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Abstract: Ventilation ducts with a high cross-sectional area are frequently built as structural ducts
that include inside transversal structural beams. In this way, the cross-sectional area requested is
respected, but the transverse structural elements will have a big impact on the airflow, with eventually
additional noise and vibration and a high amount of energy wasted across the beams. From this
perspective, the aim of this study is to evaluate the impact of the transversal beams inside the
ventilation ducts, to analyze different alternatives for airflow improvement using computational
fluid dynamics (CFD) simulation, and to check the simulation results in the wind tunnel with an
experimental model. The results of the experimental measurements have highlighted the high-
pressure drop and, consequently, the high energy wasted across the transversal structural beams.
It was found that the airflow downstream of the beam is changing the flow direction, and high
turbulences and vortices are initiated in the shadow of the beam. According to the CFD analysis, the
ventilation system can be improved by adding airflow deflectors in the beam area. In this way, the
high turbulences are reduced, the vortices and backflow are canceled, and the pressure losses across
the beam area of the ventilation duct are reduced by up to 90% compared with the beam without a
deflector. Therefore, the energy wasted in the beam area can be reduced by up to 90%.

Keywords: CFD simulation; wind tunnel experiment; ventilation; structural ducts; energy saving;
pressure drop

1. Introduction

The ventilation system has an important share in the power consumption of modern
ships. Regarding the ventilation system, two independent directions should be analyzed to
reduce energy consumption:

(a) Reducing the airflow. A solution applicable for periodically unattended machinery
spaces [1–3] is to reduce the airflow by using direct adiabatic cooling in hot and dry
outside environmental conditions [4]. In the case of ventilation for an accommodation
area, the airflow can be reduced by changing the philosophy of the system and using
a small air conditioning unit for fresh air and local heat exchangers, as Mihai and
Rusu [5] have proposed in their study.

(b) Reducing the total pressure drop across distribution ducts. This can be achieved by
reducing the air speed across the ventilation duct, reducing the number of bends,
reducing the length of the distribution ducts [6], and improving the airflow inside
the ventilation ducts with a large cross-section. In the case of structural ducts, a big
improvement can be made by adding air deflectors in the area of the structural beam
or, if possible, providing holes into the structural beam.

In this study, the influence of the structural beam inside the structural ventilation
ducts is analyzed, with special attention focused on the pressure losses in the area of the
transversal beams.

Regarding the length of the ventilation ducts, it can be reduced by choosing the best
solution for the arrangement of the rooms, especially for the rooms which are provided
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with high airflow and large ventilation ducts. In general, a high amount of air is requested
for the engine room, galley, and hazardous spaces according to Classifications Societies’
requirements [7–9], as highlighted by Mihai et al. [10]. Another constraint is that the
ventilation ducts from these rooms passing through the accommodation area, or ventilation
ducts from hazardous spaces passing through other non-hazardous spaces, should be built
from steel with thicknesses of 3 to 5 mm, according to SOLAS [11].

In the case of the engine room and emergency generator room ventilation, according
to the Load Line [12] requirements, the openings must be led to a proper height above
the deck so that the ventilation system can be kept without closing the appliances in any
weather conditions. This should also be considered when the room location is chosen in
order to have a straight vertical duct from the outside louver to the engine room area and
short distribution ducts inside the engine room. This solution can reduce the pressure
drop and, consequently, the pressure of the fan from 600–1000 Pa to only 200–300 Pa. In
this way, if the pressure drop is reduced by 50%, from about 600 Pa to about 300 Pa, the
electrical power of the fan and, consequently, the energy consumption can be reduced by
about 50% [13–15].

Regarding the galley, it should be mentioned that this is a room with a high risk of
fire located in the accommodation area, which has a large ventilation system. According to
the SOLAS requirements [11], the ventilation ducts from the galley can pass through the
accommodation area by using steel ducts only. In general, the owner prefers to have the
room located close to the mess room, provision rooms, and freezer rooms, as indicated in
the example presented in Figure 1, to have a good flow for preparing food, meal serving,
and cleaning. In order to comply with these requirements, sometimes the galleys do not
have external bulkheads or decks. Therefore, the ventilation ducts are routed through
adjacent rooms from the accommodation and cross the main structural beams. Taking into
consideration that the free height inside these rooms cannot be reduced, some compromises
are made in the ventilation system, and the structural ventilation ducts with structural
beams inside are used, as indicated in Figures 1 and 2, instead of steel ducts located below
the structural beams.

