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Abstract: To further improve the low-frequency broadband sound absorption capability of the
underwater anechoic layer (UAL) on the surface of marine equipment, a novel sound absorption
structure with cavities (NSSC) is designed by adding resonators and honeycombs to the traditional
sound absorption structure with cavities (SSC). Based on the principle of shear dissipation, the
original intention of the design is to allow more parts of the viscoelastic material to participate the
dissipation of acoustic energy. The approximate multilayer sound absorption theoretical model based
on the modified transfer matrix method is used to verify the accuracy of finite element calculations.
In the frequency range of 1100 Hz–10,000 Hz, the sound absorption coefficient (α) of NSSC can reach
0.8. The effects of the presence and size of cylindrical oscillators and honeycomb structures on sound
absorption are discussed in detail. The results show that expanding the effective sound absorption
range of the damping area of the structure is the key to improve the wideband sound absorption
effect. This design concept could guide the structural design of the UAL.

Keywords: low-frequency broadband sound absorption; air cavity; cylindrical oscillator; honeycomb

1. Introduction

UALs are generally used to cover the surface of an underwater vehicle to counteract
the active or passive sonar detection [1–4]. Its stealth performance for submarines and other
underwater vehicles is crucial and has been widely valued by various maritime military
powers. The UALs with good sound absorption performance should satisfy both important
principles [5]: (1) the acoustic material is consistent with the characteristic impedance
of the water as much as possible, so that the sound waves can fully enter the anechoic
material and the corresponding reflection is reduced; (2) the anechoic material has a high
sound wave absorption capacity. Viscoelastic materials such as rubber meet the above
requirements and are widely employed for underwater sound absorption [6–13].

UALs require high sound absorption capabilities at a wide frequency band, but most
homogeneous materials often fall short of the requirement. To overcome the limitation,
researchers proposed the polymer mixed sound absorbing materials [14], polymer foam
sound absorbing materials [15], gradient sound absorbing materials [16], and filled sound
absorbing materials [17]. Among them, the more mature studies of UALs mainly focus on
composite structures with cavities or resonators [18].

Viscoelastic materials with cavities can absorb more energy under sound wave in-
cidence owing to the principle of shear dissipation and the resonance of cavities [19,20].
Ivansson et al. [21] compared the sound absorption properties of an attenuated coating
containing cylindrical holes with different cross-sectional shapes (circular, oval, and super-
ellipse) and obtained the optimal solution using the Markov chain Monte Carlo method.
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Ye et al. [22] studied the effects of different shapes of cavities and found that the horn holes
have the best sound absorption performance at lower frequencies. These cavity structures
are often called Alberich anechoic materials [23]. The backing material also significantly
impacts the sound absorption of Alberich anechoic materials. Alberich anechoic materials
are usually soaked in steel-backed water. Zhao et al. [24] studied the optimization and
mechanism of Alberich anechoic materials on steel plates. It is found that laying different
coatings on the two surfaces of the steel plate can effectively improve the low-frequency
sound absorption and the sound absorption bandwidth. Locally resonant structures usually
consist of a heavy core and soft viscoelastic material. Near the resonant frequency, the
vibrations of the structure enhance the friction between the molecules, then the dissipation
of sound energy rises. Gao et al. [25] introduced a broadband sound absorbing underwater
metamaterial composed of viscoelastic rubber, conical cavities, cylindrical oscillators, and
backing steel. Compared with pure viscoelastic rubber and traditional sound absorbing
structures with cavities, the structure exhibits excellent broadband sound absorption per-
formance below 10 kHz. Jin et al. [26] proposed a novel composite acoustic metamaterial
made of periodic multi-resonators and cavities. Numerical calculations show that the
coupled resonance generated by multiple resonators and cavities can effectively broaden
the sound absorption frequency band. In addition, previous works have not discussed the
sound absorption valley in the mid-high frequency of UALs with cavities. Compared with
pure viscoelastic material, the appearance of the cavities makes UAL appear at the sound
absorption peak at low frequency. Nevertheless, the α cannot maintain a high value in the
subsequent mid-to-high frequency bands [7,25–30].

