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Abstract: Automatic identification systems (AIS) provides massive ship trajectory data for maritime
traffic management, route planning, and other research. In order to explore the valuable ship traffic
characteristics contained implicitly in massive AIS data, a ship trajectory clustering method based
on ship trajectory resampling and enhanced BIRCH (Balanced Iterative Reducing and Clustering
using Hierarchies) algorithm is proposed. The method has been tested using 764,393 AIS trajectory
points of 13,845 ships in the waters of the Taiwan Strait of China, and 832 ship trajectories have been
generated and clustered to obtain 172 classes of ship trajectory line clusters among 40 port pairs. The
experimental results show that the proposed method has exhibited a good clustering effect on ship
trajectories. Compared with the existing ship trajectory clustering methods, the proposed method
can more efficiently detect and identify differences between trajectories with largely similar spatial
distribution characteristics, so as to obtain legitimate clustering results. In addition, this study has
constructed the main ship navigation routes between ports based on the extracted ship trajectory
line clusters, and the constructed main routes are directional, refined, and rich in content compared
with the existing ship routes. This research provides theoretical and technical support for ship route
planning and maritime traffic management.

Keywords: automatic identification system (AIS) data; trajectory clustering; trajectory mining; BIRCH
algorithm; main ship navigation route

1. Introduction

As the most efficient and economical mode of transporting bulk commodities over
long distances, maritime transport is responsible for 90% of the world’s trade flow [1].
According to the United Nations Conference on Trade and Development (UNCTAD),
more than 50,000 ships sail the seas every day [2]. Therefore, ship traffic monitoring
to ensure safe and smooth maritime traffic is of great significance to maritime transport;
meanwhile, it is also one of the biggest challenges for maritime law enforcement, and search
and rescue management has received extensive attention from researchers. Efficient and
legitimate analysis of ship trajectory data can help reveal and understand ship behaviors
and movement patterns, and further analysis of ship traffic flow characteristics can help
identify abnormal ship behaviors, plan shipping routes, and provide valuable reference
information for ship traffic monitoring.

The need for maritime traffic safety has led to the emergence of Automatic Identifica-
tion Systems (AIS). AIS was originally designed to avoid ship collisions, but the growing
popularity of AIS makes it possible to monitor ship trajectories on a global scale [3]. AIS,
mainly composed of base station (shore-based or satellite-based) facilities and shipboard
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equipment, can acquire and upload ship static information (e.g., maritime mobile service
identification (MMSI) number, ship name, etc.), ship dynamic information (e.g., ship po-
sition, speed, etc.), and ship voyage information (e.g., estimated time of arrival, draught,
etc.) in real time [4]. Due to its accessibility, broad coverage, and data integrity, AIS data is
widely used in ship trajectory research. However, the wide spatial distribution of ships,
the complexity of ship behavior, and the free route distribution make it a challenge to
effectively extract useful features from the massive AIS data for research [5].

Data mining, a methodology for mining useful and potentially useful knowledge from
massive data, has become the main analysis technique for massive AIS data [6]. Simply
put, data mining is the process of obtaining useful, valuable, and processable data from
massive data that cannot be processed by conventional methods. In the field of AIS data
mining, cluster analysis is a commonly used data mining tool, which can aggregate data
into different classes without a priori knowledge, interpret data of different classes, and
obtain valuable information [7]. The trajectory of a ship can be regarded as a single AIS
data cluster. By clustering ship trajectories, valuable information can be extracted from the
seemingly chaotic AIS data, and further data analysis and comparison can be performed
between similar AIS data clusters or between different classes of AIS data clusters to
provide key information for ship traffic flow analysis, ship behavior classification, etc.

The Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) algorithm
is a distance-based hierarchical clustering algorithm, first proposed by Zhang et al. in
1996 [8]. The BIRCH algorithm integrates hierarchical clustering and iterative repositioning
methods and is suitable for processing large datasets [8]. Previous research has proved [9]
that the hierarchical clustering algorithm is very effective for datasets where the number
of clusters cannot be predicted in advance, and ship trajectory data happens to have this
feature. Therefore, a ship trajectory clustering method based on trajectory resampling and
enhanced BIRCH algorithm is proposed in this study to achieve accurate clustering of ship
trajectories from massive AIS data and further extract ship routes.

The remainder of the paper is organized as follows. Section 2 reviews the current state
of research on AIS data in maritime traffic, trajectory clustering, and other fields. Section 3
describes in detail the research data and research methods used in this study. Section 4
presents a case study using the data and methods in Section 3 and presents some very
representative results. Then, Section 5 compares the case results with some existing classic
clustering algorithms and analyzes the reasons for the anomalous clustering results of ship
trajectories. Finally, Section 6 summarizes the discussion findings and limitations of this
study and identifies future directions.

