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Abstract: The box girder can be seen as a kind of simplified ship structure that can withstand a vertical
bending moment. Dynamic loads play an important role in structural safety analysis, such as ship
bow slamming during harsh sea conditions. In this paper, the dynamic elastic–plastic response and
ultimate strength of a box girder under a bending moment are analyzed. A box girder with the same
cross-section scantlings and span length as the Nishihara experiment is selected as the analysis object.
Based on the model experiment results, the non-linear FE analysis method is validated to capture the
ultimate strength of a box girder under bending moment. Then, six box girders were designed to
study the critical influence factors on the dynamic ultimate moment, including the model length, plate
thickness, mass density and load excitation period. On the basis of structural dynamic response, an
evaluation criterion of dynamic limit state for the box girder under a bending moment is proposed in
this paper. Compared with the static ultimate moment, the change in the dynamic ultimate moment
is discussed in detail to obtain the general principal method for dynamic strength analysis. The
conclusions in this paper can provide guidance for dynamic ultimate strength evaluation.

Keywords: dynamic failure; dynamic ultimate strength; box girder; bending moment

1. Introduction

Recent catastrophic incidents involving large ships, such as the MSC Napoli report [1]
and the MOL Comfort report [2], show that dynamic load conditions may be one of the
causes of structural failure. At present, the ultimate strength of a hull girder is usually
evaluated under static loading conditions, and some partial safety factors are introduced to
cover the dynamic effect. The whipping response of large ships has a higher frequency than
the ordinary wave response; hence, the dynamic effects may provide additional strength
reserves for the ship structure [3]. A partial safety factor [4] of 0.9 is proposed to reduce
the effectiveness of the whipping moment in the ultimate strength check. For the lateral
dynamic load condition, the dynamic strength of the beam under lateral impact could reach
up to 1.4 times that of the static strength [5]. There are some large differences related to the
structural dynamic strength evaluation that require further study.

The dynamic ultimate hull girder strength of a container ship under bending moments
was studied by using the non-linear FE method [6]. The ultimate rotation of the cross-
section around the neutral axis was used as the evaluation criterion to estimate the dynamic
ultimate strength. When the duration of the dynamic bending moment was close to the
natural period of the hull girder, the maximum cross-section rotation response was 1.6 times
greater than that of the same amplitude of a static bending moment. The dynamic collapse
under a whipping moment for a container ship was studied [7–9] to find that the dynamic
ultimate strength increased by 5.9~8.4% compared to the static conditions. Therefore, it
is necessary to carry out more studies to find a reasonable justification for the evaluation
criteria for dynamic strength.
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Compared with static loading conditions, the inertia terms might not be negligible in
the case of a dynamic response when the load duration time is shorter than the natural
period of the box girder [10]. The inertia force along the beam was commonly assumed
to be linear under dynamic conditions, as proposed by [11], which caused a time-varying
bending moment distribution along the beam. When the load duration was very short,
the box girder could not react immediately, and a time lag took place [12]. These time lags
caused differences between the external applied bending moment and the internal bending
moment.

For a simply supported beam [13], the beam initially deformed at the mid-span in
the first impact stage, and thereafter, the impact effect propagated to the end supports.
When the dynamic bending moment exceeds some degree, the beam exhibits part failures,
such as plastic hinges [14]. The local failure might present during the dynamic load action
period and also might present during the free vibration stage after the action of the dynamic
loads [15]. It was useful to find the critical dynamic load, which induced severe damage,
for the safety analysis of a box girder.

Based on the dynamic load application method, the dynamic model tests could be
categorized into two categories: the water basin test and the drop hammer test. These tests
can obtain the characteristics of the dynamic varying over time, which can be used to guide
structural dynamic response analysis. The dynamic ultimate strength under an impact load
will show the structural carrying capacity and failure mode.

In the water basin test, the girder structure should be simplified and have a lower
capacity, which could be damaged by the hydrodynamic force due to basin waves. A
one-degree-of-freedom beam model was used to simulate the bending stiffness and then
study the collapse behavior under whipping loads by using a numerical method [16] and
the water basin test [17].

The drop hammer test has often been used to study the dynamic capacity of different
structures. Three-point bending tests [18] were carried out to study the dynamic and
quasi-static bending behavior of thin-walled aluminum tubes. A series of drop-weight
tests [19] were carried out for the double-hat structure under lateral impacts to show their
crashworthiness performance. A series of repeated impact tests [20] were carried out for in
situ prestressed concrete sleepers, ranging from a low drop height to the limit drop height,
where the ultimate failure occurred.