In this paper, NSSC is proposed to improve the low-frequency and broadband sound
absorption capability of UAL. Compared with SSC, cylindrical oscillators and periodic
hexagonal steel honeycomb are added. The theoretical calculation verifies the correctness
of the finite element method. The validated finite element model is then used to explore
the sound absorption characteristic of the new structure and to quantify the geometry
dependence of the sound absorption.

For the first time, the structure of UAL (NSSC) proposed in this paper combines the
viscoelastic material, cavities, cylindrical oscillator, and steel honeycomb to achieve low-
frequency broadband sound absorption. Among them, the cavity plays a role in improving
overall sound absorption. The cylindrical oscillators significantly rise the low-frequency
sound absorption. The honeycomb enhances the dissipation of sound energy in most of the
damping area of UAL, improves the sound absorption of mid- and high-frequency, and
eliminates the sound absorption valley.

2. Methods
2.1. Geometric Model and Material

As displayed in Figure 1, the lateral dimension of the UAL is assumed to be infinite
and consisted of a periodic arrangement of hexagonal cells. To facilitate the theoretical
verification, the hexagonal prism is approximated as a cylinder based on the principle
that the volume fraction of the cavity in the cell remains unchanged. This approximation
has been proven to be sufficiently accurate [31]. The geometric parameters and material
parameters of the UAL are listed in Tables 1 and 2. l1 is the height from the top of the UAL
to the cavity, l2 is the height of the cavity, r1 is the radius of the cavity, r2 is the cell radius,
r3 is the radius of the cylinder, t is the half of thickness of the honeycomb, h1 is the height
of the honeycomb, h2 is the height from the bottom of the cylinder to the backing steel, h3
is the height of the cylinder.

Table 1. The geometric parameters of the UAL (mm).

l1 l2 r1 r2 r3 t h1 h2 h3

49 1 10 15 2 0.5 45 5 10
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Figure 1. (a–d) are the top view, hexagonal cell, cylindrical cell, and cross-sectional of SSC; (e–h) are 
the top view, hexagonal cell, cylindrical cell and cross-sectional of NSSC. 

Table 1. The geometric parameters of the UAL (mm). 𝒍𝟏 𝒍𝟐 𝒓𝟏 𝒓𝟐 𝒓𝟑 t 𝒉𝟏 𝒉𝟐 𝒉𝟑 
49 1 10 15 2 0.5 45 5 10 

Table 2. Material parameters “Adapted with permission from Ref. [26]. 2020, Elsevier Ltd.”. 

Solid Medium Density (kg/m3) Elastic Modulus (GPa) Poisson’s Ratio Loss Factor 
Epoxy 1100 0.027 0.49 0.6 
Steel 7980 210 0.28 / 

2.2. Theoretical α of SSC 
The α of SSC was theoretically calculated via the transfer matrix method. Figure 2 

exhibits the working condition of a typical cell. The transverse dimension of the UAL is 
infinite. The vertically incident plane sound wave from the water passes through the UAL 
and reaches the back steel plate which could be regarded as the hard boundary. Then, the 
sound wave is reflected to the UAL and eventually back into the water. 

 
Figure 2. Structural parameters and working conditions of typical cell of SSC. 

The SSC is divided into two layers. The first layer is a uniform viscoelastic material, 
and the sound velocity [27] is 

Figure 1. (a–d) are the top view, hexagonal cell, cylindrical cell, and cross-sectional of SSC; (e–h) are
the top view, hexagonal cell, cylindrical cell and cross-sectional of NSSC.

Table 2. Material parameters “Adapted with permission from Ref. [26]. 2020, Elsevier Ltd.”.