2. Literature Review
2.1. Research on Maritime Traffic Characteristics Based on AIS Data

The analysis of maritime traffic characteristics can provide valuable information
for traffic management and planning for maritime administration departments, thereby
improving maritime traffic safety and maritime navigability. The popularization of AIS
equipment has enabled the use of massive AIS data. The ship speed, ship position, ship
type, and other elements contained in the AIS data provide a data basis for the study of
maritime traffic characteristics. Currently, AIS data has been widely used in the study
of maritime traffic characteristics, such as ship traffic flow analysis [10], ship behavior
identification [11], ship collision avoidance [12], fishing footprints [13], maritime trade
networks [14], route planning [15], etc.

Based on AIS data, Rong et al. [12] used the Moran index and Gi* to conduct spatial
autocorrelation analysis on ship collision behaviors in the waters around Portuguese ports,
and correlated the discovered hot spots with maritime traffic characteristics (average ship
speed, speed dispersion, acceleration, etc.) to discover some typical traffic characteristics
that led to ship collisions. Lei et al. [16] proposed an AIS-based Maritime Traffic Route Dis-
covery (MTRD) model to discover potential ship routes, and the experimental results were
consistent with the actual route distribution. Altan and Otay [17] used a grid partitioning
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method based on AIS data to analyze the traffic behavior characteristics of 309,000 vessels
in the Istanbul Strait in one year and uncovered potential maritime traffic hazards to help
predict maritime risks. Yu et al. [18] evaluated the impact of an offshore wind farm (OWF)
on offshore traffic based on AIS data collected before and after the installation of offshore
wind turbines, using the Minimum Passage Distance Algorithm (MPDA) to measure the
distance between ships and the OWF. The results showed that the completion of the OWF
caused a change in the trajectory of passing ships, a decrease in the speed of ships, and a
significant reduction in the number of passing ships.

2.2. Research on Ship Trajectory Clustering Based on AIS Data

Massive AIS data contains the spatial and temporal distribution rules of maritime
traffic flow and ship behavior, which needs to be mined and analyzed by clustering methods.
According to the different ship trajectory structures, clustering methods can be divided
into point-based clustering and line-based clustering. The trajectory point-based clustering
method can detect the aggregation effect of ships’ spatial distribution, but it cannot discover
the spatial variation pattern of the ships’ behavior in time. The clustering method based on
ship trajectory segments can obtain more representative characteristics of maritime traffic
flow and ship behavior and is a commonly used clustering method in current research.
The primary step in the line-based clustering is to calculate the similarity between ship
trajectories, and the methods for calculating the distance between ship trajectory segments
include structural similarity distance [19], Hausdorff distance [20], and dynamic time
warping distance [21].

Zhou et al. [22] proposed a K-Means clustering method to study ship behavior based
on AIS data in the inlet waters of the Port of Rotterdam, the Netherlands. It performed
K-Means clustering of dynamic AIS data (speed, position, etc.) to classify different ship
behaviors. The results were then processed through a Bayesian classification algorithm
with static AIS data (ship’s length, width, etc.) to estimate which ship behavior class the
ship belongs to. The results showed that there were six ship behavior classes with great
variability in spatial distribution and speed, and it was also found that ship characteristics
were closely related to behavior patterns, which provided valuable references for traffic
management in port areas. Rong et al. [23], based on AIS data near Portuguese port waters,
implemented trajectory compression and the DBSCAN clustering algorithm to simplify
ship trajectories, and a ship trajectory probability model based on vectorized ship trajectory
was obtained for abnormal ship behavior detection. Wang et al. [24] also used the DBSCAN
clustering algorithm to process AIS data in the surrounding waters of Australia to provide
a basis for route planning and abnormal ship behavior detection. He et al. [25] extracted
the turning points in AIS data in the Three Gorges Dam area and applied the DBSCAN
clustering algorithm to help generate the optimal ship routes. After comparing with the
actual routes, it was found that the method still has room for improvement in the face of
complex waters.

2.3. Research in Other Fields Based on AIS Data

In recent years, with the expansion of the coverage of satellite equipment, the popu-
larization of AIS equipment and the improvement of computer processing performance,
the research based on AIS data spans many fields. In addition to improving AIS data
processing and mining methods through data pre-processing [26], data compression [27],
and data segmentation [5], providing AIS data services for maritime management such as
illegal fishing regulation [28], and building AIS data-based maritime information service
platform [29], interdisciplinary research on AIS data in the fields of environment, ecology,
and economy has also emerged, such as ship emission estimation [30], fisheries ecological
evaluation [13], maritime trade analysis [14], etc.

AIS equipment can provide real-time ship trajectory data in a complex maritime
traffic environment, which can be used for ship trajectory prediction, risk analysis, and ship
collision warning and prevention, thereby improving the safety of marine navigation [31,32].
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Thanks to the high-resolution ship activity trajectories provided by AIS data, estimating
ship emissions based on AIS data has become a mainstream method. Wan et al. [33] used
AIS data to create the 2018 ship emission inventories of China’s Bohai Bay, Yangtze River
Delta, and Pearl River Delta. Xiao et al. [30] also calculated ship emission inventories for
the ports of Los Angeles and Long Beach based on 2020 AIS data and other related data. As
the availability and completeness of AIS data continues to improve, detailed AIS data can
also be used for ship trade statistics and analysis. Based on the AIS trajectory data of each
oil tanker, Yan et al. [14] constructed a fine-grained analysis framework for global maritime
oil trade in 2017, and found that the Middle East–Malacca Strait–East Asia oil shipping
route is the busiest route with the largest trade volume in the world.