Several buckling criteria were proposed to determine the dynamic critical load, such
as the B-R criterion [21], the plate thickness criterion [22] and so on. The B-R criterion states
that dynamic stability loss occurs when the maximum plate deflection grows rapidly at a
small variation in the load amplitude. The plate thickness criterion states that the dynamic
critical load corresponds to the amplitude of the impact load at which the maximum plate
deflection was equal to 0.5~1 times plate thickness. The box girder had more complex
structures and a stable post-buckling path. It was necessary to study the evaluation criterion
applicable to the dynamic ultimate moment of the box girder.

In summary, there are some problems that require further study, including the increase
in the dynamic ultimate moment compared with static conditions, the expression of the
dynamic ultimate moment index, critical dynamic-moment-induced girder failure and the
evaluation criterion applicable to the dynamic ultimate moment.

In this paper, the box girder with the same cross-section scantlings and span length
as the experiment [23] was selected as the object of the analysis. Based on the non-linear
FE method verified by experiment results, the dynamic ultimate bending moment and
evaluation criterion are studied in detail. Then, the influence factors, including the model
length, plate thickness, material density and load duration time, are discussed.

2. Scantlings of Box Girder with Stiffened Panel
2.1. Analysis Object

Stiffened panels are a kind of fundamental element involved in ship structures that
can withstand in-plane loads and lateral loads. In the longitudinal direction, the length of a
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stiffened panel between two neighboring strengthened transverse frames is a span. Several
stiffened panels can be assembled to form a closed cross-section. The box girder is made of
some spans of closed cross-sections with stiffened panels, which can withstand many types
of applied loads, including the vertical bending moment perpendicular to the box girder
length direction.

Box girders are also used in experimental research due to their rich mechanical prop-
erties and easy fabrication, which can be considered to be a representation of simplified
hull girders. A series of model experiments [23] for eight box girders under static bending
moments were carried out. These box girders have also been selected by other researchers
to study the influencing factors that affect the ultimate strength, such as initial imperfec-
tions [24], pitting corrosion and cracking [25], and the modeling method in non-linear FE
analysis [26].

One of these box girders in the experiment [23] named MST-3 was selected as the
analysis object in this paper in order to study its dynamic ultimate strength. The choice of
this frequently used model is convenient for showing the structural response differences
between static and dynamic bending moments.

In the Nishihara experiment, four points bending facilities were used to simulate a
vertical bending moment condition for the mid-span of the box girder. The mid-span is
the critical focused area in the experiment. At each end, the box girder was placed on a
foundation that had a round steel bar on its top. Two concentrated forces were applied
by the load cell on the transverse frames of the two sides of the mid-span. The two forces
were applied symmetrically and simultaneously on the transverse bulkheads, which were
a certain distance from the mid-span of the box girder. Therefore, the middle part of the
experiment would be under pure bending conditions. More details about the experiment
can be found in the reference [23].

The cross-section and scantlings of box girder MST-3 are shown in Figure 1 and Table 1.
The span length between the two neighboring transverse frames of the experiment model
is 540 mm. The cross-section is a square with the same scantlings of stiffened panels on
four boundaries. The thickness of the plating is 3.05 mm, which is not an integer due to the
actual plate measurement. The height of the stiffener web is 50 mm. A mild steel is used in
the box girder with a yield strength of 278 MPa. However, the initial imperfection of the
MST-3 box girder has not been mentioned in the [23] experiment. Several amplitudes of
initial imperfection should be analyzed in the following FE calculation.
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Table 1. Scantlings of box girder MST-3 in the experiment [23].