Solid Medium Density (kg/m3) Elastic Modulus (GPa) Poisson’s Ratio Loss Factor

Epoxy 1100 0.027 0.49 0.6
Steel 7980 210 0.28 /

2.2. Theoretical α of SSC

The α of SSC was theoretically calculated via the transfer matrix method. Figure 2
exhibits the working condition of a typical cell. The transverse dimension of the UAL is
infinite. The vertically incident plane sound wave from the water passes through the UAL
and reaches the back steel plate which could be regarded as the hard boundary. Then, the
sound wave is reflected to the UAL and eventually back into the water.
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The SSC is divided into two layers. The first layer is a uniform viscoelastic material,
and the sound velocity [27] is

c1 =

√
E1(1− v)

ρ1(1 + v)(1− 2v)
(1)
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E1 = Es(1 + jη) (2)

where E1 and ρ1 are the complex elastic modulus and density of the first layer, v and η are
the Poisson’s ratio and loss factor of the viscoelastic material. Es is the elastic modulus and
j is the imaginary unit. The complex wavenumber of the first layer is

k1 = ω/c1 (3)

in which ω = 2π f is the circular frequency, f is the frequency.
The second layer is a viscoelastic material with a cavity, and its approximate complex

wavenumber [27] is expressed as

k2 = k1

√
1 +

λ

µ

ε2

1− ε2 (4)

with
λ =

vE1

(1 + v)(1− 2v)
(5)

µ =
E1

2(1 + v)
(6)

ε = r1/r2 (7)

where λ and µ are the Lame coefficients of t/he viscoelastic material, and ε is the ratio of
the inner diameter to the outer diameter of the second layer. Due to the existence of the
cavity, the equivalent density of the second layer is

ρ2 = ρaε2 + ρ1

(
1− ε2

)
(8)

in which ρa is the air density.
The sound velocity of the second layer is

c2 = ω/k2 (9)

For a multi-layer structure, the transfer matrix of the i-th layer is written as

Ti =

[
cos(kili) jρici sin(kili)

j sin(kili)/ρici cos(kili)

]
(10)

where ki is the complex wavenumber of the i-th layer, li is the thickness of the i-th layer, ρi is
the equivalent density of the i-th layer, and ci is the sound velocity of the i-th layer. Previous
studies [32] have shown that the low-frequency sound absorption performance in such
cylindrical pipes is mainly affected by the first axisymmetric wavenumber associated with
the first propagation mode. Therefore, only the first wavenumber ki is considered here, and
the transfer matrix formula of Equation (10) can be used. In this paper, the low-frequency
range (less than 10 kHz) is considered, in which the acoustic wave wavelength far exceeds
the thickness of the anechoic layer, so the transfer matrix method is appropriate.

The total transmission matrix of the anechoic layer is the successive multiplication of
the transmission matrix of each layer as

T =

[
T11 T12

T21 T22

]
=

n

∏
i=1

Ti (11)
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According to the transfer function method, the sound pressure and vibration velocity
of the front interface and the rear interface can be related by T as[

ρ1
v1

]
= T

[
T11 T12
T21 T22

][
ρ2
v2

]
(12)

in which ρ1 and v1 are the sound pressure and vibration velocity of the front interface, ρ2
and v2 are the sound pressure and vibration velocity of the rear interface.

The impedances of the front and rear interfaces are equal to their corresponding sound
pressure, expressed as

Z1 = ρ1/v1 (13)

Z2 = ρ2/v2 (14)

When the interface impedance tends to infinity at the rigid backing, there is

Z1 = T11/T21 (15)

The reflection coefficient of the anechoic layer is

R = (Z1 − Zw)/(Z1 − Zw) (16)

where Zw is the impedance of the aqueous medium.
Finally, the α can be achieved as

α = 1− |R|2 (17)