2.4. Summary of Current Research

Most of the previous studies on ship trajectory clustering algorithms deal with all
ship trajectory data in a certain region. Although it is beneficial to test the algorithm’s
clustering capability in complex environments and visually present the main routes in
the study area, negligence of mining minor "cold" routes fails to provide more detailed
information for maritime traffic management. The current research hotspot is to improve the
mainstream clustering algorithm. Cold clustering algorithms such as the BIRCH clustering
algorithm outperform the mainstream clustering algorithms in some aspects, and still have
the potential for in-depth research. Maritime traffic analysis, as a hotspot of AIS data
research in recent years, has focused on ship behavior research based on ship trajectories.
Few researchers have studied potential route mining based on ship trajectory clustering
between ports. Collectively, AIS data are widely used in maritime research, and their
research application areas tend to be diversified reflecting the macroscopic characteristics
of maritime ship activities from the microscopic level.

Therefore, this study focuses on comparing maritime traffic characteristics between
different ports, identifying different routes between ports, discovering potential routes,
extracting ship trajectories between ports, and deeply exploring the hidden maritime traffic
information and ship navigation movement characteristics in AIS data, so as to provide
more intuitive route planning reference information for maritime traffic management.

3. Data and Methodology
3.1. Study Area and Data

The global ship AIS data collected between 116◦ E to 123◦ E and 22◦ N to 27◦ N in
the Taiwan Strait region from 1 January 2017 to 31 January 2017 is shown in Figure 1. The
study area contains 764,393 AIS records of 13,845 ships, and the data format is shown in
Table 1. The AIS data for the study contains key attributes such as MMSI, ship speed, and
ship position.

Table 1. Key attributes of AIS data used in this study.

Field Significance Example

MMSI Maritime mobile service identification number, which is the
unique identification mark of the ship. 412357870

vessel_type Ship type, such as tankers, cargo ships, fishing vessels, etc. Cargo ship
sog Ship speed in knots, expressed in nautical miles per hour. 25.5

longitude Longitude of the ship’s position in the WGS84 coordinate
system, in degrees. 119.9644067

◦
E

latitude Latitude of the ship’s position in the WGS84 coordinate
system, in degrees. 26.38369

◦
N

utc Coordinated universal time indicates the time when this AIS
record generated. 1484102760
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Figure 1. Study area and AIS data. Only 5% of overall AIS data is shown due to mapping effect. The
background image is the standard map of the Ministry of Natural Resources of China, and the review
number is GS(2020)4634.

There are 16 ports in the study area, namely Fuzhou Port, Shantou Port, Xiamen
Port, Keelung Port, Su’ao Port, Hualien Port, Kaohsiung Port, Taoyuan Port, Penghu Port,
Taichung Port, Mailiao Port, Chaozhou Port, Dongshan Port, Quanzhou Port, Xiuyu Port,
and Zhangzhou Port, as shown in Table 2. The port data was excerpted from the World
Port Index (WPI) which was published by the U.S. National Geospatial-Intelligence Agency
(NGA) in 2019. WPI contains geographic information for about 3700 major ports and
terminals worldwide [34].

Table 2. Ports in the study area.

ID Port Name Country Longitude Latitude

0 Fuzhou CN 119.30◦ N 26.08◦ E
1 Shantou CN 116.68◦ N 23.37◦ E
2 Xiamen CN 118.07◦ N 24.45◦ E
3 Keelung CN 121.77◦ N 25.13◦ E
4 Suao CN 121.87◦ N 24.60◦ E
5 Hualien CN 121.60◦ N 23.98◦ E
6 Kaohsiung CN 120.25◦ N 22.62◦ E
7 Tanshut CN 121.40◦ N 25.18◦ E
8 Penghu CN 119.53◦ N 23.58◦ E
9 Taichung CN 120.50◦ N 24.30◦ E
10 Mailiao CN 120.17◦ N 23.78◦ E
11 Chaozhou CN 117.08◦ N 23.62◦ E
12 Dongshan CN 117.52◦ N 23.75◦ E
13 Quanzhou CN 118.60◦ N 24.88◦ E
14 Xiuyu CN 118.98◦ N 25 23◦ E
15 Zhangzhou CN 118.15◦ N 24.68◦ E
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3.2. BIRCH Clustering Method Based on Ship Trajectory Resampling

The flowchart shown in Figure 2 presents the steps to implement the BIRCH clustering
method based on resampling the relevant ship AIS data.
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Figure 2. Flowchart of BIRCH clustering based on resampling.

