the system becomes:u1

0
u3

 =

λ1(X) 0 0
0 λ2(X) 0
0 0 λ3(X)

e1
e2
e3

 (11)

Comparing (10) and (11), it appears clearly that the values of e2 and λ2 will be of no
consequence over the input U. This would lead to a parallel convergence where the errors e1
and e3 could converge to 0, but the error e2 would be ignored. In this system, underactuation
really is a problem only if the task is composed of the three DOF or of the first and second but
not the third. If the task requires three independent DOFs, then the system is underactuated
and there is no solution to control the three DOF at the same time. However, in a case
where the task is composed of the first and second DOF but not the third, the third control
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input could be used to compensate for the lack of actuation on the second. In such a case,
the subspace defined by the requirements of the task would be:[

u1
0

]
=

[
λ1(X) 0

0 λ2(X)

][
e1
e2

]
(12)

In the subspace defined in (12), the reduced system appears underactuated.
Then, to take e2 into account, a new input–output matrix can be designed in the

complete space as: u1
0
u3

 =

λ1(X) 0 0
0 0 0
0 λ3(X) 0

e1
e2
e3

 (13)

In the case (13), the error signal e2 is used in the calculation of the input u3. This example
shows compensation of the lack of actuation over u2 with u3. Note that, for this compen-
sation phenomenon to happen and actually have an incidence on e2, u2 and u3 cannot be
orthogonal forces or a force and a moment around the same axis. Most of the time, and
notably with autonomous vehicles and marine craft, u2 is a linear force, and u3 is chosen as
a moment around any axis orthogonal to u2. With a well-chosen λ3, most often based on
the system model, convergence of e2 to 0 can be attained. However, this comes at a cost
since it is now e3 that is ignored. It is the designer’s choice to decide which of the degrees
of freedom of the system must be prioritized or which error can be left non-zero without
risking the application.

4. Line of Sight Guidance

The Line Of Sight guidance technique (LOS) [3,25–27] is the most intuitive guidance
method for most marine vehicles both on the surface and underwater. The basic idea is
rather simple: when piloting a typical boat, the easiest and fastest way to reach a distant
waypoint is to point the boat towards the waypoint and sail straight forward. Once the
waypoint or its neighborhood is reached, the boat is pointed towards the next one and
so on.

While being quite simple, the idea behind LOS guidance hides interesting concepts.
Inherited from traditional naval techniques, LOS guidance has initially been designed
for autonomous boats. Such vehicles are typically underactuated in the horizontal plane.
Only surge and yaw are actuated on most surface vehicles and sway is passively stabilized
by the hull shape making trajectory tracking in the horizontal plane non-trivial. These
vehicles will be referred to as ur-boats or ur-vessels in the following. There are three main
actuation topologies for ur-boats: a fixed rear longitudinal thruster and a rudder, a single
reconfigurable rear thruster or two fixed rear thrusters. These three topologies allow for
generating both a surge force and a yaw moment. Few differences exist between the three
possible topologies of a ur-boat and notably when it comes to decoupling of the surge and
yaw speeds. While not being treated in this work, the possible couplings between surge and
yaw actuation may lead to different performances for a given control or guidance method.
The most common task LOS guidance is applied to its reaching waypoints where the
waypoints are a set of fixed (xd(i), yd(i)) points of the horizontal plane. Waypoint reaching
has later been extended to trajectory tracking considering either a mobile waypoint or a set
of waypoints close to each other associated with a propagation rule.

A very simple LOS guidance is given in Figure 3 and in Section 6.5 of [1]. Here, a new
heading reference is calculated based upon the position error between the vehicle and the
tracked waypoint calculated in the inertial frame. Proportional control allows for tracking
of the said heading reference. The surge speed is set to a constant. It could be controlled
with another PI-based controller as well. Once the neighborhood of the current waypoint is
reached, the next one is targeted. This simple LOS guidance principle does not take the
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model of the vehicle into account nor does it compensate for any external disturbances.
Intuitively, the heading reference would be calculated as:

ψd(t) = atan2(yd(i)− y(t), xd(i)− x(t)) (14)

In (14), the atan2 function is used instead of the classical atan function to avoid singularities.
This expression is commonly used in numerical calculation; it extends the definition of
atan to the complete complex plane. The atan2 function is defined on the four quadrants
of the complex plane as:

R2 \ (0, 0) −→ [−π;+π[

(y, x) 7−→ atan2(x, y) =



+π + arctan
( y

x
)

if x < 0, y > 0 (quadrant II)

+
π

2
if x = 0, y > 0

arctan
( y

x
)

if x > 0 (quadrants I and IV)

−π

2
if x = 0, y < 0

−π + arctan
( y

x
)

if x < 0, y < 0 (quadrant III)
−π if y = 0, x < 0

LOS Controller Vehicle
xd yd

ud

ψd
τu

τr

η

ψx y

Figure 3. Block diagram of a simple Line Of Sight Guidance control. The Controller block represents
any control function capable of calculating the surge and yaw controls τu and τr from the desired
and current states.

A more advanced control based on LOS guidance is given in [2]. In this work, LOS
guidance algorithms provide desired heading and its first and second order derivatives.
The nonlinearities of the model are taken into account and linearizing terms are added in
the controller in a hybrid feedback and feedforward fashion (see Section 5 for more details
on linearizing controllers). The two controller equations can be expressed as:

τc =

Xc
0

Nc

 (15a)

Xc = m11u̇d + n11u− k1(u− ud) (15b)

Nc = m32v̇ + m33ṙc + n32v + n33r− k3(r− rc)− (ψ− ψd) (15c)

rc = −c(ψ− ψd) + rd (15d)

where mij are coefficients of the mass matrix, nij are coefficients of the Coriolis and damp-
ing matrix, k1, k3 and c are control gains. The yaw speed control rc is calculated as an
intermediate command variable in the kinematic controller (15d). In the controller given
by (15a), the heading references ψd, rd and ṙd are outputs of an extended LOS guidance
algorithm similar to (14).

LOS guidance can also be applied in the underwater three-dimensional case as dis-
played in [3]. Underwater, LOS guidance is mainly used for vehicles actuated in surge,
pitch and yaw (called uqr-vessels in the following). For uqr-vessels, pitch and yaw are
generally used to cope for the lack of sway and heave actuation therefore allowing tracking
of (x, y, z) waypoints or trajectories. The same principle as for 2D LOS guidance is applied,
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and the vehicle is pointed towards the tracked point and is propelled forward. As shown
in [3], 3D LOS guidance involves an additional angle: the elevation. As in the 2D case,
the heading and elevation angles given by LOS guidance can be used as references in the
yaw and pitch controllers respectively.

The work in [3] provides three assumptions for convergence of the LOS guidance and
also makes use of two additional control parameters called look-ahead distances. In simple
terms, when look-ahead distances are used, the ship is not pointed towards the target itself
but towards a fictional point slightly further away on the trajectory. Look-ahead distances
allow a smoother trajectory convergence and can be tuned relatively to the application
and system. This work also introduces a path frame RP centered on the tracked point p.
Conditions upon the evolution of point p are given in this work to ensure convergence
in the form of an equation giving the evolution speed of point p relatively to the desired
speed of the vehicle. The tracking errors used for the calculation of the reference elevation
and heading angles of the LOS algorithm are calculated in frame RP.

In [25], the same authors apply the principle of 3D LOS guidance to a uqr-ship and
build a complete controller upon this principle. As seen before, the LOS angles are used as
references in the pitch and yaw controllers. This work also gives a lead towards unification
of fully-actuated and underactuated controllers, taking into account the fact that some
actuated DOF may be considered non-actuated in certain speed ranges. In addition, Ref. [26]
gives experimental results of a similar control method in the case of an underwater vehicle
tracking a predefined fixed-depth (xd, yd) path close to the surface.

The LOS guidance principles described up to this point do not take external distur-
bances like marine current, wind or waves into account. In fact, traditional LOS guidance
does not ensure theoretical convergence in the presence of external disturbances. To cope
for such disturbances, Ref. [27] proposes adding a new term in the traditional LOS heading
angle calculation in the case of a ur-vessel. This new term, denoted as yint, behaves like
the integral term of a PI controller would, and it cancels possible steady state error due
to persistent external disturbances. Though yint is not calculated as the integral of y, its
propagation function will be chosen to allow convergence of the closed-loop system. There-
fore, yint will be referred to as a pseudo-integral term. Considering yd = 0, the modified LOS
heading angle can be expressed as:

ψd = atan
(

y + σyyint

∆

)
(16a)

ẏint =
∆y

(y + σyyint)2 + ∆2 (16b)

In (16), σy is a new control parameter acting as an integral gain, and ∆ is the look-ahead
distance. As ∆ is always strictly positive, RHS of Equation (16) is always defined, and the
value of ψd is always in [−π

2 ,+π
2 ]. For a complete four quadrants output, one may use the

atan2 function instead.
Equation (16b) gives the propagation rate of the integral term yint. The first order

derivative of the pseudo-integral term yint is conveniently chosen to allow convergence of
the closed-loop system.