2.3. Verification of Finite Element Analysis

The two-dimensional axisymmetric model in the finite element software COMSOL
can perfectly fit the periodicity and symmetry of the sound absorbing layer [33,34]. As
shown in Figure 3, the finite element model from left to right is the perfect matching layer,
the water, and the sound absorbing layer. The perfectly matched layer absorbs all sound
waves and simulates an infinite acoustic domain. A background pressure field is added
to the water to simulate the plane wave incidence. The radial displacement of the outer
boundary of the cylinder is 0. The quadratic Lagrange element was used in the acoustic
domain and the quadratic serendipity element was used in the solid domain. The mesh
size is set to 1 mm to meet the calculation accuracy. The total number of elements is 1275.
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The theoretical and the simulated α of SSC are presented in Figure 4. In the considered
frequency range from 0 Hz to 10,000 Hz with the step 10 Hz, the results are in good
agreement with each other. Thus, the correctness of the finite element model of the UAL
is confirmed. The slight discrepancies in the α observed in the figure are a result of the
approximate complex wavenumber in Equation (4).
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3. Acoustic Absorption Mechanism

In this paper, 0.8 is a reference value for the high α. Figure 4 shows that the SSC
can achieve high sound absorption within 3300–10,000 Hz. However, the SSC also has
a sound absorption valley in the mid-frequency region (around 2000 Hz), which exists
widely in the work of some other researchers [7,25–30]. To improve the low-frequency and
broadband sound absorption capability, a cylindrical oscillator is added and the SSC-CO
(sound absorption structure with cavities and cylindrical oscillators) is formed. A periodic
hexagonal steel honeycomb is added to obtain SSC-HSH (sound absorption structure with
cavities and hexagonal steel honeycomb). Finally, both the cylindrical oscillator and a
periodic steel honeycomb are added and the design of NSSC is gained. All structures are
displayed in Figure 5.
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3.1. The Sound Absorption Appearance of Each UAL

The comparison of the α of the above four structures is given in Figure 6. According to
the trend of the α curves, it can be divided into two categories for discussion. The α curves
of SSC and SSC-CO begin to decline after reaching the first absorption peak at 600 Hz and
the valley of sound absorption around 2000 Hz, and then the sound absorption curve rises
again. However, the α curves of SSC-HSH and NSSC have no sound absorption valley near
2000 Hz and show continuously rising trends. The NSSC has the best sound absorption
ability and can achieve wide-band high sound absorption at 2000–10,000 Hz.

To further understand the sound absorption mechanism of the underwater UAL
proposed in this paper, the total displacement nephogram (Figure 7) and the radial velocity
nephogram (Figure 8) at 600 Hz, 2000 Hz, and 4000 Hz are selected for comparative analyses.
The SSC and SSC-CO, SSC-HSH, and NSSC, respectively, have similar displacement and
radial velocity distribution. This phenomenon explains that the NSSC and SSC-CO, SSC-
HSH, and NSSC have similar sound absorption curves in Figure 6.
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In Figure 7, when the UAL has no honeycomb (SSC and SSC-CO), the displacement of
the damping region is relatively uniform from top to bottom, and its displacement along
the radial direction is not obvious until it is close to the cavity or cylinder. When the
incident wave frequency increases from 600 Hz to 2000 Hz and then to 4000 Hz, the total
displacement of UAL decreases significantly. There is no displacement in the damping
area near the honeycomb after the addition of honeycombs (SSC-HSH and NSSC). The
displacement of UAL changes notably along the radial direction. The honeycomb weakens
the displacement of the UAL. When the incident wave frequency increased from 600 Hz
to 2000 Hz and then to 4000 Hz, the total displacement of UAL showed a trend of first
decreasing and then increasing.
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In Figure 8, when the UAL has no honeycomb (SSC and SSC-CO), its radial velocity is
concentrated at the outer edge of the cavity, and the radial velocity is not observed in the
middle and upper parts of the UAL. This is due to the nonlinear vibration of the damping
area near the cavity, and the damping area in the upper middle is relatively static in the
radial direction. When a honeycomb is added (SSC-HSH and NSSC), the radial velocity
exists throughout the UAL due to the mutual shearing motion of the honeycomb and
damping areas. Furthermore, the resonant cylinder suppresses the radial velocity of the
surrounding damping region. When the incident wave frequency increases from 600 Hz to
2000 Hz and then to 4000 Hz, the radial velocity increases with the growth in frequency.
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3.2. The Relationship between the Curves and the Nephograms