Figure 1. Typical arrangement for galley ventilation using structural ducts with transversal beams inside.
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Figure 2. Examples of structural ventilation ducts with ship structural beams inside.

In this case, the ship’s structural beams of different sizes are caught inside the structural
ventilation duct, as is highlighted in examples from Figure 2.

These transversal structural elements have a big impact on the airflow by increasing the
turbulences and generating an air jet with high air velocity above the beams. Consequently,
the total pressure losses across the ventilation ducts will increase.

In the last years, multiple studies have been carried out for the optimization of venti-
lation systems by using CFD analyses. The best alignment between the CFD model used
and the experimental data depends on different variables. In the case of the main cabin
ventilation, Yingchun Xie et al. [16] pointed out that the Standard k-ε model and shear
stress transport (SST) k-ω model provided the best results, and the Standard k-ε model
has been adopted for their study. Tasdemir and Bayraktar [17] have used a Standard k-ε
model for improving the ventilation of the engine room. Such Standard k-εmodel was also
used by Chang et al. [18] to optimize the ventilation systems for the underground mine.
Tai et al. [19] used the RNG k-εmodel to investigate the louver angles and positions of cross
ventilation in a generic isolated building. The realizable k-ε turbulence model was used by
Zheng et al. [20] for CFD simulations of “wind flow and mean surface pressure for build-
ings with balconies”. The k-ε turbulence model has been successfully used in many CFD
simulations of wind flow around the buildings [21–26]. Smyk et al. [27] have concluded
that the deflectors can reduce turbulences and influence flow stabilization. Pakawhat and
Yottana [28], using the Standard k-ε turbulence CFD model, found that 75% of the total
pressure drop across the rectangular intake ventilation duct concentrates in a small area
with measuring equipment. After the CFD calculation and the improvement achieved
for the airflow, the pressure drop in that area was reduced by 71%. Therefore a large
improvement in terms of energy consumption was obtained. The authors have concluded
that the concept of their research should be applied to other systems or industries.

Enam et al. [29] investigated the effect of grilles blockage on airflow using the standard
k-ε turbulence models. As was expected, the velocity drops, and the pressure losses increase
when the blockage ratio increases.

Kubas et al. [30] calculated the pressure drop across the air silencer and, using the
experimental measurements, concluded that the CFD k-ε realizable model gave the most
accurate results.

From this perspective, the main purpose of our study is to show the impact of the
transversal structural beams inside the ventilation ducts and to analyze the possible solution
to improve the airflow and reduce the pressure losses inside the ventilation ducts. By
reducing the pressure losses, energy consumption will be reduced. According to the CFD
analysis performed with the standard k-εmodel was also used with good results in other
studies [16–18] and validated for this study with some experimental measurements in the
wind tunnel, it can be concluded that the transversal structural beams inside the ventilation
duct must be provided with air deflectors or holes. The air deflectors will reduce the
turbulences downstream of the beam, cancel the big vortices and the backflow in the lower
part of the ventilation duct, and finally, reduce the pressure losses across the beam by up to
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90%. If the beams can be provided with holes, these could also reduce the pressure losses,
but the positive impact is smaller than the one obtained by the air deflector. Finally, it is
concluded that by making 30% holes into the beam from the total area, the pressure losses
across the beam will be twice as high as the pressure losses across the beam provided with
air deflectors.

2. Materials and Methods
2.1. Wind Tunnel and Experimental Model

In order to evaluate the impact of the transversal beams inside the ventilation ducts, the
experimental measurements have been carried out using the facilities from the laboratory
of the Naval Architecture Faculty from the “Dunarea de Jos” University of Galati.

In these experiments, the wind tunnel itself simulates the ventilation duct, and the
model analyzed is the structural beam installed inside the test section. The experiments
have been carried out for two heights of the structural beam. The first one has a height
lower than half of the height of the wind tunnel, while the second one has a height greater
than half of the tunnel height.

The wind tunnel has the following characteristics, indicated also in Figure 3:
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Figure 3. Sketch of the wind tunnel used.