3.2.1. Single Ship Trajectory Extraction

The original AIS data is a mixture of 13,845 ships’ records, which is not ready for
subsequent route clustering, analysis, and fusion display. The first step is to extract the
trajectory data of each ship based on its unique MMSI number. The trajectories are then
coded and sorted for subsequent processing.

3.2.2. Single-Ship Voyage Segmentation

The extracted single-ship trajectories are often long trajectories passing through mul-
tiple ports, so the trajectories are widely distributed in the study area. This complicates
the comparison between ship trajectories and makes it difficult to analyze the traffic char-
acteristics between ship trajectories with the same origin and destination. Therefore, in
order to facilitate the study and reduce the spatial variability between ship trajectories, it is
necessary to divide single-ship trajectories into single-ship voyage trajectories according
to the ports they pass through. A single-ship voyage trajectory is a continuous inter-port
trajectory. The specific division method is as follows.

The spatial distance between each trajectory point and all ports in the study area is
calculated, and if the distance is less than the specified threshold, the point is appointed
as a “port point”. If there are two or more “port points” in the route, the route between
the two “port points” will be intercepted, coded and sorted, and the origin and destination
ports will be recorded. Since the average port width in the study area is about 10 km and
the distance between ports is much larger than 10 km, the threshold is set to 10 km. The
division process is shown in Figure 3.
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identification.

3.2.3. Data Cleaning

The time difference between consecutive ship trajectory points varies, and extreme
time differences will lead to abnormal spatial distribution of ship trajectories, which is not
conducive to the subsequent ship trajectory clustering. Figure 4 shows the extracted ship
trajectories between ports with time difference thresholds (T) of 3 h, 6 h, 9 h, and 12 h. It
can be seen that almost no erroneous trajectories cross land when T is 6 h, while the number
of erroneous trajectories increases as T increases to 9 and 12 h. It was also observed that a
large number of ship trajectories are missed when T is 3 h. Therefore, the time difference
threshold is 6 h and the ship trajectory data with time difference greater than 6 h were
regarded as abnormal and deleted.
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3.2.4. Adaptive Parameter Clustering of Ship Trajectories

To discover and compare the differences in ship trajectories between different port
pairs, the clustering process is divided into five parts: the construction of similarity matrix
based on Hausdorff distance, the establishment of ship trajectory clustering evaluation
method, the selection of ship trajectory resampling value, the adaptive BIRCH clustering
of ship trajectories, and the calculation of ship trajectory fusion. For the convenience
of illustration, the ship trajectories from Kaohsiung Port to Xiamen Port are taken as an
example to explain the following steps, as shown in Figure 5.
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Similarity Matrix Construction Based on Hausdorff Distance

The evaluation metrics in the ship trajectory clustering process need to be established
based on a certain similarity measure, hence this study constructs the similarity matrix
based on Hausdorff distance and similarity function.

For two ship trajectories trajA = (a1, a2, . . . , ai, . . . , an) and trajB = (b1, b2, . . . , bi, . . . , bn),
the Hausdorff distance is [35]:

H(trajA, trajB) = max{h(trajA, trajB), h(trajB, trajA)}
h(trajA, trajB) = max{min{||ai − bi||}}
h(trajB, trajA) = max{min{||bi − ai||}}

(1)

where ||·|| is the Euclidean distance between the points of trajA and trajB. The specific
schematic diagram is shown in Figure 6.

After calculation, the distance matrix composed of the Hausdorff distances between
ship trajectories from Kaohsiung port to Xiamen port is shown in Table 3 To facilitate the
measurement of the similarity between ship trajectories in the Hausdorff distance matrix,
the following formula is used to convert the Hausdorff distance matrix into a similarity
matrix. The individual similarity is calculated as follows,

Ai,j =

{
1, 0 < i = j ≤ n

Si,j, 0 < i 6= j ≤ n

Si,j = e
− d(i,j)2

2σiσj

(2)

where σi is the Hausdorff distance from ship trajectory i to ship trajectory j, and σj is
the average Hausdorff distance between other ship trajectories. Ai,j is the final similarity
between ship trajectories i and j. The final similarity matrix is shown in Table 4.
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Table 3. Hausdorff distance matrix of ship trajectories from Kaohsiung Port to Xiamen Port.

Ship Trajectory ID 0 1 2 3 4 5 6 . . . 22

0 0 82.67 96.72 97.86 90.29 97.33 91.21 . . . 88.33
1 82.67 0 99.11 87.99 100.82 113.42 84.96 . . . 40.75
2 96.72 99.11 0 21.08 26.55 17.46 117.42 . . . 115.28
3 97.86 87.99 21.08 0 33.31 37.56 117.53 . . . 125.09

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
22 88.33 40.75 115.28 125.09 122.69 109.8 81.72 . . . 0

Table 4. Similarity matrix of ship trajectories from Kaohsiung Port to Xiamen Port.