In [27], the tracked trajectory is a straight-line path defined in R0 by yd = 0. Therefore,
the position of the vehicle y used in (16) could be replaced by the cross-track error for
different trajectories. Nonetheless, having the integral term yint in (16) allows the vehicle
to move along the path y = 0 with a non-zero relative heading angle in case of external
disturbances. An adaptive yaw controller is then given and convergence is proven in the
presence of external disturbances.

The work presented in [28,29] provides a generalization of the integral LOS guidance
in 3D in the presence of sea currents. In the former, the addition of an integral term in the
elevation angle calculation allows for compensation of vertical oceanic current in the case
of a horizontal trajectory tracking problem for a uqr-ship while, in the latter, both elevation
and heading angles are given with an integral term therefore allowing robustness to any
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irrotational current. The example in [29] is interested in tracking the x-axis line defined by
yd = zd = 0. The enhanced heading angle in [29] is similar to (16), and the elevation angle
is built the same way but with the z tracking error:

θd = atan
(

z + σzzint
∆z

)
(17a)

żint =
∆zz

(z + σzzint)2 + ∆2
z

(17b)

In [24,30], a slightly different approach of LOS guidance is proposed. Here, the
calculation of the desired LOS heading angle is based upon the cross-track error. The cross-
track error kinematics is given by:

ẏe = U sin
(
ψ− ψp(s) + β

)
(18a)

ψp(s) = atan2(y′p(s), x′p(s)) (18b)

where U =
√

u2 + v2 is the velocity of the ship, ψp(s) is the trajectory heading angle, and
β = atan2(v, u) is the slide-slip angle of the vehicle. The variable s can be considered as a
curvilinear abscissa whom propagation rule is given in [24]. More details about the path
frame used here can be found in the references. Thus, the cross-track error kinematics (18a)
can be seen as a new tracking problem of input Ψ = ψ + β and output ye, where Ψ is the
course angle. A new formulation of the desired LOS heading angle is given to stabilize
the cross-track error towards the equilibrium point ẏe = 0; the so-called proportional
LOS guidance:

Ψd = ψp(s) + atan
(
−ye

∆

)
(19)

It is worth noting that [24] proposes an alternative representation of the problem. A pivot
point is introduced and is chosen as the point of the vehicle where the local sway velocity is
zero. The pivot point is considered as the new tracking point. A new definition of the cross-
track error and of the tracking problem in general is given in this point. The proportional
LOS guidance is demonstrated as being uniform semiglobal exponential stable (USGES) for
the ur-boat. Surge and Yaw controllers are given in this case based on the cross-track error.
In addition to minimizing the cross-track error, the work of [30] also includes minimization
of the along-track error with a surge speed controller taking both cross-track and along-track
errors into account.

LOS guidance has received a lot of attention over the years and many more references
could be added in this work. The method has been used in different applications such as
waypoint tracking control in [31], studies on the optimization of the look-ahead distance
choice have been conducted as in [30], and LOS guidance has been applied to smooth
transitions between fully-actuated and underactuated configurations in [32] and, up to
this date, more work is conducted on the application of LOS guidance to different marine
craft [33,34].

Overall, LOS guidance can be considered as the go-to method for automation of ur-
vessels in surface or planar applications or uqr-ships for underwater applications. However,
as can be seen here, LOS guidance is not suited for applications where orientation of
the vehicle is controlled. In fact, LOS is one of the methods using a rotational DOF to
compensate the lack of actuation on a translation. In the ur-ship case, yaw moment is
used to compensate for the lack of sway. However, the difference between LOS guidance
and the other compensation methods given later in this work is that, with LOS guidance,
the compensation occurs at the guidance level while, in the following, it happens mostly at
the controller level. Using two translation errors or two translation speeds in the calculation
of a reference for a rotational DOF makes the controller on the latter a function of either of
these translation signals. This kind of manipulation is useful for underactuated systems
since it allows for going beyond the traditional one to one diagonal controller systems
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where control over a DOF is calculated upon the error on this same DOF. Other methods of
this kind are presented in the following.

5. Model-Based Linearization and PID Control

The very early works in (static state) feedback linearization can be found in W. Ko-
robov [35] and R.W. Brockett [36]. The necessary and sufficient conditions of feedback
linearization have been obtained by B. Jakubczyk and W. Respondek [37]; see the works
of R. Su and A. J. van der Schaft [38,39] for the general extension to the nonlinear case.
Refer to D. Claude [40] for a survey. The problem of dynamic feedback linearization has
been later addressed by B. Charlet, J. Lévine and R. Marino [41]. See also the books [42–44]
for more references. Recall that the problem of dynamic state feedback linearization is
still open. The input–output linearization problem has been first addressed in [45] and
completely solved in an algebraic setting in [46].

Proportional Integral Derivative (PID) control is the most well-known and widely spread
control technique among autonomous systems. However, when it comes to marine craft
and nonlinear systems in general, PID control itself may not be enough to cancel the state
error in trajectory tracking tasks. Additional linearizing mechanisms must be associated
with PID control when working with nonlinear systems such as autonomous boats or
underwater vehicles. This section demonstrates the use of PID control and these additional
strategies in the case of marine craft. The main advantage of adding linearizing terms to
the control law is to create a linear closed-loop system by canceling the nonlinearities of the
model, whereas a PID controller alone applied to a nonlinear system would be particularly
difficult to tune and concluding on the convergence and stability of the closed-loop system
would not be possible.

This section displays an example of PID-based controllers both in the fully actuated
case and in the underactuated case. Note that, in the fully actuated case, the common use of
diagonal gain matrices create a 1-to-1 relationship between input and output only tempered
by non-diagonal linearizing terms. In the underactuated case, on the other hand, additional
non-diagonal mechanisms allow for creating the compensation behaviors introduced earlier
in this work.

This section mainly focuses on model-based linearization methods but model-free,
adaptive controllers also exist and some examples of such controllers can also be found
in [1,5,47].

In fact, linearizing model-based controllers can be broken down into three classes.
The first type is State Feedback Linearization, often referred to as Exact Linearization [1,47].
Here, components of the model evaluated at the current state of the system are used in the
controller in order to theoretically exactly cancel the nonlinearities in the closed-loop system.
Practically, some nonlinear terms may appear in the closed loop system depending on the
experimental conditions. Nonetheless, the main advantage of using exact linearization
is to turn the original nonlinear control problem into a linear closed-loop system tuning
problem in which conventional PID setting methods as pole placement or linear quadratic
regulation can be used.

The second class of linearizing model-based controllers can be referred to as Feed-
forward Linearization or Non-exact Linearization in opposition to the first one [1,4]. Here,
the model parameters added to the controller are evaluated at the desired state or at a
virtual reference. Therefore, as long as the current state is different to the desired state or the
reference used in the feedforward terms, the nonlinear terms of the system are not exactly
canceled in the closed-loop system. The resulting state error dynamics can therefore remain
nonlinear. In this second case, conventional tuning methods are therefore more difficult
to set up on the resulting closed-loop system. As will be detailed later in this section,
the idea of using a virtual reference in the controller can be apprehended as having two
nested control loops or two stages. As a simple example, the virtual reference in the case of
marine craft would be a virtual speed vector built itself as a controller assuring convergence
of the position of the vehicle towards the trajectory. Roughly speaking, the outer loop
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generates an effort control vector ensuring convergence of the vehicle’s speed towards the
virtual reference. This virtual reference is calculated as a speed controller output assuring
convergence of the position towards the trajectory. Figure 4 displays simple block diagrams
of feedback and feedforward linearizing controllers.

The third class of linearizing model-based controllers is hybrid [5,47]. In these con-
trollers, both feedback and feedforward terms are used to cancel only some of the nonlin-
earities of the system. Such controllers can be used to bring few “well-behaving” nonlinear
terms in the closed-loop system, therefore enhancing the overall performances. Outside of
the marine context and with other types of controllers, details about these nonlinearities
of the closed-loop system and their interest can be found in [48]. Some of the examples
introduced in this section allow for comparing hybrid linearizing controllers using different
amounts of nonlinear terms.

PID Controller

Inv.Dyn.Model Vehicle
η̈d η̈r

+

τ η η̇ η̈

ηd η̇d

η η̇

(a)

Inv.Dyn.Model Vehicle

PID Controller

ηd η̇d η̈d +

+

τ η η̇ η̈

(b)

Figure 4. Comparison of the feedback and feedforward linearizing controllers. (a) block diagram of a
feedback linearizing controller; (b) block diagram of a feedforward linearizing controller.

5.1. Generic Example of State Feedback Linearization

A generic example of state feedback linearization can be found in [44]. As one may
have noticed already, the dynamic model (5) can be given in the companion form.

Let us introduce a nonlinear system of state x and input u. For simplicity, the system
used here is of scalar state and input:

ẋ = f (x) + g(x)u(t) (20)

The functions f (x) and g(x) are known nonlinear functions of the state x. Assuming
that g(x) is non-singular and, using the inverse of Equation (20), it is possible to build a
command vector u such as:

u(t) = g(x)−1(ẋd + λ(xd − x)− f (x)) (21)

In this equation, λ is a positive gain xd and ẋd are the desired state and first order derivative
of the desired state. The closed-loop system is therefore given by:

ẋ = f (x) + g(x)g(x)−1(ẋd + λ(xd − x)− f (x)) ⇒ ẋ = ẋd + λ(xd − x) (22)

Equation (22) shows that the feedback linearizing controller u(t) given in (21) leads to a
linear state error differential equation, namely ėx + λex = 0, whose all solution asymptoti-



J. Mar. Sci. Eng. 2023, 11, 430 14 of 36

cally converges to 0. In this example, exact feedback linearization is used since the actual
values of the state and the model matrices evaluated at the current state are used in the
control to cancel the nonlinearities of the model and lead to a linear closed-loop dynamics.
Development of the general case, with a state of dimension n and a control of dimension m,
is left to the reader.