Member Scantlings Yield Strength Modulus Span

mm MPa MPa mm

Plating 3.05 287 2.07 × 105 540

Stiffener 50 × 3.05 287 2.07 × 105 540

2.2. Experiment Results under Static Bending Moment

In the experiment, the upper panel under compression showed a buckling mode with
several half-waves. As the bending moment increased, the side shell started to present
with buckling. At the limit state, the upper panel and side shell both presented a large
buckling deformation, and the bottom presented a large tension stress but no fracture. The
curve of Nishihara’s MST-3 model under a static bending moment is shown in Figure 2.
The ultimate strength of the experiment model was about Mult_s = 5.88 × 108 Nmm. Based
on the linear beam theory, the yield moment of the girder is My = 7.03 × 108 Nmm, which
corresponds to the first yield point at the deck farthest from the neutral axis. The full plastic
moment of the girder is Mp = 8.24 × 108 Nmm, which corresponds to the full yielding of
the whole cross-section. The yielding moment My and the fully plastic moment Mp for
this box girder are both larger than the ultimate bending moment of Mult_s obtained by the
experiment. This is because the buckling strength is lower than the yielding strength of the
material. Therefore, it is reasonable to use the ultimate strength in the safety assessment
method.
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Figure 2. Load and curvature curve of box girder MST-3 under static bending moment in the
experiment [23].

3. Non-Linear FE Analysis Method

The non-linear FE analysis method can be used to simulate the deformation failure
process as the bending moment increases and obtain the ultimate strength of the bending
moment by the extreme value of the load–deformation curve. Several parameters in the
non-linear FE analysis, such as the boundary conditions, material properties, meshing
density and imperfections, should be discussed and confirmed. The ABAQUS software is
used in this paper.
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3.1. Boundary Conditions and Loads

The coordinate system is defined as follows: X along the model length direction, Y
along the model width direction, and Z along the model height direction.

The element type S4R for each element is chosen to simulate large deformation. This
element has four nodes and six degrees of freedom in all nodes and a quadrilateral shape
with reduced integration, hourglass control and a finite membrane strain.

The boundary conditions of the box girder are shown in Figure 3. The box girder
model is assumed to be simply supported at the two ends. The aft end is constrained by
the displacement degree of freedom Ux = Uy = Uz = 0 and the rotational degree of freedom
URx = URz = 0 at the bottom edge. The fore-end is constrained by the displacement degree
of freedom Uy = Uz = 0 and a rotational degree of freedom URx = URz = 0 at the bottom
edge. Two forces, F1 = F2, along the vertical direction (Z axis), are applied as nodal forces
on the upper edge of the bulkhead (BHD).
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The model width and height should include the whole section of the box girder.
Usually, one-span or three-span are used to calculate the ultimate strength under static
loading conditions. This paper will study the effect of more spans in the length direction
on the dynamic ultimate strength.

3.2. Material Properties

As stated in the reference of [27], the yield strength for steel is usually higher than
its nominal strength due to the positive tolerance measured by the tensile test results.
The material properties based on the Nishihara test are used in this paper. The material
of plates and stiffeners is modeled with Young’s modulus of E = 206,000 MPa, Poisson
ratio v = 0.3 and yield strength of σY = 278 MPa. The material is assumed to be perfectly
elastic–plastic without a strain-hardening effect.

In the case of considering the strain rate, the Cowper–Symonds model has proven
to be applicable for steel structures by experiment results [28,29], as seen in the following
Equation (1).

σd
σs

= 1 +
( .

ε

D

)1/q

(1)

where σd denotes the dynamic stress, σs denotes the static stress; D and q are the material
parameters. D = 40.4, q = 5 is used for the mild steel in the present study.

3.3. Meshing Density

Generally, a rectangular element with a length–width aspect ratio close to 1.0 was
chosen for the non-linear FE analysis. Under the static loading condition, the meshing
density of 6~10 elements in one plate width is enough to obtain a reasonable calculation
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result. Figure 4 shows that the calculation results of the ultimate bending moment of the
box girder with 10 elements along one plate width is a little lower than that with four or
six elements. The initial imperfection of two half-waves with an amplitude of 0.9 mm is
applied in the analysis. When the element number exceeds 10, the calculation results of the
ultimate bending moment show a stable value.
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In the dynamic explicit calculation method, the stability limit of the calculation has a
relationship with the characteristic element length, i.e., the minimum element length. The
shorter the element length is, the shorter the calculation time of the increase step. In order
to control the calculation time of the structural response, it had better not use an overfine
mesh density. In the following analysis, a mesh density with 20 elements along one plate
width was used, as shown in Figure 5. The meshing size is about 9 mm for the FE analysis.
There are 20 elements along the plating width, 60 elements along the plating length, six
elements along the stiffener web height and eight elements along the frame web width.
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3.4. Initial Imperfections