The radial velocity reflects the shear wave propagation. In viscoelastic media, shear
waves dissipate the acoustic energy much more strongly than longitudinal waves. In
Figure 8, the radial velocity of UAL is proportional to the frequency. It explains that the α

of SSC-HSH and NSSC continue to rise at 600–4000 Hz. However, due to the large overall
displacements of SSC and SSC-CO at 600 Hz (as shown in Figure 7), a large amount of
energy is dissipated and the first sound absorption peak in the sound absorption curve
is caused. At 600–4000 Hz, it shows a trend of first decreasing and then increasing. The
honeycomb limits the overall displacement of SSC-HSH and NSSC at 600 Hz, which
explains that the α of SSC-HSH and NSSC at 600 Hz is smaller than that of SSC and SSC-
CO, and the sound absorption curve cannot reflect the first absorption peak. Compared
with SSC and SSC-CO, the radial velocity distributions of SSC-HSH and NSSC are wider,
and there are more parts for efficient energy dissipations of UAL. Thus, with the increase
in frequency, the α of SSC-HSH and NSSC exceeds that of SSC and SSC-CO. The cylinder
insertion is designed based on the contribution of the local resonant resonators to the
acoustic low-frequency absorption. Consequently, before 3500 Hz, the α of UAL with the
cylindrical oscillator is greater than that of UAL without the resonator cylinder (SSC-CO
> SSC, NSSC > SSC-CO), but at 4000 Hz the situation is slightly opposite (SSC-CO < SSC,
NSSC < SSC-CO). This can still be explained by Figures 7 and 8. At low frequencies (600 Hz),
the sound absorption of the anechoic layer is determined by the overall displacement. The
influence of the resonant body can be ignored, making the sound absorption curve the
same. As the frequency increases, for example, when the frequency is 2000 Hz, the overall
displacement of the UAL decreases, and the area near the cylindrical oscillator contributes
part of the displacement and radial velocity, which makes the α of the UAL with the
cylindrical oscillator larger. When the frequency increases to 4000 Hz, the region near the
resonator suppresses part of the displacement and radial velocity so that the α of the UAL
with the cylindrical oscillator is small.

In summary, improving the area size of structural sound energy dissipation is the key
to improving the α. It is necessary to further study the influence of the size of the cylinder
and honeycomb on the α.

4. The Influence of Different Parameters on the α

4.1. Influence of the Honeycomb Size on α

The analysis of the sound absorption reveals that the honeycomb confines the SSC-
HSH in a vertical direction, reducing the overall displacement of the SSC-HSH. Still, the part
of the SSC-HSH that can dissipate energy efficiently becomes more. Figure 9 further shows
the α of the SSC-HSH under different honeycomb heights. With the increase in the height of
the honeycomb, the larger the structural restraint range, the smaller the total displacement
of the SSC-HSH at low frequencies (less than 600 Hz), and the correspondingly smaller
α. However, at around 2000 Hz, with the increase in the height of the honeycomb, more
parts of the SSC-HSH efficiently dissipate energy, and the sound absorption valley in the
curve becomes smaller and smaller until it disappears. From 0 to 4000 Hz, the overall
performance is that with the increase in the height of the honeycomb, the α first decreases
and then increases. However, the low-frequency sacrifice is acceptable because it makes up
for the defect of the valley in the α at around 2000 Hz.