Obviously, such linearizing controllers are not only used with marine vehicles. They
can be applied to many nonlinear systems as in [49,50]. Linearizing controllers are applied
to a generic dynamic system in the former and to a manipulator arm in the latter. These
two references refer to the methods used as the Computed torque. Although it is very close
to the linearization methods used in the following examples, the term “computed torque”
is rarely used when working with marine craft.

5.2. PID Control and Model-Based Linearization in the Fully Actuated Case
5.2.1. Feedforward Linearizing Controllers

A first example of a non-exact linearizing controller can be found in [4]. In this work,
the model is considered in the inertial frame and an expression of the model matrices
expressed in the inertial frame can be found in the reference. The modified matrices are
indicated with a ∗. The controller is given by the set of equations:

τ = M∗η̈r + C∗η̇r + D∗η̇r + g∗ + Λε (23a)

η̇r = KDη̇d + KPeη + KI

∫ t

t0

eη(ζ)dζ (23b)

ε = KD ėη + KPeη + KI

∫ t

t0

eη(ζ)dζ (23c)

In Equation (23), the orientation of the vehicle is represented in quaternions as part of
the vector η, and eη is the state error. The matrices KD, KP, KI and Λ are strictly definite
positive gain matrices that are set to the identity in this work but could be tuned for better
performances. The reference [4] specifies that removing the integral term by setting KI to 0
does not disturb the global convergence of the method.

In the control law (23), ε is built as a conventional PID controller outputting an
acceleration vector and η̇r is a virtual speed reference as explained at the beginning of this
section. This reference can be seen as a kinematic controller assuring convergence of the
position of the vehicle towards the trajectory. It is interesting to note that, when the state
error tends to zero, the virtual speed reference η̇r tends to the desired speed in the inertial
frame multiplied by a control parameter KD.

Removing the integral terms of the controller, the closed-loop error system can be
expressed in the inertial frame as:

0 = M∗(KDη̈d − η̈) + (C∗ + D∗)(KDη̇d − η̇) +KD ėη +KP eη (24a)

KD = M∗KP + ΛKD (24b)

KP = (C∗ + D∗)KP + ΛKP (24c)

Because of the “non-exact” linearization used in this example, the closed-loop dy-
namics (24) is nonlinear. However, the reference [4] states that the system is globally
asymptotically convergent.

Similar examples of nonlinear PD controllers for trajectory tracking are demonstrated
in Sections 7 and 14 of [1]. Here, the control laws are given in the mobile frame as:

τ = Mν̇r + C(ν)νr + D(ν)νr + g(η2) + J(η2)
−1KPeη + J(η2)

−1KDε (25a)

ε = ėη + Λeη (25b)

η̇r = η̇d + Λeη (25c)

νr = J(η2)
−1η̇r (25d)
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Again, η̇r (and thus νr) can be considered as the virtual speed reference used in the feed-
forward part of the control law (Mν̇r + C(ν)νr + D(ν)νr). Because the nonlinear terms of
the model are evaluated at that reference instead of the actual state of the system, nonlin-
earities will remain in the closed-loop system. However, it should be noted that, once the
position error is canceled (eη = 0), the speed reference η̇r is equal to the desired speed η̇d.
Therefore, when the vehicle converges towards the desired state, the controller behaves
like a feedforward controller, introducing nonlinear terms in the closed-loop. As will be
seen later, these nonlinear error terms in the closed-loop system may be beneficial for the
overall behavior of the system.

As with the previous example, Equation (25c) can be seen as a kinematic stage ensuring
convergence of the vehicle position towards the trajectory, and (25a) can be seen as the
dynamical stage dealing with convergence of the speed of the vehicle towards the virtual
reference νr . However, this separation of the two levels is made difficult because of the two
additional position and speed control terms in the dynamic stage. A simple block diagram
of a generic two-staged controller is displayed in Figure 5. On this diagram, the outer stage
uses the inverse kinematic model to calculate a speed control νc ensuring convergence
of the position of the vehicle towards the trajectory, and the inner stage uses the inverse
dynamic model to calculate a command vector τc ensuring convergence of the speed of the
vehicle towards the speed command.

Kinematic Stage Dynamic Stage Vehicle
ηd η̇d νr τc η ν

ν
η

Figure 5. Simple block diagram of a two-staged controller.

5.2.2. Feedback Linearizing Controllers

There is a second example of a PID-based linearizing controller in [1] (in Sections 7 and 14),
but this one uses exact linearization. The closed-loop system obtained when applying the
controller is linear. The control law is given by:

τ = Mν̇r + C(ν)ν + D(ν)ν + g(η) (26a)

ν̇r = J(η2)
−1(η̈r − J̇(η2)ν̇) (26b)

η̈r = η̈d + KD ėη + KPeη + KI

∫ t

0
eη(ζ)dζ (26c)

In (26), the acceleration reference η̈r is built as a typical PID controller associated with the
acceleration feedforward term η̈d. This control law is very close to the generic example
given earlier in this section. It is clear that applying the control law (26) leads to a linear
closed-loop system dynamics. In fact, because they are evaluated at the actual state of the
system, the nonlinearities of the model C(ν)ν + D(ν)ν + g(η) are exactly canceled by the
control law. The closed-loop system is now:

ν̇ = ν̇r ⇒ η̈ = η̈d + KD ėη + KPeη + KI

∫ t

0
eη(ζ)dζ (27)

The exact feedback linearization used in this example allows global exponential conver-
gence of both the speed and position of the vehicle. This example also highlights another
advantage of the exact linearization, which is that it allows using traditional gain tuning
methods on the closed-loop system such as pole placement or LQ regulation.

5.2.3. Hybrid Linearizing Controllers

Examples of hybrid linearizing controllers can be found in [5]. This work proposes
and compares a set of controllers using either a hybrid linearization with both feedforward
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and feedback terms, fully non-exact linearization or adaptive structures. The model-based
controllers introduced in [5] show interesting results. First, a conventional PD controller
that does not rely on the model, is given as a baseline for comparison. The PD control law
is given as:

τ = KPeη + KDeν (28)

As said in the introduction of this section, a simple PD controller is unlikely to show good
performances when used to control a marine craft on complex trajectory tracking tasks.
However, it is worth mentioning here because it can be a first step towards an autonomous
vehicle and give results on simple set point tasks.

Note that, in [5], the system is represented with a decoupled model. All non-diagonal
terms are neglected and notably the non-diagonal added masses and Coriolis and cen-
tripetal terms. Therefore, most of the nonlinearities of the model are neglected. The model
can therefore be considered as six independent nonlinear subsystems, one per degree of
freedom. In addition, the linear and quadratic terms are broken apart and regrouped in
two different matrices, respectively, DL and DQ. The first control law is given as:

τ = Mν̇d + DQ(ν)ν + DLνd + g(η) + KPeη + KDeν (29)

The control law (29) is hybrid in the sense that it mixes feedforward and feedback terms.
The control law can be broken down into three parts. First, one finds a traditional PD
controller similar to the baseline PD control law (28): KPeη + KDeν. Matrices KD and KP
are usual gain matrices. Then, the linear part of the reduced model is added and evaluated
at the desired state, that is: Mν̇d + DLνd. Finally, the nonlinear terms of quadratic damping
and gravity, buoyancy and disturbance effects are added and evaluated at the actual state:
DQ(ν)ν + g(η). This last part is exactly canceling the nonlinear part of the system.

Now, let us introduce the second control law of [5] for the sake of comparing the
closed-loop systems they both lead to. This second control law is mostly similar to the first
one, but this time feedforward is used in the quadratic damping. The second control law
is then:

τ = Mν̇d + DQ(νd)νd + DLνd + g(η) + KPeη + KDeν (30)

Note that exact feedback values of the nonlinear gravity, buoyancy and disturbance term
g(η) are used anyway.

The two closed-loop systems are then given by:

Mėν + (DL + KD)eν + KPeη = 0 (31a)

Mėν + (DQ(νd)νd − DQ(ν)ν) + (DL + KD)eν + KPeη = 0 (31b)

Because of the slightly different constructions of the two control laws, the second closed-
loop system (31b) shows an additional quadratic speed error term. Both control laws are
exponentially convergent in both speeds and positions. Due to the system simplification,
the differences in behavior are very small in this example, but a small improvement on the
convergence time can be observed with the second control law.