Ship Trajectory ID 0 1 2 3 4 5 6 . . . 22

0 1 0.607 0.449 0.439 0.494 0.463 0.576 . . . 0.587
1 0.607 1 0.448 0.530 0.432 0.368 0.633 . . . 0.897
2 0.449 0.448 1 0.958 0.934 0.973 0.360 . . . 0.362
3 0.439 0.530 0.958 1 0.898 0.879 0.358 . . . 0.301

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
22 0.587 0.897 0.362 0.301 0.313 0.417 0.673 . . . 1

Quantitative Evaluation Indices of Ship Trajectory Clustering Effect

To objectively evaluate the effectiveness of ship trajectory clustering, the Silhouette
Coefficient (SC) [36], Davies Bouldin Index (DBI) [37], and Comprehensive Clustering
Performance Metrics (CCPM) [35] were used for a comprehensive evaluation of the clus-
tering results. SC can measure how similar a sample is to its genus clusters compared to
other clusters. The SC value is in the range of [−1, 1]. The larger the value, the better the
matching degree between the sample and its genus clusters than the neighboring clusters,
that is, the better the clustering effect, as calculated in Equation (3) where p(x) represents
the average distance between samples within a cluster, and q(x) represents the minimum
average distance from the sample to other clusters.
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SC =
n

∑
i=1

p(xi)− q(xi)

max{p(xi), q(xi)}
/n (3)

DBI is used to measure the distance between samples within one cluster, and a smaller
DBI means a better clustering effect. The DBI value is calculated by Equation (4) where Si
and Sj represent the average distances between samples within two given clusters, and Mij
represents the distance between the centroids of the two clusters.

DBI =
n

∑
i=1

Si + Sj

Mij
/n (4)

CCPM is a combination of SC and DBI, and its calculation formula is as follows:

CCPM = SC + 1/DBI (5)

According to Equation (5), larger CCPM means a better clustering effect. CCPM will
be mainly used as the basis for evaluating the clustering effect in the subsequent study.

Ship Trajectory Resampling and Evaluation

The ship trajectory resampling value will affect the clustering effect and clustering
speed of the BIRCH clustering algorithm, so it is necessary to find the most suitable ship
trajectory resampling value. By traversing the ship trajectory resampling threshold from
5 to 100, the BIRCH clustering algorithm was performed on the trajectory data and the
average SC, DBI, and CCPM are calculated as shown in Table 5. It can be seen that the
most suitable resampling value is 15, so the subsequent BIRCH clustering will use 15 as the
resampling value.

Table 5. Quantitative evaluation of ship trajectory clustering from Kaohsiung Port to Xiamen Port
with different resampling thresholds.

Resampling Value Average Cluster Number Average DBI Average SC Average CCPM

5 4.990886 1.750512 −0.01113 1.05724
6 4.990886 1.750512 −0.01113 1.05724
7 4.990886 1.750512 −0.01113 1.05724
8 4.990886 1.750512 −0.01113 1.05724
9 4.990886 1.750512 −0.01113 1.05724
10 4.738936 1.770629 −0.00365 1.06221
11 5.222826 1.725781 −0.01795 1.063864
12 5.222826 1.725781 −0.01795 1.063864
13 5.222826 1.725781 −0.01795 1.063864
14 5.222826 1.725781 −0.01795 1.063864
15 5.211191 1.721574 −0.01756 1.073352
16 5.222826 1.725781 −0.01795 1.063864
17 5.222826 1.725781 −0.01795 1.063864
18 5.222826 1.725781 −0.01795 1.063864
19 5.222826 1.725781 −0.01795 1.063864
20 4.713233 1.773299 −0.00289 1.061604
25 4.713233 1.773299 −0.00289 1.061604
30 4.713233 1.773299 −0.00289 1.061604
35 4.713233 1.773299 −0.00289 1.061604
40 4.72555 1.778805 −0.00332 1.049663
45 4.72555 1.778805 −0.00332 1.049663
50 4.72555 1.778805 −0.00332 1.049663
55 4.72555 1.778805 −0.00332 1.049663
60 4.72555 1.778805 −0.00332 1.049663
65 4.72555 1.778805 −0.00332 1.049663
70 4.72555 1.778805 −0.00332 1.049663
75 4.72555 1.778805 −0.00332 1.049663
80 4.72555 1.778805 −0.00332 1.049663
85 4.72555 1.778805 −0.00332 1.049663
90 4.72555 1.778805 −0.00332 1.049663
95 4.72555 1.778805 −0.00332 1.049663

100 4.75124 1.776065 −0.00407 1.050397
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Determination of Adaptive Parameters for Ship Trajectory BIRCH Clustering

The BIRCH clustering algorithm requires two parameters: one is the maximum sample
radius threshold T for each clustering feature of the leaf nodes, which determines the
radius threshold of the hypersphere formed by all samples for each clustering feature; the
other is the number of clusters N, which determines the number of clusters in the final
clustering result [38]. The parameter selection ranges are T∈[0.001,2] and N∈[2,η], where
the minimum radius interval is 0.001 and η is the number of ship trajectories between ports.
The selection ranges of T and N were traversed in turn in the ship trajectory clustering
process, and three evaluation indices, SC, DBI, and CCPM, were computed to evaluate the
clustering results. Once CCPM achieves the maximum value, T and N are recorded as the
final BIRCH clustering parameters.