Figure 10 shows the corresponding α for different honeycomb thicknesses. Changes
in thickness do not substantially change the size of the energy dissipation area in SSC-
HSH, which has similar α at each thickness. As the honeycomb thickness increases, the
viscoelastic region of the SSC-HSH becomes more constrained. Before 1250 Hz, the larger
the thickness, the smaller the α; after 1250 Hz, the larger the thickness, the larger the α.
Therefore, the height of the honeycomb is the main factor affecting the α of SSC-HSH.
Additionally, the sound absorption performance of SSC-HSH is proportional to the height
of the honeycomb.
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Figure 9. Comparison of α of SSC-HSH corresponding to different honeycomb heights.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 11 of 16 
 

 

Figure 9. Comparison of α of SSC-HSH corresponding to different honeycomb heights. 

Figure 10 shows the corresponding α for different honeycomb thicknesses. Changes 
in thickness do not substantially change the size of the energy dissipation area in SSC-
HSH, which has similar α at each thickness. As the honeycomb thickness increases, the 
viscoelastic region of the SSC-HSH becomes more constrained. Before 1250 Hz, the larger 
the thickness, the smaller the α; after 1250 Hz, the larger the thickness, the larger the α. 
Therefore, the height of the honeycomb is the main factor affecting the α of SSC-HSH. 
Additionally, the sound absorption performance of SSC-HSH is proportional to the height 
of the honeycomb. 

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

So
un

d 
ab

so
rp

tio
n 

co
ef

fic
ie

nt

Frequency/kHz

 t(0.3 mm)
 t(0.4 mm)
 t(0.5 mm)
 t(0.6 mm)
 t(0.7 mm)

 
Figure 10. Comparison of α of SSC-HSH corresponding to different honeycomb thicknesses. 

4.2. Influence of the Cylinder Size on α  
Based on the local resonant resonator principle, the cylinder is inserted into the struc-

ture to enhance its low-frequency sound absorption. Figure 11 shows the α of SSC-CO 
corresponding to different cylinder radii. The radius of the cylinder has a significant effect 
on the sound absorption effect of SSC-CO. When the radius increases from 2 mm to 6 mm, 
the frequency of the sound absorption curve reaching 0.8 for the first time keeps moving 
to the low frequency; when the radius increases from 6 mm to 10 mm, the frequency of 
the sound absorption curve reaching 0.8 for the first time did not move to the low fre-
quency significantly, and even at 10mm, the frequency reaching 0.8 for the first time 
moved to the high frequency instead. In addition, at around 4000 Hz, the α of SSC-CO 
with 8 mm and 10 mm cylinder radii dropped below 0.8. The appearance of this is due to 
the joint coupling between the cylinder and the bottom cavity. From the analysis of the 
sound absorption mechanism in Section 3.2, the displacement and radial velocity near the 
cavity mainly exist outside the cavity radius. When the radius of the cylinder is 10 mm, 
the cylinder suppresses the displacement and vibration of the viscoelastic material near 
the cavity and reduces the sound energy dissipation. 

Figure 10. Comparison of α of SSC-HSH corresponding to different honeycomb thicknesses.

4.2. Influence of the Cylinder Size on α

Based on the local resonant resonator principle, the cylinder is inserted into the
structure to enhance its low-frequency sound absorption. Figure 11 shows the α of SSC-CO
corresponding to different cylinder radii. The radius of the cylinder has a significant effect
on the sound absorption effect of SSC-CO. When the radius increases from 2 mm to 6 mm,
the frequency of the sound absorption curve reaching 0.8 for the first time keeps moving to
the low frequency; when the radius increases from 6 mm to 10 mm, the frequency of the
sound absorption curve reaching 0.8 for the first time did not move to the low frequency
significantly, and even at 10mm, the frequency reaching 0.8 for the first time moved to the
high frequency instead. In addition, at around 4000 Hz, the α of SSC-CO with 8 mm and 10
mm cylinder radii dropped below 0.8. The appearance of this is due to the joint coupling
between the cylinder and the bottom cavity. From the analysis of the sound absorption
mechanism in Section 3.2, the displacement and radial velocity near the cavity mainly exist
outside the cavity radius. When the radius of the cylinder is 10 mm, the cylinder suppresses
the displacement and vibration of the viscoelastic material near the cavity and reduces the
sound energy dissipation.
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first reaches 0.8 moves to low frequencies. However, when the radius is 10 mm, the fre-
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overall sound absorption performance of NSSC has been improved to a certain extent, so 
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Figure 12 shows the α of SSC-CO corresponding to different cylinder heights. Section 3.2
points out that the displacement of the viscoelastic region in the upper part of the cylinder
is relatively uniform, and there is no radial velocity, so the increase in height does not
significantly change the sound absorption performance of the SSC-CO. Therefore, the
radius of the cylinder is the main factor affecting the α of the SSC-CO. The selection of the
radius needs to consider the coupling with the cavity. In SSC-CO, the sound absorption
effect is best when the radius is around 6 mm.
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4.3. The Effect of the Joint Action of the Honeycomb and the Cylinder on the α