Another similar comparison is made in [47]. In this work, the system model is com-
plete, and two control laws are produced. The first one is a completely exactly feedback-
linearizing controller while the second one uses feedforward terms in the damping term.
The two control laws are given by:

τ = M(ν̇d + KDeν + KPeη) + C(ν)ν + D(ν)ν + g(η) (32a)

τ = M(ν̇d + KDeν + KPeη) + C(ν)ν + D(νd)νd + g(η) (32b)

Note that, in these two control laws, the PD controller terms are used as part of the reference
acceleration term instead of being just linearly added to the linearizing terms. This method
essentially allows for simplifying the mass matrix in the closed-loop system equations,
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making them independent from the mass matrix and avoids introducing nonlinear error
terms in the closed-loop system. The two closed-loop systems are given as:

ėν + KDeν + KPeη = 0 (33a)

ėν + (KD + D(ν))eν + KPeη = 0 (33b)

In this work, the addition of quadratic speed error terms in the second closed-loop system
leads to better trajectory tracking performances. It appears that the nonlinear damping
term of this second solution behaves well and enhances the performances.

This section presents some linearization methods used with PID control in the context
of fully-actuated marine craft. Figure 4 shows the difference between a completely exact
linearization and a completely non-exact one. Of course, more combinations of feedforward
and feedback terms could be used but are not treated here. Nonetheless, this section shows
that the knowledge of the model can be used to simplify the nonlinear system, lead to
a linear or partially linear closed-loop system and therefore allow using a conventional
tuning method for the PID like pole placement or LQR1. Of course, similarities with the
methods presented in this section will be found in the following sections because these
linearization techniques are also used with other classes of controllers.

The interested reader is also referred to [5,47,52–55], for example, of PID-based con-
trollers using adaptive structures for linearization. Although adaptive controllers are not
detailed in this work, they are worth mentioning. Indeed, the model-based linearization
methods introduced in this section require a precise estimation of the model parameters
to perform at best. Adaptive methods on the other hand only require minimal model
knowledge and are shown to perform as well as the model-based ones. The idea of these
adaptive structure is to consider a set of variable gains and find propagation functions for
these gains such that they progressively converge towards the real values of the model
parameters. Then, the adaptive terms can be used to linearize the model and create linear
closed-loop systems.

5.3. PID Control and Model-Based Linearization in the Underactuated Case

In the underactuated case, the linearization and PID control examples introduced in the
above are not sufficient. Indeed, following the example of Section 3, the PID-based control
laws introduced before would neglect some degrees of freedom in the underactuated case
because they are diagonal. In order to take the non actuated degrees of freedom into
account, the examples introduced in this section use either a non-diagonal space reduction
or a non-diagonal, kinematic couplings-based gain matrix in the control law. In both cases,
the kinematic couplings of the model are used as a guidance principle in a similar fashion
as LOS guidance. Thanks to kinematic couplings, rotational speeds are calculated in the
control law to compensate for the lack of actuation on a non actuated translation.

The first mechanism used in addition to model-based linearization and PID control
is asymmetrical Space reduction. Space reduction is a method consisting of reducing the
spatial dimension of the system and considering only some of the degrees of freedom of the
system. It is common practice when it comes to dealing with underactuated systems and
especially for a system where one or more degrees of freedom are both non-actuated and
naturally mechanically stable. As an example, it is common to neglect the roll motion of a
torpedo shape vehicle if the restoring moment in roll is considered strong enough to keep
an almost zero-roll angle during all the application time or if this DOF has no meaningful
impact on the mission. In such a case, the problem can be reduced to a five-DOF problem.
However, when it comes to vehicles and applications whose degrees of freedom do not
match, space reduction gets more complicated but offers new possibilities. In the following
examples, space reduction can be considered asymmetrical because the method considers
different degrees of freedom at the tracking point and at the center of vehicle, therefore
introducing some non-diagonal terms in the control law.
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As a first example, Ref. [56] proposes a solution to the 3-DOF position tracking problem
applied to a generic uqr-craft in which space reduction is used as a guidance mechanism.
First, let us define a tracking point E fixed in the mobile frame RB. Using a E as a tracking
point means that E is required to follow the trajectory and no longer the center of the mobile
frame OB, as it was in the previous sections. This tracking point can be chosen anywhere
in the mobile frame and usually represents either the bow of the ship, the focal point of a
sensor or an end effector. In [56], E is chosen on the xB axis of the mobile frame. Using (1)
and (3), the system kinematics can be rewritten as:

ν = T−1 J(η2)
−1η̇E (34)

with η̇E the velocity vector of point E in R0, and T the transformation matrix given in (4)
with εx 6= 0 and εy = εz = 0.

In [56], a reduced version of Equation (34) is then produced with reduced matrices
and vectors. Because J(η2) and η̇E are expressed at point E, they are reduced following
the DOF required in the application so the three last rows and columns are discarded.
On the other hand, ν is expressed in point OB and is therefore reduced following the
actuated DOF of the ship so the second, third and fifth rows are discarded. In addition,
because the transformation matrix T−1 is used to move from E to OB, the rows are reduced
following the DOF required in the application while the columns are reduced following the
actuated DOF. Therefore, the three last rows and columns 2, 3 and 5 are discarded in T−1.
The reduced kinematic model is then given as:

νr = T−1
r νE,r =

u
q
r

 (35a)

νE,r = J(η2)
−1
r η̇E,r =

uE
vE
wE

 (35b)

T−1
r =

1 0 0
0 0 εx
0 −εx 0

 (35c)

J(η2)
−1
r = J1(η2) (35d)

η̇E,r =

xE
yE
zE

 (35e)

The reduction of the dynamic equation is more straightforward since all the matrices and
vectors are expressed in point OB and reduced in the same way, keeping the first, fifth and
sixth rows and columns.

The control law presented in [56] is composed of two stages, kinematic and dynamic
ones. The kinematic stage is a proportional controller with an anticipation term based on
the position error calculated in R0. The equation of the kinematic stage is given in RB by:

νc = T−1ν∗E (36a)

ν∗E = J(η2)
−1(η̇d + Λη(ηd − ηE)

)
− δ(ν) (36b)

with Λη a definite positive gain matrix and δ a drift vector accounting for the neglected
translation motions and current speeds. Note that νE

∗ stands for a control speed at the
tracking point E supposed to ensure convergence of the position of the tracking point
towards the trajectory. All the vectors and matrices of Equation (36) are reduced following
the steps presented before, but the index r is omitted for clarity.
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The dynamic stage is built like a common computed torque control in the reduced
space. One obtains:

τc = M(ν̇c + Λν(νc − ν)) + C(ν)ν + D(ν)ν + g(η2) + d(ν) (37)

where νc is the output velocity vector of the kinematic stage, and d(ν) is a vector containing
some terms discarded during the space reduction and considered as external disturbances.
Equation (37) is expressed following the space reduction presented before.

Therefore, looking at (35) and (36), it appears clearly that the pitch and yaw control
speeds at the output of the kinematic stage qc and rc are functions of the sway and heave
control speeds in point E, v∗E and w∗E, respectively. Therefore, the pitch and yaw components
of τc are themselves calculated out of the lateral and vertical motions required in point E.
This behavior is created by the asymmetrical space reduction and notably the introduction
of non-diagonal terms in the reduced transformation matrix Tr .

The method developed in [56] has been extended to different propulsive topologies
and applications in [23,57]. In [57], the space reduction method is applied to two different
underwater vehicles. The first one is the RSM robot displayed in Figure 2. It is equipped
with four fixed thrusters generating surge and heave forces as well as roll and yaw moments.
The second vehicle is equipped with a stern vector thruster generating surge force as well
as pitch and yaw moments which is shown equivalent to three fixed stern thrusters aligned
to the body-fixed axes. This second vehicle will be called the 1D3-Robot in this work and
is displayed in Figure 6. Both vehicles are evaluated on the same 4-DOF task defined by
the (xd, yd, zd) position vector in R0 and the heading angle ψd. Therefore, both vehicles
are underactuated relatively to the task. The first vehicle has the correct number of DOF
but lacks sway actuation and is actuated in roll, which is not required for the task at hand.
The second vehicle has three actuated DOF, thus making it unable to completely meet the
task. For this second vehicle, the task is reduced to the three positions (xd, yd, zd) only.

Then, the space reductions in [57] are different from the one introduced in [56]. For the
first vehicle, the vector and matrices expressed in OB are reduced discarding the second
and fifth rows and columns, whereas the vectors and matrices expressed in E are reduced
discarding the fourth and fifth rows and columns. For the second vehicle, only three DOF
of the vehicle are actuated. The vectors and matrices in E are then reduced, keeping only
the three first rows and columns while those expressed in OB are reduced keeping the first,
fourth and fifth rows and columns. The shape of the vectors and matrices for both vehicles
are described in detail in [57].

Partial convergence of the method is demonstrated in [23] for the first 4-DOF vehicle.
The compensation mechanism allows sway tracking in E but at the cost of yaw. Nonetheless,
the heading of the vehicle is kept stable thanks to hydrodynamic restoring moments and
stays very close to the task requirements.

Overall, in the examples presented above, the reduced translation matrix T−1
r behaves

like a non-diagonal gain matrix making the speed command of one DOF in OB depending
on the speed command in E on another DOF. As the previous solutions shown in this
work, this method allows compensation of the lack of actuation over one degree of freedom
with another. Preferably, a rotational DOF would be used to compensate the lack of a
translation. However, one of the major issues of such methods is that reduced matrices lose
some of their properties. Notably, the reduction of the J(η2) might, in some cases, add new
singularities to the system, making the matrix noninvertible for some orientations.
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Figure 6. Propulsive configuration of the 1D3-Robot. It is equipped with one 3-DOF reconfigurable
thruster at the stern.