For the simply supported plate, the buckling half-wave number m in plate length
direction can be estimated by using the following Equation (2):

a
b
≤
√

m(m + 1) (2)

where a is the plate length, b is the plate width and m is the buckling half-wave number.
For the box girder in this paper, a = 540 mm and b = 180 mm; therefore, the buckling

half-wave number is m = 3. In order to trigger the failure mode, the initial imperfection can
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be assumed as the buckling mode with three half-waves in the plate length direction and
one half-wave buckling mode in the plate width. This paper also considers the effect of
initial imperfection with two half-waves and four half-waves in the plate length direction,
as shown in Figure 6. The initial imperfection is applied to the compressed upper panel of
a box girder under the bending moment.
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The effect of various imperfection types and various imperfection amplitudes on the
ultimate bending moment of a box girder is shown in Figure 7. When the amplitude of the
initial imperfection is the same, the imperfection with three half-waves gives the lowest
estimation of the ultimate bending moment. For the same type of imperfection, the ultimate
bending moment almost shows a linear reduction with the increase in the imperfection
amplitude.
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In the following analysis, the initial imperfection type is assumed to be in the three-
half-wave buckling mode in the plate length direction, and the imperfection amplitude is
assumed to be b/200 = 180/200 = 0.9 mm. This assumption is often adopted in ship rule
research in the IACS (2014) classification societies.

The comparison of non-linear FE results and experiment results is shown in Figure 7.
Through the use of FE analysis, the ultimate bending moment of the box girder is Mult_s =
5.74 × 108 Nmm, and the displacement of the mid-span at the limit state is Wult_s = 14.6 mm.
The value of the ultimate bending moment and displacement at the limit state by FE is almost
close to the experiment result under the static condition. However, the load and displacement
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curves of the FE results and experiment results are not perfectly consistent. Perhaps, there
are some differences between the actual imperfection in the experiment and the assumed
imperfection in the FE analysis.

Under the static load conditions, the Riks method is used to carry out non-linear
ultimate strength analysis. Riks’ method is based on the load increment controlled by a
scalar parameter of the arc length. In the following dynamic analysis, the Riks method
should be replaced by the Dynamic Explicit solver, which is based on the central difference
algorithm and easily obtains the convergent solution.

4. Dynamic Ultimate Strength of Box Girder under Bending Moment

The validated non-linear FE analysis method, including the boundary conditions,
material properties, meshing density and initial imperfection, are extended to calculate the
dynamic response of the box girder. Compared with the static load conditions, several dif-
ferences should be specially considered in dynamic analysis in the time domain, including
mass density, strain rate and the load change over time.

Based on the box girder of MST-3 in the Nishihara experiment, six box girder models
are designed with the same cross-section scantlings and span length, as listed in Table 2.
Compared with each model, the model length, plate thickness and material density have a
slight difference in order to study the relevant influence factors.

Table 2. Box girder models for dynamic ultimate strength analysis.

Model

Model
Length

Plate
Thickness

Yielding
Strength

Material
Density

Static
Ultimate
Moment

Ultimate
Displacement at

Mid-Span

Natural
Vibration

Period

L, mm tp, mm ReH, MPa ρ, t/mm3 Mult_s, Nmm Wult_s, mm T0, s

M1 3780 3.05 278 7.89 × 10−9 5.71 × 108 6.1 0.011

M2 5940 3.05 278 7.89 × 10−9 5.74 × 108 14.6 0.025

M3 5940 4.0 278 7.89 × 10−9 9.46 × 108 15.3 0.023

M4 5940 5.0 278 7.89 × 10−9 1.29 × 109 17.4 0.022

M5 5940 3.05 278 1.58 × 10−8 5.74 × 108 14.6 0.029

M6 5940 3.05 278 2.37 × 10−8 5.74 × 108 14.6 0.034

Note: T0 corresponds to the fundamental natural vibration mode of the box girder models.

The ultimate bending moment under the static conditions is also listed in Table 2.
Models M1, M2, M5 and M6 almost have the same ultimate bending moment. That is to
say, model length and material density have little effect on the calculation results under
static conditions. However, the natural vibration periods of the six models are different.
Therefore, the dynamic response of these models may also be different under the same
dynamic loads.