3.2.5. Ship Trajectory Fusion Calculation

By clustering ship trajectories between port pairs, potential routes can be discovered
and explored.

A virtual ship trajectory can be obtained as the representative route of a cluster by
fusing the trajectory data belonging to the same cluster between a port pair. The specific
way is to use the ship trajectory resampling method described in the previous section to
resample all ship trajectories with the same sampling value to obtain n equally spaced data
sets. The longitude and latitude coordinates of the matched n data sets are averaged to
obtain the fused virtual ship trajectory (Figure 7).
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4. Results

The 764,393 AIS trajectory points of 13,845 ships in the study area generated 832 ship
trajectories (Figure 8a), and the enhanced BIRCH clustering resulted in 172 ship trajectory
clusters between 40 port pairs (Figure 8b).
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Figure 8. Spatial distribution of ship trajectories and trajectory clustering results between ports in
the study area. (a) shows the ship trajectories extracted based on AIS data. (b) shows the clustering
result of ship trajectories, where trajectories with the same color belong to the same clustering class.
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4.1. Clustering Results and Evaluation of Ship Trajectories between Port Pairs

Figure 9a–h shows the clustering results of ship trajectories between different port
pairs. It can be seen that most ship trajectories between port pairs have obtained good
clustering results. The computed SC, DBI, and CCPM indicators showed that CCPM has the
most stable performance with obvious peaks (Figure 9a–d). However, some poor clustering
results were observed, manifested as excessive number of clusters, or even pseudo-clusters
(Figure 9e–h). At the same time, the CCPM evaluation of ship trajectory clustering results
showed that the peak is not unique. The CCPM spikes occurred when the number of
clusters was small and large. The planning of ship routes between port pairs needs to
consider a variety of complex factors, such as fuel consumption, cost, distance, time, safety,
etc. [5]. Therefore, the main routes between each port pair should be fixed and not too many.
Based on this, it can be seen that the excessive number of ship trajectory clusters between
port pairs is an anomalous result, and some adjustments to the clustering algorithm need
to be made later. The specific solution will be elaborated in the discussion section.
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Figure 9. (a) Clustering results of ship trajectories from Kaohsiung Port to Fuzhou Port, and four
groups of ship trajectory clusters were obtained. (b) Clustering results of ship trajectories from Kaoh-
siung Port to Xiamen Port, and three groups of ship trajectory clusters were obtained. (c) Clustering
results of ship trajectories from Xiamen Port to Kaohsiung Port, and two groups of ship trajectory
clusters were obtained. (d) Clustering results of ship trajectories from Taichung Port to Kaohsiung
Port, and two groups of ship trajectory clusters were obtained. (e) Clustering results of ship trajec-
tories from Fuzhou Port to Xiamen Port, and nine groups of ship trajectory clusters were obtained.
(f) Clustering results of ship trajectories from Taoyuan Port to Kaohsiung Port, and nine groups of
ship trajectory clusters were obtained. (g) Clustering results of ship trajectories from Keelung Port to
Kaohsiung Port, and eight groups of ship trajectory clusters were obtained. (h) Clustering results
of ship trajectories from Taichung Port to Keelung Port, and six groups of ship trajectory clusters
were obtained.

4.2. Main Route Extraction in the Taiwan Strait

The main ship navigation routes between ports were extracted by ship trajectory
fusion, and Figure 10 shows the results in the study area. The extraction results were
compared with the Ocean Passages for the World (OPW) [39]. Figure 11 shows some routes
in the Taiwan Strait included in the OPW map. The maps in Figure 11 were superimposed
to obtain a complete route map in the Taiwan Strait. The overlay results are shown in
Figure 12.
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Comparing Figure 10 with Figure 12, it can be found that the main ship navigation
routes in the Taiwan Strait in the OPW route map only include the Xiamen Port–Kaohsiung
Port–Taichung Port–Taoyuan Port–Keelung Port routes, while other routes are outside
the study area. In addition, the OPW routes are not directional. Although the main inter-
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port routes extracted in this study were similar to the OPW routes in terms of overall
spatial distribution, the extracted routes were better than the OPW routes in terms of detail
richness and the number of inter-port routes. At the same time, the extracted routes were
directional, containing subtle differences in spatial distribution. In summary, the main
route extraction based on ship trajectory resampling and the BIRCH clustering can obtain
detailed spatial distribution of main routes between port pairs based on AIS data. The
results were directional, detailed and rich in content, providing valuable reference for
maritime traffic management and route planning.