Similar behavior can be obtained without space reduction introducing a model-based
non-diagonal gain matrix in the kinematic stage of the controller as displayed in [58] (only
in French for now). In this example, the so-called Handy H matrix is introduced in the
kinematic stage of the control law to allow compensation of the non-actuated sway motion
with yaw. This matrix is autonomously calculated by an algorithm provided in this work
and is based on the kinematic couplings of the model. It allows for generating the yaw
moment necessary to exactly create the sway speed in the tracking point E required to
cancel the lateral error. The interest of this method is that it does not require reducing the
space of the application which makes generalization easy.

6. Sliding Mode Control

After the famous book by I. Flügge-Lotz [59] on discontinuous control, the sliding
regime control was essentially introduced by a few authors in the end of the 1950s [60–64].
These works were followed by those of Cypkin [65], Emelyanov [66] and Itkis [67]. Utkin
introduced a notion, new for the time, of sliding control applied to mono-variable classical
linear systems, by the use of discontinuous controls [68]. See also [69] for a survey. All
of these ideas would not have been possible without the much more theoretical work of
the Soviet mathematician Filippov in the 1960s concerning differential equations with a
discontinuous right-hand side [70]. The books of Utkin [68] and Sira-Ramírez [71] give a
good overview of this approach to discontinuous control which has gained popularity its
simplicity and its applications in various fields of automation. Moreover, these techniques
have led to industrial applications. The applications of SMC in robotics and AUV start with
the works of J.J.E. Slotine: [6,72–74].

This section introduces the use of Sliding Mode Control for both fully-actuated and
underactuated marine craft. SMC is widely used in both linear and nonlinear systems
experiencing model uncertainties or external disturbances. SMC is known for its robust-
ness [6] and for offering theoretical finite time convergence even in the presence of model
approximations and external disturbances. Finite time convergence is made possible by
the introduction of a sign function in the controller, but the use of the discontinuous sign
function in SMC induces a new phenomenon called chattering. Chattering is a consequence
of a discontinuity in the controller around the equilibrium point creating fast steep oscilla-
tions potentially damaging for the actuators. Chattering can be mitigated or completely
avoided using different methods but at the cost of asymptotic convergence instead of finite
time convergence. Many examples of successful application of SMC on surface vehicles
and underwater craft can be found in the literature. This section presents some of them
after briefly introducing the method on a generic simple example. This example is also
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used for introduction of the notations relative to SMC. The interested reader is referred
to [9,44,75,76] for more information about SMC outside of the marine environment. Note
that, when SMC is applied to nonlinear systems, similar techniques as in Section 5 are used
to make the closed-loop system linear.

An example of basic SMC can be found in [44]. Let us recall the system used in the
first example of Section 5, in the case of a n-order system, as:

x(n) = f (X) + g(X)u (38)

The state of the system is defined as X =
[

x ẋ ... x(n−1)
]
. Referring to the model

introduced in Section 2, matrix g(X) can be seen as the inverse of a mass matrix and vector
f (X) as the vector regrouping all other effects of force, notably the Coriolis and centripetal
effects as well as damping. An additional vector of disturbances could be added in the
system, but it is neglected in this example for the sake of simplicity. Finally, u(t) is the
system input. In this example, f (X) and g(X) are considered known but further analysis
in the case of approximated model matrices can be found in [6,44].

The idea behind SMC is to reduce the control problem to the lower-order problem of
minimizing the distance between a point in state-space and a surface. The said sliding surface
is in fact a state-space hypersurface2 representing the desired dynamics of the system. It
appears in the literature that a confusion is often made between the actual sliding surface
and the distance between the current state and the surface. When referring to the “sliding
surface”, authors often use the equation of zero distance to the surface. In fact, the sliding
surface itself is the set of desired states represented in state space, and it can be defined
by the ensemble of system states where the distance to the surface is zero. In this work,
the distance representation will often be used keeping in mind that the sliding surface is,
in fact, properly defined as the states where this distance is zero. This choice is the most
common in the literature because the distance to the surface is a function of the state error
which is used to close the loop in the controllers.

As will be seen later, the question of defining the sliding surface has been widely
studied in the literature, but a basic definition of such a surface Σ associated with the
distance measure σ is given by:

σ(X, t) = (
d
dt

+ λ)n−1e = 0 (39)

To match with the model used in this work, the example is presented with n = 2
and therefore σ(X, t) = ė + λe. The quantity λ is a design parameter representing the
slope of the surface in state space. It can be tuned for better performances or relative to
the application. Equation (39) shows that, in trajectory tracking applications, the sliding
surface Σ moves with the reference. One can also observe that the equilibrium point ė = 0,
e = 0 is contained in the surface σ = 0. Therefore, the control problem becomes a problem
of minimization of the distance σ. Once the surface is reached, the sliding motion drives
the system on the surface towards the equilibrium point ė = 0, e = 0 giving its name to
the method.

The design of the command vector u(t) relatively to the sliding surface is based on the
Lyapunov theory. Let us define the following Lyapunov function candidate:

V =
1
2

σ2 (40)

for which ones obviously have V(0) = 0 and V(σ) > 0 for σ 6= 0. The Lie derivative of V
is given by:

V̇ = σ̇σ (41)
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and the stability criteria V̇ < 0 therefore leads to:

σ̇σ < 0 (42)

Equation (42) is referred to as the sliding condition. One of the solutions of the sliding
condition is given by:

σ̇ = −γ sign(σ) (43)

where γ is a control gain to be tuned later. Using σ̇ = ë + λė, the model Equation (38) can
be combined to the sliding condition (43) to give an expression of the control vector u(t):

u = g−1(X)[ẍd − λė− γ sign(σ)]− f (X) (44)

One could rewrite Equation (44) as:

u = u1 + u2 (45a)

u1 = g−1(X)[ẍd − λė]− f (X) (45b)

u2 = −g−1(X)γ sign(σ) (45c)

where the so-called equivalent term u1 is in fact a feedback linearizing term of reference
ẍd (see Section 5), and u2 is the switching term assuring convergence towards the sliding
surface. In the case of an approximated model, u1 would be based on the model matrices
approximation and would only compensate the known parts of the model matrices.

Note that, in a real application, the simple controller (44) is likely to create chattering
as the switching of the sign function would not be instantaneous. The following examples
propose alternative switching functions reducing or avoiding chattering.

6.1. Sliding Mode Control for Fully-Actuated Vehicles

The work of [6] gives a good example of SMC applied to fully-actuated marine craft,
and the formulation is the same as in the example exposed before. The system has three
actuated DOFs and is sent on a horizontal plane application composed of (xd, yd, ψd)
trajectories. In [6], the model is not entirely known a priori and estimated values of
the model matrices are used in the controller. The model also includes approximated
disturbances. All approximations are bounded, and this work shows that, when they are
known, the estimation bounds can be used for the calculation of the gain parameter γ
(noted K(X, t) in the reference) to ensure convergence. In addition, Ref. [6] displays the use
of a different switching function based on a saturation function instead of a sign function.
The saturation function shown in Figure 7 is better suited for real applications since it
avoids the chattering phenomenon. Using the saturation function allows for creating some
kind of boundary layer around the sliding surface where the switching effect is made
continuous. The saturation function is defined as:

sat(x) = sign(x) if |x| >= 1 (46a)

sat(x) = x if |x| < 1 (46b)

Using the saturation function (46), it appears clearly that, inside the boundary layer
defined by |σ| < 1, the nonlinear controller like (44) becomes very similar to the PID-based
linearizing controllers introduced in Section 5. The controller becomes:

u = g−1(X)[ẍd − λė− γσ]− f (X) (47)

Therefore, the main drawback of using a continuous switching function such as the
saturation function is that the convergence cannot be guarantied in finite time anymore.
Nonetheless, Ref. [6] gives a method for calculation of the control gain, the slope of the
surface and the boundary layer thickness based on the estimation of the model matrices,
and shows very good tracking results.
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Figure 7. The saturation function.

The method is then used for the design of three decoupled controllers, one per actuated
DOF. For each DOF, a sliding surface is defined as well as the different control parameters
such as the boundary layer thickness or the switch control gain. The three sliding surfaces
are given as:

σu = eu + λuex (48a)

σv = ev + λvey (48b)

σr = er + λreψ (48c)

One could observe that the surge and sway surfaces given by (48a) and (48b), respectively,
are defined in terms of positions in the inertial frame R0 and velocities in the body-fixed
frame RB. While this could be fine for simple mono-axial applications, such a definition of
the surge and sway sliding surfaces may be problematic when it comes to more complex
trajectories. In this case, the trajectory tracking results show good performances.

The work of [7] is another good example of SMC following the same overall logic.
Here, the vehicle is controlled only in the dive plane and is fully-actuated w.r.t. the task.
In this work, the performances of four different controllers based on SMC are compared.
The main difference between the four controllers is the model used in the equivalent part
U1 (see below Equation (51)). The first one uses a linearized model, the second one uses
the nonlinear exact model, the third one uses an adaptive model, and the last one uses
estimated states. The compliance and robustness of the SMC method allow such differences
between controllers applied to the same system and is once again demonstrated by the
results of this work.