In this section, the honeycomb and the cylinder are considered together to explore the
impact on the sound absorption performance of NSSC. To maximize the restraint range
of the honeycomb on NSSC and ensure the smoothness of the outer surface of UAL, the
height of the honeycomb h1 = 49 mm, and the other geometric parameters are consistent
with Table 1. The influence on the α of NSSC is obtained by changing the radius of the
cylinder and the height of the cylinder, respectively.

In Figure 13, as the radius of the cylinder increases, the frequency when the curve first
reaches 0.8 moves to low frequencies. However, when the radius is 10 mm, the frequency
at which the curve first comes 0.8 moves to the high frequency instead. This is exactly
in line with the trend in Section 4.2. Due to the addition of the honeycomb, the overall
sound absorption performance of NSSC has been improved to a certain extent, so there
is no frequency band with a α lower than 0.8 in the follow-up. In Figure 14, the change
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in the cylinder height has a great influence on the sound absorption of the NSSC (refer to
Section 4.2, the cylinder radius is taken as 6 mm). Unlike SSC-CO, due to the presence of
the honeycomb, the damping area performs shear motion with both the honeycomb and
the cylinder to dissipate more sound energy. It is shown that the higher the cylinder, the
better the sound absorption capacity of NSSC.
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4.4. Comparison with Typical UALs

For sonar detection below 10,000 Hz, it is difficult for most of the underwater anechoic
layer to meet the low-frequency broadband α of 0.8 and above. To demonstrate the
effectiveness of the combined structure of cavity, resonant cylinder, and honeycomb, the
effective sound absorption bandwidth (α > 0.8) of NSSC is compared with the previous
typical UAL (Refs. [27,28]) in Figure 15. The comparison shows that NSSC can achieve
effective sound absorption in the frequency range of (1100–10,000) Hz, with the largest
sound absorption bandwidth.
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5. Conclusions

A new type of underwater sound absorbing structure consisting of viscoelastic ma-
terial, cavities, cylindrical oscillator, steel honeycomb, and backing steel was designed.
The theoretical sound absorption coefficient was well matched with the simulated sound
absorption coefficient, validating the reliability of the calculation. In addition, the geometry
dependence of the underwater sound absorption performance of NSSC (novel sound ab-
sorption structure with cavities) was studied. The design would significantly increase the
acoustic energy consumption of the structure as seen from the principle of shear dissipation.
By adding honeycomb, the sound absorption valley could be effectively compensated, and
the sound absorption capacity of med- and high-frequency of the underwater anechoic
layer could be significantly improved. The sound absorption performance was improved
as the honeycomb height increased. The low-frequency acoustic absorption capacity of the
structure was improved by the addition of cylindrical oscillators. The choice of cylindrical
radius and height should be determined based on the cavity radius and honeycomb height.
Compared with other underwater sound absorption structures, the sound absorption coef-
ficient of NSSC can reach 0.8 in the 1100–10,000 Hz frequency band, which has obvious
low-frequency wideband sound absorption advantages. This design concept could guide
the structural design of the underwater anechoic layer in the future.
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