5. Discussion
5.1. Comparison between the BIRCH Clustering Algorithm and Mainstream Clustering
Algorithms

In order to verify the difference of clustering effect between the enhanced BIRCH algo-
rithm and mainstream ship trajectory clustering algorithms, the K-Means algorithm [40]
and the DBSCAN algorithm [41] were selected as counterexamples. Table 6 gives the de-
scriptions of the three clustering algorithms. The K-Means algorithm, DBSCAN algorithm,
and enhanced BIRCH algorithm were compared under the same conditions (i.e., the input
data are all ship trajectories in the Taiwan Strait waters) for ship trajectory clustering and
evaluation, and the SC, DBI, and CCPM evaluation indices are calculated for each port pair.
The results are shown in Figures 13–15.

Table 6. Description of the three clustering algorithms.

Clustering Algorithm Description

K-Means A distance-based iterative algorithm for cluster analysis requires a
pre-specified value of K [40].

DBSCAN A density-based clustering algorithm that finds arbitrarily-shaped
clusters in a noisy spatial database [41].

Enhanced BIRCH
A distance-based hierarchical clustering algorithm that first uses a
bottom-up hierarchical algorithm and then improves the results by

iterative repositioning [38].
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Figure 15. Comparison of CCPM evaluation indices for different clustering algorithms.

It can be seen that the enhanced BIRCH clustering algorithm was more stable than
the other two clustering algorithms under the same port pair conditions, while all three
evaluation metrics (SC, DBI, and CCPM) show that the BIRCH clustering algorithm scored
higher than the other two clustering algorithms for most port pairs. The evaluation metrics
of the K-Means and DBSCAN clustering algorithms were more volatile than the BIRCH
clustering algorithm, indicating their clustering quality is questionable.

Taking the ship trajectories with big differences in spatial distribution from Kaohsiung
Port to Xiamen Port as an example, the three clustering algorithms (K-Means, DBSCAN,
and BIRCH) were used to cluster the ship trajectories, and the evaluation results are shown
in Figure 16a–c. It can be seen that all three clustering algorithms gave similar and quality
clustering results and the fluctuations and peaks of each evaluation index were obvious,
which demonstrates that for ship trajectories with big differences in spatial distribution, all
three clustering methods are competent.
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Figure 16. (a) K-Means clustering results and quantitative evaluation results of the ship trajectories
from Kaohsiung Port to Xiamen Port. (b) DBSCAN clustering results and quantitative evaluation
results of the ship trajectories from Kaohsiung Port to Xiamen Port. (c) BIRCH clustering results and
quantitative evaluation results of the ship trajectories from Kaohsiung Port to Xiamen Port.

For ship trajectories with similar spatial distribution, such as those from Taichung
port to Kaohsiung port (Figure 17) and from Kaohsiung Port to Keelung Port (Figure 18),
the clustering effects and cluster evaluation indices of the three clustering algorithms
exhibited great differences. Specifically, the K-Means clustering algorithm could not effec-
tively distinguish between ship trajectories that are overly similar, and the SC evaluation
index was relatively flat without peaks, resulting in too many classes after clustering
(Figures 17a and 18a). Compared to the K-Means clustering algorithm, the DBSCAN clus-
tering algorithm could provide more reasonable clustering results for the ship trajectories
from Taichung Port to Kaohsiung Port (Figure 17b). However, when dealing with the
ship trajectory data from Kaohsiung Port to Keelung Port, the DBSCAN clustering results
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showed a flat trend in the evaluation indices and could not effectively cluster trajectories
(Figure 18b). Both the K-Means and DBSCAN clustering algorithms could not effectively
cluster ship trajectories with very similar spatial distribution characteristics. In contrast, the
enhanced BIRCH clustering algorithm gave effective clustering results for ship trajectories
with similar spatial distribution characteristics (Figures 17c and 18c), and its clustering
evaluation indices showed obvious peaks, indicating great differences among clusters.
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Figure 17. (a) K-Means clustering results and quantitative evaluation results of the ship trajectories
from Taichung Port to Kaohsiung Port. (b) DBSCAN clustering results and quantitative evaluation
results of the ship trajectories from Taichung Port to Kaohsiung Port. (c) BIRCH clustering results
and quantitative evaluation results of the ship trajectories from Taichung Port to Kaohsiung Port.
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Figure 18. (a) K-Means clustering results and quantitative evaluation results of the ship trajectories
from Kaohsiung Port to Keelung Port. (b) DBSCAN clustering results and quantitative evaluation
results of the ship trajectories from Kaohsiung Port to Keelung Port. (c) BIRCH clustering results and
quantitative evaluation results of the ship trajectories from Kaohsiung Port to Keelung Port.

In summary, for both ship trajectories with obvious differences in spatial distribution
and ship trajectories with relatively similar spatial distributions, the enhanced BIRCH
clustering algorithm can effectively provide reasonable clustering results, and its clus-
tering performance is more stable and better than that of the K-Means and DBSCAN
clustering algorithms.