The definition of the sliding surface is also slightly different in [7] since a first order
linear surface, defined by σ = γTx, is used. Here, x ∈ R3 is a reduction of the state
of the vehicle in the diving plane, γ ∈ R3 is a vector of gains, and σ contains, in fact,
three decoupled surfaces, one per DOF. The use of first order sliding surfaces allows for
a simpler command vector and also enables the use of pole-placement techniques when
tuning the parameters.

Another different definition of the set of sliding surfaces is given in [8]. As in [6], the
sliding surfaces are defined in terms of the position errors in the inertial frame summed to
speed errors in the moving frame. The set of sliding surfaces is given by:

σ(eν, eη) =
[
Λ1 Λ2

][eν

eη

]
(49)
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where Λ1 and Λ2 being coefficient matrices are defined in R6×6. To take better account
of the coupling effects between the DOF of the system, the sliding surfaces used here are
defined over the full state space while, in the references presented before, they are often
defined only on the output. For ease of understanding of the following equations, another
expression of the vehicle model is given to match both the notation of Section 2 and the
notation used in the reference:

Mν̇ = f (ν, η) + g(ν, η)u(t) (50a)

η̇ = h(ν, η) (50b)

The definition of the sliding surfaces (49) leads to a different expression of the control vector:

U = U1 + U2 + U3 (51a)

U1 = ĝ(ν, η)−1
[
(Λ1 M−1)−1ν̇d − f̂ (ν, η)

]
(51b)

U2 = ĝ(ν, η)−1(Λ1 M−1)−1Λ2

[
η̇d − ĥ(ν, η)

]
(51c)

U3 = −ĝ(ν, η)−1(Λ1 M−1)−1F(σ, Φ) (51d)

In (51), the estimates f̂ , ĝ and ĥ of the model function are used. A similar definition of
the control vector U could be given with the real values of the model functions if they
were to be considered known. As for the usual definition of SMC given earlier in this
section, the control vector U can be broken down into three parts. U1 compensates the
estimates of the dynamic effects of the model, U2 provides stabilization based on estimates
of the positional elements in h, and U3 is the switching term driving the system to the
sliding surfaces. This work uses the hyperbolic tangent function over the boundary layer
of thickness Φ as a switching function:

F(σ, Φ) = γ tanh(
σ

Φ
) (52)

The hyperbolic tangent function is displayed in Figure 8 with Φ = 0.5. The hyperbolic
tangent appears ideal since it is smooth around the equilibrium point σ = 0 but is still
steep enough around the sliding surface to ensure fast switching and the sliding behavior.

Here, again, the structure of the control law is very similar to some controllers intro-
duced in Section 5 and notably when the distance to the sliding surface is close to zero.
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Figure 8. The hyperbolic tangent function for Φ = 0.5.
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As for the saturation function seen before, using the hyperbolic tangent avoids chatter-
ing at the cost of a non-finite convergence time.

In order to set the values of Λ1 and Λ2, the system is linearized. Doing so highlights
that the first parameter matrix Λ1 can be chosen as the identity matrix without loss of
generality in the fully-actuated case. Then, analyzing the linearized close-loop dynamics
leads to a desirable choice of the second parameter matrix Λ2:

ν = Λ2η (53)

Equation (53) is quite similar to the kinematic model of the system given in Equation (1).
The authors then apply the SMC method they introduced on a set of four Single-Input-

Multiple-States subsystems. The three main subsystems are tested first independently then
all together in association with LOS guidance in a waypoint tracking experiment. Effects of
sea current are also highlighted in the last simulations.

Over the years, some more work has been carried out on SMC and notably the
introduction of new sliding surfaces. As an example, terminal sliding mode introduced
in [9] and applied to the marine craft model in [77] is based on a different sliding surface
definition. Terminal sliding mode offers finite convergence time, faster and more precisely
than conventional sliding mode by introduction of a new nonlinear term in the sliding
surface definition. Note that, in this work, the sliding surfaces are completely defined in
the inertial frame. In fact, two formulations of the terminal sliding surface are given in [77]:

σc = ė(t) + λe(t)
q
p = 0 (54a)

σn = e(t) +
1
λ

ė(t)
p
q = 0 (54b)

In (54), λ is analogous to the control parameter used in the previous examples, and p and q
are two positive odd integers satisfying p > q. Using the sliding condition (42), two control
vectors can be derived from (54), respectively:

τη = M̂η

(
η̈d + λ

q
p

e(t)
q
p−1ė(t) + γ sign(σc)

)
+ N̂η(ν, η, η̇) (55a)

τη = M̂η

(
η̈d + λ

q
p

ė(t)2− p
q + γ sign(σn)

)
+ N̂η(ν, η, η̇) (55b)

The first expression of the terminal sliding surface (54a) shows a singularity in e(t) = 0
because q

p < 1. Therefore, the second expression (54b) is to be used. Of course, the two
expressions of (54) are equivalent when the system reaches the surface. Once again, the
sign function is substituted with a saturation function in the final controllers.

Simulation results show the performances of the terminal sliding mode in compar-
ison with traditional SMC and a classical computed torque controller (CTC). Terminal
sliding mode seems to outperform the traditional SMC and CTC notably displaying better
convergence times and a smoother overall behavior on the helix tracking task.

Another example of a different formulation of the sliding surface can be found in [78].
This work proposes a controller based on Super Twisting Sliding Mode Control (STSMC)
applied to the linearized model of the vehicle in the diving plane. More details about the
theory behind STSMC, sliding order and sliding accuracy can be found in [75,79]. STSMC
is designed to have as good disturbance rejection and robustness as traditional SMC but
reducing the chattering effect without the need of substituting the sign function, therefore
assuring finite time convergence. The Super Twisting behavior is created using a different
solution of the sliding condition (42):

σ̇ = γ1|σ|
1
2 sign(σ) + γ2

∫ t

0
sign(σ(ζ))dζ (56)
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The continuous switching behavior is created by the first member of Equation (56) displayed
in Figure 9.

-1.5 -1 -0.5 0 0.5 1 1.5

<

-1.5

-1

-0.5

0

0.5

1

1.5

j<
j1 2

si
gn

(<
)

Figure 9. Switching member of the super twisting sliding mode solution.

Using the small angles approximation to linearize the system in the diving plane, one
can derive the sliding condition given by (56) into the following control law:

u =
1
d1

(
−c11w− c12q− c13θ − c14z + u0θ̇ − λėz + γ1σ

1
2 sign(σ) + γ2

∫ t

0
sign(σ(ζ))dζ

)
(57)

In this case, a constant depth zd, żd = z̈d = 0 is tracked. The cij coefficients are model
parameters and the control input u is analogous to the stern plan defection angle δs. u0 is a
constant sway speed.

The simulation results indeed show dampening of the chattering effect when the
STSMC is compared with traditional SMC. However, it should be noted that STSMC
displays slightly slower convergence than SMC.

This section demonstrated the use of different sliding mode controls in the case of fully-
actuated marine vehicles. As seen in this section, sliding mode control comes in different
shapes. However, the two main levers for tweaking the controllers are the definition of
the sliding surface itself and the choice of the solution of the sliding condition. Many
more examples would be worth adding to this section like the work in [80] where SMC
is associated with LOS guidance and Fuzzy Logic in the diving control of an autonomous
bio-mimetic dolphin robot as well as [81], which introduces four decoupled SM controllers
of different orders in a vehicle with actuated surge, heave, pitch and yaw.

6.2. Sliding Mode Control for Underactuated Vehicles

This section studies the use of SMC in the case of underactuated marine craft. It is
notably interested in how the SMC method can be used as a guidance principle and allow
compensation of underactuation in the same way LOS does and how SMC can be coupled
with external guidance laws.

As a first example, in [82], the model of a ur-ship tracking horizontal straight lines is
studied. Two decoupled controllers are designed one for the surge motion and the other
for the yaw motion. Two sliding surfaces are given:
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σu = eu + λu

∫ t

0
eu(ζ)dζ (58a)

σr = ėv + 2λrev + λ2
r

∫ t

0
ev(ζ)dζ (58b)

There are multiple points of interest in (58). First, both sliding surfaces are completely
defined in the mobile frame. However, because positions in the mobile frame can not be
measured, the surfaces are defined in terms of the integral of the velocity on the two axes of
the moving frame. This solution is analogous to defining the surfaces in terms of positions
but, as shown later, the definition of the surge and sway references matters when it come to
tracking trajectories originally defined in the inertial frame. Then, while σu is of the first
order relatively to the integral of u, the second sliding surface σr is of the second order
and defined relatively to the sway speed error ev instead of the heading angle or the yaw
velocity. Therefore, the yaw controller derived from σr will be based on the sway speed
error ev. Doing so allows the authors to compensate the lack of sway actuation with yaw.
This method is very close to the other guidance methods exposed earlier in this review, and
it is somewhat equivalent to generating yaw controls based on the lateral error measured
on the yB axis of the moving frame.