4.1. Dynamic Bending Moment of Box Girder

The dynamic loads of F1 = F2 are applied to the upper edge of the bulkhead (BHD), as
shown in Figure 3. Based on the water basin test of the girder under whipping loads [17]
and the falling hammer test of the girder under impact loads [19], the load time history in
the action period can be simplified as a half-sine shape with time. Therefore, the dynamic
loads are assumed as a half-sine shape in this paper. The mid-ship bending moment can
be evaluated according to the theory of simple support girder [30]. The external applied
bending moment by the applied load at the mid-span of the box girder can be calculated as
following Equation (3):

M(t) =

{
F1·L1· sin

(
2πt
Te

)
i f 0 ≤ t ≤ Td

0 i f t > Td
(3)
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where t is the response calculation time, Td is the load duration time, Te is the excitation
period Te = 2 ∗ Td, F1 is the applied dynamic load amplitude and L1 the distance between
the applied load position and the pinned point.

As the load duration time Td is changed, the excitation period Te will be updated,
leading to a specific ratio to the natural vibration period T0 of the box girder.

The external applied dynamic bending moment will be withstood by the box girder
deformation and inertia forces. Owing to the box girder deformation, the internal bending
moment at each cross-section can be derived. Under the static load conditions, the internal
bending moment is equal to the external applied bending moment at the same cross-section.
However, under dynamic load conditions, the internal bending moment may be smaller
than the external applied bending moment due to the inertia effect when the dynamic
duration time is very short.

In the early dynamic stage, the internal moment at the mid-span is large and the upper
stiffened panel is in compression, which is similar as the sagging moment. After the peak
of the dynamic load, the bending moment at the mid-span reduces progressively, and
then the opposite bending deformation of the box girder may be activated, leading to the
opposite value of the internal bending moment, which is similar to the hogging moment.
Therefore, the sagging–hogging internal moment will occur and alternately change over
time, as shown in Figure 8. When the applied external bending moment reduces to 0 at a
response calculation time of t > Td in Equation (3), the internal bending moment will still
occur due to the girder vibration deformation.
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Figure 8. Internal bending moment of mid-section when the applied dynamic bending moment
Md = 1.0Mult_s and the dynamic load duration time Td = 0.9 T0.

The external applied bending moment is taken as the capacity index of the box girder
in this paper, which is convenient for evaluating the external dynamic load condition.

4.2. Dynamic Response of Box Girder under Bending Moment

For the M2 box girder, a series of different amplitudes of dynamic bending moment
Md are applied as a sinusoidal shape, including 1.0Mult_s, 2.0Mult_s, 3.0Mult_s and 4.0Mult_s.
The load duration time is taken as Td = 0.005 s, which is close to the drop hammer impact
time in the experiment on the box girder [31]. The load duration time Td is about 0.2 times
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that of the natural vibration period T0 of the M2 box girder. Therefore, the box girder will
show an apparent dynamic response under this load assumption.

The response calculation time includes the load duration time and two vibration
periods, with no external applied loads to evaluate the free vibration response after the
dynamic load action stage. The response calculation time is divided by half of the natural
vibration period of T0.

The vertical displacement Wd at the mid-span is derived by averaging all of the
node displacements of the cross-section and then divided by the limit displacement Wult_s
of the same cross-section under a static bending moment. This treatment can yield a
dimensionless index of vertical displacement and is convenient for comparing the dynamic
and static responses.

The vertical displacement responses at the mid-span as the response calculation time
for the M2 box girder are shown in Figure 9. For Md = 1.0 Mult_s, the box girder shows
an elastic response, and the hogging (bending upwards)–sagging (bending downwards)
vibration deformation amplitude is almost symmetrical. For Md = 2.0 Mult_s, the sagging
deformation is larger than the hogging. For Md = 3.0 Mult_s, the vibration mode has been
changed, and the value of dynamic deformation is always negative due to the large plastic
deformation after dynamic load. For Md = 4.0 Mult_s, the vibration period T1 (between
two neighboring peaks in the free vibration stage) after dynamic load action exceeds the
natural vibration period T0 due to large failure areas induced by local buckling and plastic
deformation.
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The Mises stress and deformation distribution at the time of the maximum vertical
displacement for the mid-span of the M2 box girder are shown in Figure 8. Only in the load
case of Md = 1.0Mult_s was the stress lower than the static yield strength. The maximum
value of the Mises stress for the load case of Md = 4.0Mult_s is about 400 MPa, which is
higher than the static yield strength. Based on Equation (1), the strain rate for the box girder
is about 1/s~10/s, which shows the dynamic characteristics.