5.2. Processing Abnormal Clustering Results Based on BIRCH Clustering Algorithm

Taking the ship trajectories from Fuzhou Port to Xiamen Port (Figure 19a) and from
Xiamen Port to Keelung Port (Figure 19b) as examples, the clustering results obtained from
the BIRCH clustering algorithm showed pseudo-clustering, i.e., too many classes were
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classified. After checking the quantitative evaluation indices of the clustering results, it
can be concluded that the final number of clusters obtained from the maximum CCPM
evaluation index was too large, making it impossible to get reasonable clustering results.
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Figure 19. (a) BIRCH clustering results and quantitative evaluation results of the ship trajectories
from Fuzhou Port to Xiamen Port. (b) BIRCH clustering results and quantitative evaluation results of
the ship trajectories from Xiamen Port to Keelung Port.

Compared to the K-Means and DBSCAN clustering algorithms, the BIRCH clustering
algorithm had greater volatility and tended to exhibit more peaks in every quantitative
evaluation index when clustering ship trajectories, which indicates that the abnormal
clustering results are not caused by the performance limitations of the algorithm. It is
observed that there exists an extreme CCPM1 value between the clustering numbers 2
and 4 and an extreme CCPM2 value after the clustering number 5 (Figures 18c and 19a,b).
When CCPM1 ≥ CCPM2, the ship trajectory clustering results are reasonable and valid
(Figure 19). When CCPM1 < CCPM2, the final number of clustering classes becomes too
large, which leads to abnormal ship trajectory clustering results (Figure 19a,b). Therefore,
based on historical observation and actual conditions, the maximum number of main
routes between port pairs is specified to be five, and the extreme values of CCPM are
discarded. Figure 20 shows the modified ship trajectory clustering results obtained after
applying the above rules, and it can be seen that the anomalies of pseudo-clustering were
effectively suppressed.
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Figure 20. The modified clustering results of ship trajectories in Figure 20 based on the enhanced
BIRCH algorithm. (a) shows the clustering results of ship trajectories from Fuzhou Port to Xiamen
Port, where the ship trajectories are clustered into four groups. (b) shows the clustering results of
ship trajectories from Xiamen Port to Keelung Port, where the ship trajectories are clustered into
two groups.

6. Conclusions

Maritime traffic and ship behavior features are contained implicitly in massive AIS
data. In order to further explore the valuable information in AIS data to support maritime
traffic management, a ship trajectory clustering method based on ship trajectory resampling
and enhanced BIRCH algorithm was proposed. The method was tested using AIS data
from the waters of the Taiwan Strait of China. The 764,393 AIS trajectory points of 13,845
ships in the study area generated 832 ship trajectories, and the clustering resulted in 172
ship trajectory clusters between 40 port pairs.

Based on the clustering results of ship trajectories between port pairs, the data fusion
of ship trajectories was carried out to generate main navigation routes through trajectory
resampling. Comparison of the generated main routes with the documented OPW routes
showed that the extracted main routes and the OPW routes have a high degree of overlap
in the overall spatial distribution, while the extracted main routes were much better than
the OPW routes in both richness and fineness. More importantly, the main routes extracted
in this study have the directionality of ship navigation between ports, which is not available
in the OPW routes. In summary, the main routes of ship navigation extracted in this study
are beneficial to provide decision-making reference for maritime traffic management and
route planning.

Two classical clustering algorithms, K-Means and DBSCAN, were used to compare
with the enhanced BIRCH clustering algorithm to verify the effectiveness of the proposed
ship trajectory clustering method. The results showed that the BIRCH clustering algorithm
has advantages over the other two algorithms because its clustering results were more
reasonable and effective and the CCPM evaluation index values were higher and more
stable. When dealing with ship trajectories with similar spatial distribution characteristics,
the BIRCH clustering algorithm can still distinguish the subtle differences and thus obtain
better clustering results.

The research method in this study still has some limitations. Compared with the other
two classic clustering algorithms, the BIRCH clustering algorithm is affected by multiple
sets of parameters, requires more clustering within the range of parameter variation, and
consumes longer time than the other two algorithms. The sample size of ship trajectory
resampling has not been adapted according to the ship trajectory data of a specific port,
which affects the performance and efficiency of the clustering algorithm. Therefore, in
the next stage, we will seek the dynamic selection of multi-parameter ranges to reduce
the time consumption of the BIRCH clustering algorithm and investigate more intelligent
resampling parameter selection.
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The proposed ship trajectory clustering method based on ship trajectory resampling
and enhanced BIRCH clustering algorithm provides a new perspective for mining ship
navigation routes from massive AIS data. The fine-grained ship navigation routes extracted
in this study display the navigation conditions of different routes in complex waters in
an intuitive way. The navigation conditions of different inter-port routes, such as average
speed, navigation distance, navigation time, ship type, safety evaluation, etc., will be
analyzed in the future study, so as to provide more granular knowledge support for
maritime traffic management and route planning.
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