The wind tunnel has an axial fan with an electric motor of 55 kW, 1450 rpm, 400 V,
32 A, and 50 Hz, and with variable speed controlled by a frequency drive. During the
measurements, the speed is controlled at fixed steps. The wind tunnel is provided with an
open recirculation system inside the laboratory, as shown in Figure 4.
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The sketch of the wind tunnel test area with the model installed inside is indicated in
Figure 5, where the position of the measuring points T1 located upstream of the beam is
indicated; respectively, T2 is located downstream of the beam. The IN/OUT refer to the
test area only and are added to show the airflow direction. The CFD model is extended 5 m
downstream of the testing area by keeping the cross section.
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288 mm and Model 2 with a beam height of 388 mm).

The measuring points in the wind tunnel cross sections are referenced to the centerline
and to the ceiling of the wind tunnel, as indicated in Figure 6.
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Figure 6. Measuring points. Cross section of the wind tunnel.

2.2. Experimental Measurements and Measuring Devices Used

Multiple measurements were made to determine the airspeed in the wind tunnel
for various fan speeds, without the model (without the beam inside) and then with the
model fixed inside the tunnel. The pressure and air velocity have been measured using the
following measuring instruments:

1. Temperature and relative humidity (RH) data logger (Figure 7) type PeakTech 5185 [31].
During the measurements, the air had the following characteristics measured with
three temperature and humidity data loggers: PeakTech 5185-1: 30.9 ◦C 50.7%; Peak-
Tech 5185-2: 30.8 ◦C 51.0%; PeakTech 5185-3: 31.4 ◦C 50.1%. Based on the measured
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values for temperature and humidity, the following air characteristics were adopted
for calculations: Average temperature: 31 ◦C; Relative humidity: 51%; Air density:
1151 kg/m3 (as referenced [32,33]).

2. Pitot tubes, together with the electronic scanner with 16 pressure points type BPIS-
SCN16 indicated in Figure 7, have a precision of ±1.5%, according to the maker data
sheet. The air velocity (v) is calculated with Formula (1) [34], using the dynamic
pressure (pd) indicated by the Electronic Pressure Scanner as the difference between
the total pressure (pt) and the static pressure (ps) measured with the Pitot tubes:

v =

√
2 × pd
ρ

(1)

where ρ is the air density [34].
pd = pt − ps (2)

3. The thermo-anemometer type SDL300 (Figure 7), which has a precision of ±2% for air
velocity of 0.4 m/s to 35 m/s and 0.8 ◦C for temperature less than 80 ◦C [35].
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In order to check the precision of the equipment used, the results were recorded three
times, in the same conditions, with a time step of 10 s. The precision of the Pitot tubes with
the electronic scanner was between 0.4% to 3.1%. It was noted that for some measurements,
it was higher than the one indicated by the maker (1.5%), but for this experiment, it was
accepted that the air turbulences in the measuring area were high and had an influence on
the results of the measurements [36,37].

The measurements performed with the thermo-anemometer have small differences
between different measurements in the same conditions, which can be explained by the in-
ertia of the metal vane and the average data recorded. However, there are some differences
between the pitot tube and the thermo-anemometer, which are between 3% to 9%.

The air velocities were measured at different points located between 50 mm and
350 mm under the ceiling of the tunnel in section T1 for different speed steps of the fan.
The average air velocity for each step of the fan was calculated, and the values are given
in Table 1.

Table 1. The average velocity in measuring area T1; beam height of 388 mm.

Fan Speed Step Velocity without Model [m/s] Velocity with Model [m/s]

IC10 8.0 2.8
IC12 9.7 3.7
IC14 11.4 4.0
IC16 13.4 5.1
IC18 14.8 5.5
IC20 16.6 5.9

Based on the air velocity indicated in Table 1, it can be observed that the air velocity
and airflow at the entrance of the wind tunnel decrease drastically for the same fan speed
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after adding the model (structural beam) inside the test area of the wind tunnel. Thus, after
placing the model in the test area, it creates a sufficiently high-pressure loss so that the
air velocity and airflow rate at the tunnel entrance decrease to approximately 35% of the
nominal flow rate without the model. These results highlight the major negative impact of
a transversal beam inside the ventilation duct.

When the beam height is reduced to 288 mm, the air velocity increases to 8.1 m/s
(49%), as indicated in Table 2 below.

Table 2. The average velocity in measuring area T1; beam height of 288 mm.