The deformed shape is also shown in Figure 10. There are three half-wave buckling
modes in the upper panel of the box girder. The difference between load case Md = 2.0Mult_s
and Md = 3.0Mult_s is evident. For load case Md = 2.0Mult_s, there is one cross-section with
apparent deformation. However, for load case Md = 3.0Mult_s, there are three cross-sections
with apparent deformation at the same time, which is different from the limit deformation
under static load conditions.
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4.3. Evaluation Criterion of Dynamic Ultimate Strength for Box Girder

Based on the relationship between dynamic loads and structural dynamic responses,
the dynamic ultimate strength evaluation is meaningful in guiding structure design and
safety evaluation. However, the bending moment and vertical displacement curve under
dynamic loads will not show an extreme value or sudden change because of the stable post-
buckling path for the box girder. A reasonable evaluation criterion for dynamic ultimate
strength is needed.

The B-R criterion [21] was proposed to evaluate the dynamic buckling of a plate. For
box girders with stiffened panels, plate buckling can be regarded as one kind of local
buckling. The box girder will have a stable post-buckling path, so the load–displacement
will not present a severely rapid increase as the plate buckling. The B-R criterion should be
revised based on the response characteristics of the box girder under a dynamic bending
moment.

The internal bending moment can be derived based on the bending stresses and their
locations in the cross-section of a hull girder. The curve of the internal bending moment and
vertical displacement at the mid-span section is shown in Figure 11. The applied bending
moment ratio (Md/Mult_s) is also plotted in Figure 11 using data labels.
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When the applied bending moment ratio is small, i.e., Md/Mult_s < 1.4, the vertical
displacement shows an almost linear trend of increase as an increase in the bending moment.
When the applied bending moment ratio is 1.4 > Md/Mult_s < 2.0, the curve of the internal
bending moment and vertical displacement becomes non-linear, which denotes some local
failure induced by buckling and yielding occurring on the box girder. When the applied
bending moment ratio is Md/Mult_s ≥ 2.0, the internal bending moment at the mid-span of
the box girder reaches its peak value. The internal bending moment will not increase as
the applied bending moment, but the max displacement at the mid-span shows a rapid
increase. It is an obvious signal that the box girder has reached its dynamic limit state.
Therefore, the evaluation criterion of the dynamic limit state of the box girder is the curve
of the internal bending moment, and vertical displacement reaches the extreme point.

For the load duration time of Td = 0.01 s and Td = 0.016 s, the curves of the internal
bending moment and vertical displacement are shown in Figures 12 and 13. The same
trend of the extreme point can be found. The proposed evaluation criterion of the dynamic
limit state can be applicable to more load cases.
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The applied bending moment at the dynamic limit state for the load duration time
Td = 0.005 s, Td = 0.01 s and Td = 0.016 s are summarized in Table 3. As the load duration
time increases, the dynamic effect for the box girder is not very obvious, and the applied
bending moment at the dynamic limit state will approach the ultimate bending strength at
the static limit state.

Table 3. Dynamic ultimate strength of the box girder.

Model Load Duration Time Applied Bending Moment
at Dynamic Limit State

Td, s 2Td/T0 Mult_d/Mult_s

M2 Td = 0.005 s 0.4 2.0

M2 Td = 0.01 s 0.8 1.2

M2 Td = 0.016 s 1.3 1.0

5. Influence Factors on Dynamic Ultimate Strength of Box Girder

For box girders, there are several influencing factors on dynamic ultimate strength.
This paper tries to study these four factors, including model length, plate thickness, material
density and load duration time.

5.1. Effect of Model Length

Each span of the box girder is strengthened by transverse frames or bulkheads at two
ends. The model length is set as the product of span number and span length. The box
girder M1 has seven spans and a 3780 mm model length. The box girder M2 has 11 spans
and a 5940 mm model length. The ratio of model length L and span length S appears to be a
non-dimensional parameter. Both models have the same cross-section scantlings and span
length. These models are assumed to have the initial imperfection of the three half-wave,
with an amplitude of 0.9 mm of mid-span.

As we all know, the span number in the analysis model has little effect on the static
ultimate bending moment when the span number is larger [32] and the span length is
kept unchanged. Therefore, two- or three-span FE models are often used in static ultimate
strength analysis for box girders.