The surge and yaw controllers are derived from the respective sliding surfaces and
the dynamic model of the system as:

τu = −m22vr + d1u−m11(−u̇d + λueu)− γu sign(σu) (59a)

τr =
m33

ud − m11
m22

u

[
rτu

m22
− vr − vrd − (2λr ėv + λ2

r ev)− γr sign(σr)

]
(59b)

Note that, in the original article, estimated values of the model parameters are used in the
control calculations, and the authors left the possibility to consider nonlinear damping.
Equation (59) has been simplified for clarity. Equation (59b) is of a different structure
than the other control equations seen in this section because it is based on the first time
derivation of the sway equation of the dynamic model instead of the first order derivative
of the chosen sliding condition solution (58b). Hence, the new speed terms vr and vrd
contain the terms created by this manipulation. Exact definitions of vr, vrd as well as the
gains γu and γr can be found in [82]. The dynamic sway equation derivative is used instead
of the sliding condition derivative because the latter would require information upon the
second order derivative of both the actual and desired sway speeds. Such information is
not available in this work.

However, as claimed in [83,84], the solution proposed in [82] does not solve all the
tracking problems. In fact, defining the sliding surfaces in terms of the integrals of the
speed errors in the moving frame leads to neglecting constant offsets of the desired position
signals. To counteract this problem [83,84], redefine the surge and sway velocity references.

First [83], give a similar approach for trajectory tracking of a ur-ship in the horizontal
plane but with modified speed references. To take a possible position offset into account,
the desired reference surge and sway speeds are calculated as:

ud = cos ψẋd + sin ψẏd − k cos ψex − k sin ψey (60a)

vd = − sin ψẋd + cos ψẏd + k sin ψex − k cos ψey (60b)

with k a positive constant control parameter. Note that, in the original work [83], two differ-
ent control parameters k1 and k2, are mentioned but do not appear in the equations. This
work shows that convergence of the surge and sway errors eu and ev leads to convergence
of the position errors in the inertial frame ex and ey. The first order derivative of the second
order yaw sliding surface expressed in terms of the integral of the sway error is used for
the calculation of the yaw control. Therefore, knowledge about the second order derivative
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of the desired sway motion is necessary as well as the third order derivative of both desired
position signals.

In the same way, Ref. [84] proposes a more global solution than in [82], solving the
case of offset trajectories. To do so, new surge and sway speed references are defined as:

[
ud
vd

]
=

[
cos ψ sin ψ
− sin ψ cos ψ

][ẋd + lx tanh(− kx
lx

ex)

ẏd + ly tanh(− ky
ly

ey)

]
(61)

where kx and ky are controller gains, and lx and ly are saturation coefficients chosen
relatively to the system’s physics. The definition of the speed references ud and vd given by
Equation (61) leads to the error equation:

[
eu
ev

]
=

[
cos ψ sin ψ
− sin ψ cos ψ

][ėx + lx tanh(− kx
lx

ex)

ėx + ly tanh(− ky
ly

ey)

]
(62)

Equation (62) shows that convergence of the speed errors eu and ev to zero leads to asymp-
totic convergence of the position errors ex and ey. In fact, the speed errors in Equation (62)
behave nearly like sliding surfaces for the positions. The rotation matrix being non-singular,
when the speed errors converge to eu = ev = 0, one obtains:

ėx − lx tanh(− kx

lx
ex) = 0 (63a)

ėy − ly tanh(−
ky

ly
ey) = 0 (63b)

Equation (63) can be seen as the sliding conditions of the inner loop of the system assuring
asymptotic convergence of the position errors the hyperbolic tangent function being used
instead of a sign function.

The sliding surfaces used for the dynamic controllers are then given. The sliding
surfaces used in [84] are very similar to (58) but with two different control parameters in
the yaw surface:

σu = eu + λu

∫ t

0
eu(ζ)dζ (64a)

σr = ėv + λr,1ev + λr,2

∫ t

0
ev(ζ)dζ (64b)

Here, too, the sliding surface σr used for yaw control is built upon the sway error ev. Slightly
different dynamics than the usual sliding condition (42) are imposed on σu and σr:

σ̇u = −γu,1σu − γu,2 sign(σu) (65a)

σ̇v = −γv,1σv − γv,2 sign(σv) (65b)

where γi,j are all strictly positive control parameters. This time, the surge and yaw con-
trollers are both calculated with the first order derivations of the sliding surfaces giving:

τu = −Xuu− a23vr +
1

M11
(u̇d − λueu − γu,1σu − γu,2 sign(σu)) (66a)

τr = −Nrr− a12uv +
1
b
(−M2(Yvv̇ + a13u̇r) + Γ− λr,1 ėv − λr,2ev − γr,1σr − γr,2 sign(σr)) (66b)

The newly introduced mass coefficients a12, a23, M11 and M2 as well as control parameters
Γ and b are given in detail in [84]. The damping surge and yaw coefficients Xu and Nr,
respectively, are issued from the damping matrix of the dynamic model. The simulation
results show good performance in tracking linear trajectories with or without an offset and
circular trajectories.
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A more recent example of SMC applied to underactuated vehicles can be found in [10].
In this work, the authors propose a Super Twisting SMC based solution for the problem
of leader–follower tracking. The followers are uqr-vehicles following the trajectory set by
the mother ship. Three dimensions LOS guidance is used to calculate the approach angle
references in pitch and yaw. Then, three decoupled Super Twisting sliding mode controllers
are designed for surge, pitch and yaw as well as a fourth one looping back on the forward
speed of the mother ship.

For surge control of the follower submarines, a zero-order sliding surface is built upon
the surge error with a constant reference ud. The surface is therefore given as σu = eu and
the Super Twisting formulation of the sliding condition is used as in [78]

σ̇u = −γu,1|σu|
1
2 sign(σu)− γu,2

∫ t

0
sign(σu(ζ))dζ (67)

with two strictly positive gain parameters γu,1 and γu,2. The definition of the kinematic
Super Twisting sliding-mode controller calculating the surge speed consign of the mother
ship is similar to this one. The mother ship speed is calculated with the position error
kinematic model. More details about mother ship control can be found in the reference [10].

On the other hand, the pitch and yaw controllers are Super Twisting sliding mode
controllers using first order terminal sliding surfaces as in [77]. The pitch and yaw sliding
surfaces and associated sliding conditions are given by

σθ = eθ + λθ |ėθ |
pθ
qθ (68a)

σ̇θ = −γθ,1|σθ |
1
2 sign(σθ)− γθ,2

∫ t

0
sign(σθ(ζ))dζ (68b)

σψ = eψ + λψ| ˙eψ|
pψ
qψ (68c)

σ̇ψ = −γψ,1|σψ|
1
2 sign(σψ)− γψ,2

∫ t

0
sign(σψ(ζ))dζ (68d)

where all the control parameters are constant and strictly positive.
As seen in the previous examples, the actual control signals τu, τq and τr are derived

from the first order derivative of the associated sliding surface and calculated with the
corresponding dynamic model equations. For increased robustness to external disturbances,
adaptive disturbance terms can be added to the controller equations as shown in [10].
Finally, the four sliding mode controllers are shown to stabilize the tracking errors of the
following submarines.

These few examples show that SMC can be used in the underactuated case and
displays good performances. In these examples, one can find the idea of using a rotational
degree of freedom to compensate the lack of one or two non actuated translations. Sliding
mode itself can be used as guidance principle like in [82–84] where yaw controls are given
as functions of the lateral motion errors using the same idea as in the LOS examples given
earlier [30] directly in the sliding surface calculations.

7. Differential Flatness

This section introduces examples of control laws based on differential flatness and
applied to both fully-actuated and underactuated marine craft.

The “differential flatness” or, simply, “flatness” is an approach of control-command
born in 1991, as a consequence of the work of four French researchers—M. Fliess, J. Lévine,
Ph. Martin & P. Rouchon—on the control of an overhead crane [85]. This invention, created
from an application, gave rise to a new theory of nonlinear control. It was first formulated
in the language of differential algebra [86,87]3. The definition of this property has been
reformulated some years later in the formalism of the differential geometry of prolongations
and infinite jets [88]. Flatness is a structural property of a to-be-controlled system, which
naturally leads to trajectory tracking control. In the linear framework, a flat system is
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exactly a controllable one, so flatness is a good candidate to be a definition of controllability
of nonlinear systems. Flatness is presented in detail in several books [11,89–92]. The control
methodology derived from flatness proceeds in two steps: Firstly, generation of a nominal
command from the to-be-followed trajectory by the system, secondly, closing the loop to
have robustness properties. The closed loop can be realized in several ways: it can be
classical PID, state feedback, LQG/LQR, sliding modes, model-free control. . . Flatness is
sometimes been confused with feedback linearization, partly because, besides its definition,
the notion of endogenous feedback and a related notion of linearization were introduced.
Remember that flatness corresponds to the notion of state feedback linearization in the case
of single-input systems. See [93] for more details on the links between flatness and feedback
linearization. About ten years after the appearance of flatness, it has been demonstrated
that, during operation, the trajectories of the flat output correspond to that of a linear
system in Brunovský form. This property is called “exact feedforward linearization” (thus
cannot be confused with feedback linearization). Through this new approach of flatness,
it was possible to establish the properties, already observed in practice on applications,
of robustness towards parameter errors and perturbations. We can quote [94–96] for the
theoretical aspects and [97] for the practical aspects of exact feedforward linearization
based on differential flatness. The flatness has spread in many domains of control; we can
quote here some of them: control of mechanical systems [98], mobile robotics [99], control of
electric motors [100], control of chemical reactors [101–103] (see references in [11,89,90,92]
for more more applications). Besides the academic aspects, the flatness is present in many
industrial realizations, too numerous to be all quoted here.