Fan Speed Step Velocity without Model [m/s] Velocity with Model [m/s]

IC20 16.6 8.1

Regarding the airflow downstream of the beam (area T2), it is noticed that the air
velocity has a large variation between the upper and lower sides, as seen in Table 3 below.

Table 3. The air velocity in measuring area T2; beam height of 288 mm; fan step IC20 (the data
recorded with thermo-anemometer type SDL300).

Air Velocity [m/s]
Distance from the Center of the Tunnel

400 300 200 100 0 −100 −200 −300 −400

Distance from the ceiling
of the tunnel

70 20 20.9 20.7 20.5 20.5 20.7 20.7 20.5 20

120 19.9 20 19.9 20.4 19.6 19.7 19.7 19.9 19.7

170 17.5 16.7 16.3 16.6 16.4 15.7 15.7 16.4 16.6

220 14.3 10.8 11.1 11.7 10.3 9 9 9.3 12.1

270 9 4.1 6 5.4 5.3 3.5 3.5 4.4 9

290 6 0 0 0 0 0 0 0 6

370 −3.2 −2.4 −3.7 −4.5 −4.9 −3.6 −3.6 −2.5 −3.4

470 −2.1 −1.6 −3.9 −5 −5.5 −3.9 −3.9 −2.8 −2.6

According to the data recorded, there is a jet of air in the upper part of the tunnel
where the air velocity increases to over 20 m/s in the case of fan speed “IC20” and to
over 16 m/s in the case of the fan speed “IC16”. At the bottom, the air velocity has values
between 1 and 4 m/s in the case of fan speed “IC20”, and between 0.4 and 3.8 m/s in the
case of the fan speed “IC16”. It should be noted that there is an area with zero speed in the
shadow of the beam, and the direction of the flow is reversed at the bottom of the tunnel.
The reverse flow is also highlighted by the wool wires mounted on the model, as can be
seen in Figure 8. Therefore, the air flows only in the upper part of the ventilation duct, then
the height of the ventilation duct in the shadow of the beam is not used by the airflow as it
should be.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 8 of 17 
 

 

 

Figure 8. The wool wires mounted on the model showing the reverse flow. 

2.3. CFD Simulations 

The CFD simulation is performed at the natural scale of the model and the natural 

scale of the test section of the wind tunnel, which simulates the ventilation duct. The cal-

culations were carried out using ANSYS Fluent and considering different turbulent mod-

els and tetrahedral mesh with different sizing (coarse, medium, and fine) with high 

smoothing. Taking into consideration that there are no notable differences in the results 

for medium and fine mesh, the final calculation has been made with a medium-size mesh. 

The 3D model used in the CFD calculation is performed according to Figure 5, which 

was extended 5 m downstream of the test area. Therefore, the total length of the 3D model 

is 7.5 m, 2.5 m to simulate the wind tunnel test area, plus 5 m downstream of the test area. 

The beam is located at a distance of 1.47 m from the air inlet connection. The CFD analysis 

was performed for two heights of the structural beam: one of 288 mm and another one of 

388 mm. All the CFD analyses were performed with the solution method SIMPLE as a 

pressure–velocity coupling with the best results for the steady-state model. The air tem-

perature of 31 °C, RH 51%, the density of 1.151 kg/m3, and viscosity of 1.872 kg/ms are 

used as the fluid, similar to the environmental conditions recorded during the experi-

mental test. A uniformly distributed inlet air velocity of 7.9 m/s was set. 

The wall shell is steel with a no-slip shear condition and constant wall roughness of 

0.5 with no thermal transfer. The inlet is provided with constant and uniformly distrib-

uted velocity with a turbulent intensity of 5% and a turbulent viscosity ratio of 10. 

3. Results 

The objective of this paper is to analyze the influence of the transversal structural 

beams inside the ventilation ducts with a focus on the additional pressure drop across the 

beam and the energy wasted to pass the airflow through this section of the ventilation 

duct. By using a tetrahedral medium mesh size, the results of a CFD analysis with the 

standard k-ε model, shear stress transport (SST) k-ω model, and standard k-ω model are 

quite similar. The variable k-kl-ω has some differences in the area with high velocity. 