Under dynamic conditions, the curve of the internal bending moment and vertical
displacement at the mid-span section for the M1 box girder with load duration times
of Td = 0.005 s and Td = 0.016 s are shown in Figures 14 and 15. Based on the proposed
evaluation criterion, the applied bending moment ratio Mult_d/Mult_s at the dynamic limit
state is listed in Table 4. For the load duration time Td = 0.005 s, the dynamic ultimate
moment of box girder M1 (length ratio L/S = 7) is lower than that of box girder M2 (length
ratio L/S = 11). However, for a load duration time of Td = 0.016 s, there is no obvious
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dynamic effect, and the ultimate moment of box girder M1 and M2 is the same. It can
be concluded that the model length ratio has a great influence on the dynamic ultimate
moment at shorter load duration times. The longer model shows a larger dynamic carrying
capacity. There are two reasons to explain this phenomenon. (1) The longer model has a
greater inertia load along the model length direction, which needs a greater applied load
to cause structural failure; (2) the longer model has a longer first vibration period, which
shows more obvious dynamic effects for the load with duration time less than the first
vibration period. It is recommended that a full-length model should be used in dynamic
strength analysis instead of the simplified one-span model.
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Table 4. Comparison of dynamic ultimate moment for box girder with various length.

Model
Model Length Length Ratio Load Duration

Time

Applied Bending
Moment at Dynamic

Limit State

L, mm L/S Td, s Mult_d/Mult_s

M1 3780 7 0.005 1.7

M2 5940 11 0.005 2.0

M1 3780 7 0.016 1.0

M2 5940 11 0.016 1.0

5.2. Effect of Plate Thickness

The plate thickness is the critical parameter of structure stiffness. Three kinds of plate
thickness tp are set on the plate and stiffener web of the box girder. For box girders M2,
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M3 and M4, the plate thicknesses are tp = 3.05, tp = 4.0 and tp = 5.0, respectively. The plate
slenderness ratio β can be considered a non-dimensional parameter. As the plate thickness
increases, the natural vibration period T0 has a little decrease, as shown in Table 2.

The curve of the internal bending moment and vertical displacement at the mid-span
section for box girder M3 and M4 with a load duration time of td = 0.005 s are shown in
Figures 16 and 17. The comparison of dynamic ultimate moment for box girder with a plate
slenderness ratio of β is listed in Table 5. As the plate slenderness ratio of β changes, the
applied bending moment ratio at the dynamic limit state is almost unchanged. That is to
say, the dynamic effect for these girders will show a similar trend for the dynamic load with
the same load duration time. It should be noted that the actual dynamic bending capacity
of models M3 and M4 is higher than that of model M2 due to the increased static ultimate
strength Mult_s, as shown in Table 2.
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Table 5. Comparison of dynamic ultimate moment for box girder with various plate thickness.

Model

Plate
Thickness

Plate Slenderness
Ratio

Load Duration
Time

Applied Bending
Moment at Dynamic

Limit State

tp, mm β Td, s Mult_d/Mult_s

M2 3.05 2.2 0.005 2.0

M3 4 1.7 0.005 2.0

M4 5 1.3 0.005 2.0
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5.3. Effect of Material Density

In actual ship structures, the box girder should withstand its structural weight and
non-structure weight, including liquid/dry cargo, ballast water and fuel oil and so on. For
dynamic response analysis, the changes of the mass point and density are often used to
simulate various mass distribution conditions. The change in density is used in this paper
to study the effect of mass distribution on dynamic ultimate moment.

In order to model the supplementary onboard distributed masses, two other kinds of
equivalent material density are assumed in models M5 and M6, as shown in Table 2. The
box girders of M5 and M6 are set as two times and three times of material density of M2,
respectively. Although M2, M5 and M6 have the same cross-section scantlings, the box
girders of M5 and M6 have longer natural vibration periods than that of M2, as shown in
Table 2.

The bending moment and vertical displacement curve of the applied bending moment
and vertical displacement at the mid-span section for box girders M5 and M6 with a load
duration time of td = 0.005 s are shown in Figures 18 and 19. The relative density between
the analysis model and the based model (M2) is defined. A comparison of the dynamic
ultimate moment of the box girders with various densities is listed in Table 6. The larger the
model’s relative density, the higher the dynamic ultimate moment ratio. Material density
should be assumed to be a critical factor in dynamic ultimate strength analysis.
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Table 6. Comparison of dynamic ultimate moment of box girder with various density.