7.1. Differential Flatness Applied in the Fully Actuated Case

One of the few applications of differential flatness theory in the context of marine
vehicles can be found in [12]. In this example, a fully-actuated AUV is evaluated on a
6-DOF task. For fully-actuated system, choosing the flat output is pretty straightforward.
Nonetheless, this work shows that the model of the fully-actuated AUV is flat for a flat
output chosen as the position and orientation vector z = η in the inertial frame. Then,
using flatness equations, the inputs of the system are written as functions of the flat output.
These expressions are then used to derive a flatness-based linearizing control law using
exact feedforward linearization and PD controllers. This work also introduces an additional
Kalman disturbances compensation method. The good performances of the method on a
6-DOF task are displayed at the end of this work.

The proof of flatness of the completely actuated AUV given in [12] is a little bit tricky
and gives many details that are out the scope of the present work. Let us give a direct proof:
the position and orientation vector η is the most obvious and natural choice as the flat
output. Choosing z = η notably allows for defining the task in terms of desired position,
orientation and velocities in the inertial frame, which is both logical and practical in most
applications. As in many cases, the flat output found here has a strong signification w.r.t.
the control problem as ones want to control η. Then, showing the differential flatness of
the system is pretty straightforward. In fact, the only variables to express as functions of
the flat output are the velocity vector in the body-fixed frame ν and the propulsion vector
τ. The inverse kinematic model and the dynamic model expressed in the inertial frame
constitute self-explanatory demonstrations of the flatness of the system:

ν = J(η)−1η̇ (69a)

τ = M
(

J(η)−1η̈+ J̇(η)−1η̇
)
+ C(η̇)J(η)−1η̇+ D(η̇)J(η)−1η̇+ g(η) (69b)

Looking at Equation (69), it appears clearly that both the velocity vector ν and the
effort vector τ can be expressed as functions of the flat output η and its derivatives η̇ and η̈.
The model used to represent fully-actuated marine craft is therefore flat with flat output
z = η.
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As a consequence of flatness, the nominal open-loop control that achieves trajectory
tracking of the reference trajectory of the flat output ηd is expressed by:

νd = J(ηd)
−1η̇d (70a)

τd = M
(

J(ηd)
−1η̈d + J̇(ηd)

−1η̇d

)
+ C(η̇d)J(ηd)

−1η̇d + D(η̇d)J(ηd)
−1η̇d + g(ηd) (70b)

Following the reasoning introduced among other in [94] and using the flatness Equa-
tion (69), a flatness-based closed-loop controller can be easily defined as:

τc = τ1 + τ2 (71a)

τ1 = M J(ηd)
−1(η̈d + Λ(eη)

)
(71b)

τ2 = M J̇(ηd)
−1η̇d + C(η̇d)J(ηd)

−1η̇d + D(η̇d)J(ηd)
−1η̇d + g(ηd) (71c)

where Λ is a control function like a PID controller based on the state error eη and τ2
constitutes the exact feedforward linearizing term. Of course, in the fully actuated case,
the formulation of the control law built with differential flatness is very close to some of
the feedforward linearizing controllers introduced in Section 5.

7.2. Differential Flatness Applied to Underactuated Vehicles

For underactuated vehicles, showing differential flatness is significantly harder. In the
marine context, two very promising examples can be found in [11]. Note that, for underac-
tuated systems, the flat output must be of the same dimension as the input which implies
that natural relations must exist between the flat output and the rest of the state of the
system for it to be flat. In fact, the very last example of chapter 12 in [11] states that the
model of an underactuated surface ship is not differentially flat. It is impossible in this
example to express all the problem variables as functions of the flat output chosen as the
positions in the horizontal plane z = [x y] without the need for integrating a differential
equation. Instead, the underactuated surface ship is said to be Liouvillian. Actually, in order
to express the heading angle of the vehicle as a function of the flat output, the heading
rate must be integrated, therefore introducing integral terms of the flat output and making
the system non-flat. More details about the control of Liouvillian systems can be found
in [87,104].

However, another very interesting system can be found in [11] as well as in [105]: the
Hovercraft system. Arguably, the model used to represent the hovercraft system is very
close to the model of an underactuated surface vessel and could even be considered as a
special case of the more generic model of the surface ship with selected numerical values
of the parameters. The main differences to find between these two models are in the mass
distribution and damping approximations. However, the model of the hovercraft is shown
to be flat for the flat output z = [x y] in [11,105]. In both examples, equations of flatness
allow for calculating surge and yaw controls as function of the desired state, its derivatives
up to the fourth order, and PD controllers on the flat output.

8. Conclusions

This work introduces some of the most popular model-based control methods and
guidance principles for autonomous marine vehicles, notably feedback and feedforward
linearization associated with PID-based control, Line of Sight Guidance, Sliding Mode
Control and several other methods. It also tries to give a definition of underactuation of
a vehicle relative to the task it is sent on and shows that, even with the right number of
actuated degrees of freedom, a vehicle can be ill-actuated relatively to the task meaning
that it is not able to generate at the same time all the independent efforts necessary to fulfill
the task. A generic example is used to what the consequences of such actuation can be and
how some actuated degree of freedom can be used to compensate the lack of another one.

Because the kinematic and dynamic models of the vehicle are nonlinear, model-based
linearizations are widely used with underwater vehicles. These methods allow for creating
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linear or semi-linear closed-loop systems that are much easier to control. The examples
presented in this work allow for demonstrating the different solutions for model-based
linearization. Either it is only with feedback terms or with a combination of feedback and
feedforward terms, model-based linearization shows very good tracking results and, when
associated with PID-based controllers, is one of the simplest control methods for these
types of vehicles.

The first method dedicated to underactuated vehicles introduced in this work is Line
Of Sight Guidance. As a traditional inheritance from naval techniques, LOS guidance has
been designed for control of underactuated surface vehicles on waypoint reaching tasks.
However, several examples show that the same guidance principles can be used both in 2D
and in 3D and for path and trajectory tracking as well. Using a non-diagonal compensation
mechanism based on the calculation of new pitch and yaw angle references from sway
and heave errors, LOS leads the way for many other guidance and control techniques.
To this date, LOS guidance is still predominant both in the literature as well as in the
industry. However, LOS guidance alone is not suited for applications where constraints on
the orientation of the vehicle are part of the task.

Then, examples of Sliding Mode controllers for both fully-actuated and underactuated
vehicles have been introduced. Sliding Mode Control comes in many shapes and both the
sliding surfaces and the choice of the sliding condition solution can be tuned to suit desired
performances. In the underactuated case, examples of Sliding Mode controllers show the
same non-diagonal behavior as LOS does. Indeed, in several examples, the sliding surface
of one degree of freedom is calculated upon the error signal of another degree of freedom.
Mostly, the yaw sliding surface is calculated with sway errors creating this compensation
behavior where yaw is used to cope for the lack of sway actuation.

Finally, differential flatness is also briefly discussed as some examples show that it is a
very good candidate for fully-actuated marine craft. This works also gives a hint towards
the use of differential flatness on underactuated marine craft as it is carried out on a very
similar hovercraft system.

Overall, the guidance and control principles presented in this work represent the main
advances of the last few years and can be considered the go-to methods for designing an
autonomous marine vehicle. All of them show very good performances and can be applied
to almost every marine vehicle regardless of the propulsive configuration.

This work paves the way towards very interesting future research. Notably, the ques-
tion of controllability of the underactuated marine vehicles relative to their task must be
addressed. In the same way, some additional work comparing the different control methods
on the same vehicle and on the same task would be interesting to level out the capabilities
and performances of each methods. In addition, some more control methods could be
added to this study like adaptive controllers or machine learning based methods.

Author Contributions: Conceptualization, L.D., E.D. and O.C.; methodology, L.D., E.D. and O.C.;
validation, L.D. and E.D.; formal analysis, L.D.; investigation, L.D.; resources, L.D.; writing—original
draft preparation, L.D and E.D.; writing—review and editing, L.D., E.D. and O.C.; supervision, E.D.
and O.C.; funding acquisition, E.D. and O.C. All authors have read and agreed to the published
version of the manuscript.

Funding: The work of L.D. is funded by research grants from “Région Bretagne” and “Brest
métropole”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data of this work are only the references cited in the article.

Acknowledgments: The authors thank “Région Bretagne” and “Brest métropôle” for their supports.

Conflicts of Interest: The authors declare no conflict of interest.



J. Mar. Sci. Eng. 2023, 11, 430 33 of 36

Notes
1 For more details about LQR control in this context, see [51].
2 Recall that a space of dimension N, and a hypersurface is a geometric object of dimension N − 1.
3 This article is cited more than 3800 times at the date of writing the present work.
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