3.1. CFD Results vs. Experimental Measurements 

The air velocity recorded during the experimental measurements on the wind tunnel 

in the two measuring areas, T1 (upstream of the model) and, respectively, T2 (downstream 

of the model), are compared with the data obtained after the CFD calculation in the same 

measuring points. As seen in Figure 9, in the upper part of the tunnel, the air velocity 

obtained from the CFD calculation very well matches the data recorded during the exper-

imental measurements. In the lower part of the tunnel, small differences were found be-

tween the velocities calculated with different CFD models, but the results are quite differ-

ent from the ones recorded during the wind tunnel experiment. These differences are ex-

plained by the low accuracy of the experiment’s measurements in this area. The accuracy 

of the experimental measuring in the lower part of the wind tunnel is not conclusive 

Figure 8. The wool wires mounted on the model showing the reverse flow.



J. Mar. Sci. Eng. 2023, 11, 371 8 of 17

2.3. CFD Simulations

The CFD simulation is performed at the natural scale of the model and the natural
scale of the test section of the wind tunnel, which simulates the ventilation duct. The
calculations were carried out using ANSYS Fluent and considering different turbulent
models and tetrahedral mesh with different sizing (coarse, medium, and fine) with high
smoothing. Taking into consideration that there are no notable differences in the results for
medium and fine mesh, the final calculation has been made with a medium-size mesh.

The 3D model used in the CFD calculation is performed according to Figure 5, which
was extended 5 m downstream of the test area. Therefore, the total length of the 3D model
is 7.5 m, 2.5 m to simulate the wind tunnel test area, plus 5 m downstream of the test
area. The beam is located at a distance of 1.47 m from the air inlet connection. The CFD
analysis was performed for two heights of the structural beam: one of 288 mm and another
one of 388 mm. All the CFD analyses were performed with the solution method SIMPLE
as a pressure–velocity coupling with the best results for the steady-state model. The air
temperature of 31 ◦C, RH 51%, the density of 1.151 kg/m3, and viscosity of 1.872 kg/ms are
used as the fluid, similar to the environmental conditions recorded during the experimental
test. A uniformly distributed inlet air velocity of 7.9 m/s was set.

The wall shell is steel with a no-slip shear condition and constant wall roughness of
0.5 with no thermal transfer. The inlet is provided with constant and uniformly distributed
velocity with a turbulent intensity of 5% and a turbulent viscosity ratio of 10.

3. Results

The objective of this paper is to analyze the influence of the transversal structural
beams inside the ventilation ducts with a focus on the additional pressure drop across the
beam and the energy wasted to pass the airflow through this section of the ventilation
duct. By using a tetrahedral medium mesh size, the results of a CFD analysis with the
standard k-εmodel, shear stress transport (SST) k-ωmodel, and standard k-ωmodel are
quite similar. The variable k-kl-ω has some differences in the area with high velocity.

3.1. CFD Results vs. Experimental Measurements

The air velocity recorded during the experimental measurements on the wind tunnel
in the two measuring areas, T1 (upstream of the model) and, respectively, T2 (downstream
of the model), are compared with the data obtained after the CFD calculation in the
same measuring points. As seen in Figure 9, in the upper part of the tunnel, the air
velocity obtained from the CFD calculation very well matches the data recorded during
the experimental measurements. In the lower part of the tunnel, small differences were
found between the velocities calculated with different CFD models, but the results are quite
different from the ones recorded during the wind tunnel experiment. These differences are
explained by the low accuracy of the experiment’s measurements in this area. The accuracy
of the experimental measuring in the lower part of the wind tunnel is not conclusive
because, for small variations on the x- and z-axis, the air velocity has different values, as
seen in Figure 10. The air velocity could not be measured in that area.
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Figure 10. Streamlines; CFD model with a beam size of 288 mm without deflectors.

3.2. The Influence of the Structural Beam on the Airflow and the Pressure Drop

According to the experimental data, the air velocity in the upper part of the tunnel is
increasing from about 8 m/s upstream of the beam to 18–20 m/s downstream of the beam.
At the same time, in the lower part of the tunnel, in the shadow of the beam, the airflow
is changing direction (as also seen in Figure 10) due to the ejector effect on the structural
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beam. Therefore, the structural beam greatly impacts the airflow inside the ventilation
duct by increasing the velocity by about 2.5 times in the upper part of the ventilation duct.
Furthermore, the turbulences are highly increased, a big air vortex is initiated, and the
reverse airflow gets in the beam shadow with a length of about 2.5 m.