Model

Material
Density

Relative
Density

Load Duration
Time

Applied Bending
Moment at Dynamic

Limit State

ρ, t/mm3 ρ/ρM2 Td, s Mult_d/Mult_s

M2 7.89 × 10−9 1.0 0.005 2.0

M5 1.58 × 10−8 2.0 0.005 2.5

M6 2.37 × 10−8 3.0 0.005 2.7

5.4. Effect of the Excitation Period

This paper assumes that the dynamic load has a half-sine shape and the start time as
the beginning of the response calculation. The load duration time Td is set from 0.004 to
0.025 s, which covers the scope of drop hammer impact on stiffened panel of steel and
also the interval of box girder vibration period. The excitation period is two times that of
the duration time, i.e., Te = 2 × Td. The ratio Te/T0 between the excitation period and the
natural vibration period can be considered a non-dimensional parameter.

The comparison of dynamic ultimate moment ratio of box girder with various load
excitation period ratios Te/T0 is listed in Table 7. The shorter the load duration time ratio,
the larger the dynamic ultimate moment. The dynamic ultimate moment ratio Mult_d/Mult_s
is within the scope from 1.0 to 2.5 for the load duration time ratio of larger than 0.3. When
the load excitation period ratio Te/T0 is larger than 1.3, the dynamic effect is not very
obvious for box girder under bending moment.

Table 7. Comparison of applied ultimate moment ratio at dynamic limit state of box girder (Model
M2) with various load duration time.

Load Excitation Period Load Excitation Period Ratio Applied Bending Moment at
Dynamic Limit State

Te = 2 × Td, s Te/T0 Mult_d/Mult_s

0.008 0.3 2.3

0.010 0.4 2.0

0.016 0.7 1.4

0.020 0.8 1.2

0.026 1.1 1.1

0.032 1.3 1

0.036 1.5 1

0.050 2.0 1

Based on the FE results evaluated by proposed criterion, the relationship of dynamic
ultimate moment ratio Mult_d/Mult_s and the load excitation period ratio Te/T0 is plotted
in Figure 20. When the load duration time ratio increases, the dynamic ultimate moment
ratio gradually decreases.
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6. Conclusions

The main conclusions can be drawn as follows:
(1) Under larger applied dynamic moments, the box girder vibration period will be

increased due to local buckling and plastic deformation. In the dynamic loading case, there
are more than one cross-section with apparent deformation at the same time, which is
different from only cross-section failure in the static loading case.

(2) An evaluation criterion of dynamic limit state for box girder under bending is
proposed in this paper based on the curve of internal bending moment and vertical dis-
placement, which can give reasonable prediction of dynamic ultimate strength.

(3) The model length has a great influence on the applied dynamic ultimate moment
at shorter load duration times. The longer model needs a larger dynamic moment to reach
the limit state. The full-length model is recommended to use in dynamic analysis.

(4) The larger the relative density of the box girder, the higher its dynamic ultimate
moment ratio Mult_d/Mult_s due to the inertia effect. The material density should be
considered a critical factor in dynamic ultimate strength analysis.

(5) When the load excitation period ratio Te/T0 is larger than 1.3, the dynamic effect is
not very obvious for box girder bending, and the load action will be close to the quasistatic
condition. For the load excitation period ratio Te/T0 with the scope of 0.3 and 1.3, the
dynamic ultimate moment ratio Mult_d/Mult_s is within the scope of 2.5 to 1.0.
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Nomenclature

Mult_s Bending moment at the limit state of box girder under static condition
Mult_d Bending moment at the limit state of box girder under dynamic condition
Mmax_in Max internal bending moment of box girder
Md Amplitude of applied dynamic bending moment of box girder

Wult_s
Vertical displacement along Z direction of box girder mid-span section at the limit state
under static condition

Wd Vertical displacement along Z direction of box girder mid-span section during dynamic load
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Wmax_d

Maximum vertical displacement along Z direction of box girder mid-span section in the
whole response calculation time (including dynamic load duration time and free vibration
time after the dynamic load)

Wp_d
Permanent displacement after dynamic loading along Z direction of box girder mid-span
section after dynamic load

t Response calculation time
T0 Natural vibration period of box girder

T1
Vibration period (between two neighboring peaks in free vibration stage) of box girder
after dynamic load action

Td Dynamic load duration time
L Analysis model length
S Span length between neighboring transverse frame
β Plate slenderness ratio β = b/t

√
σY/E

X axis Along the box girder length direction
Y axis Along the box girder width direction
Z axis Along the box girder height direction
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