The air jet formed in the beam area needs a long strait duct to be dispersed, and the
air velocity continues to be uneven for more than 10 beam heights. The low air velocity,
highlighted in blue in the figure, can be observed for a long distance in the shadow of
the beam.

Even after 6 m of the strait ventilation duct, the airflow in the lower part of the duct is
still below 4 m/s, as seen in Figure 11 (measuring area T0). The air velocity upstream of
the beam (measuring area T1) is almost constant at 7.9 m/s, while downstream of the beam
(measuring area T2 and T0), there are large differences in the air velocity and turbulences
that increase the pressure losses.
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Figure 11. Air velocity; cross sections for the measuring areas T1, T2, and T0 (outlet located at 6 m
downstream of the beam); CFD model with a beam size of 288 mm.

Based on these effects of the beam on the airflow, it is expected that an important
amount of energy is to be wasted in this area of the duct. In order to check the amount of
energy wasted due to the structural beams inside the ventilation duct, the total pressure
drop across the ventilation duct is calculated for the airflow of 13,200 m3/h. Table 4 presents
the total pressure drop for the beam height of 288 mm, and Table 5 shows the total pressure
drops for the beam size of 388 mm, considering different alternatives for the beams with
and without deflectors or holes.

Table 4. Total pressure drops for a beam size of 288 mm and an air inlet velocity of 7.9 m/s (the
height of the beam is less than half of the ventilation duct height).

Description of the CFD Model Pressure Drops

With beam, without deflectors 133 Pa

With beam, improved with upstream air deflectors 31 Pa

With beam, improved with upstream and downstream air deflectors 9.6 Pa

Without beam 3.9 Pa

Table 5. Total pressure drops for a beam size of 388 mm and an air inlet velocity of 7.9 m/s (the
height greater than half of the ventilation duct height).

Description of the CFD Model Pressure Drops

With beam, without deflectors 420 Pa

With beam, without deflectors, but with about 30% holes 90 Pa

With beam, improved with upstream and downstream air deflectors 49 Pa

Without beam 3.9 Pa
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3.3. Measures to Improve the Flow and Pressure Drop

Taking into consideration that the structural beam located inside the ventilation ducts
has a big influence on the airflow and pressure drop, it is not recommended to have
transversal structural beams inside the ventilation ducts. However, the structural ducts
cannot be avoided due to the height and the arrangement of the rooms. As a consequence,
air deflectors should be provided, or the height of the ventilation duct should be smoothly
reduced to bypass the structural beam. We shall analyze the next two alternatives for
improving the airflow across the ventilation duct with transversal beams inside. One with
an air deflector upstream of the beam and the second with a deflector both upstream and
downstream of the beam.

3.3.1. Improving the Airflow and Pressure Drop by Adding an Air Deflector Upstream the Beam

By adding an air deflector upstream of the beam, the cross-sectional area of the air
jet increases, and the air velocity in that area goes down from 18–20 m/s to 12–14 m/s, as
highlighted in Figure 12. The air vortices still form downstream of the beam.
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3.3.2. Improving the Airflow and Pressure Drop by Adding Air Deflectors Upstream and
Downstream of the Beam

The airflow and streamlines are highly improved if the air deflectors are added also
downstream of the beam. As Figure 13 illustrates, the issue with the big vortices and
backflow is solved by adding a deflector downstream of the beam, and the streamlines fool
the air deflector.
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Figure 13. Streamlines; CFD model with a beam size of 288 mm with air deflectors upstream and
downstream of the beam.

The low air velocity for long distances in the shadow of the beam can be seen in
Figure 14, where the results without an air deflector are illustrated. As can be seen in
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Figure 15, the air velocity will continue to be uneven downstream of the beam, but the
length and height of the area with low air velocity are reduced compared with the beam
without an air deflector (see Figure 14). Consequently, the airflow is highly improved, and
the total pressure drop is reduced from 133 Pa to 31 Pa.
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Figure 15. Air velocity, beam with deflector upstream the beam; longitudinal section in the centerline
(CFD model with a beam size of 288 mm, inlet air velocity of 7.9 m/s).

The airflow increases to 15 m/s in the area of the beam due to the reduced cross
section, but the airflow follows the shape of the deflector, and the velocity goes down to
the constant value of about 8 m/s when the cross section increases. The velocity of the
airflow is almost constant downstream of the deflector in the centerline, as seen in Figure 16.
There is a small area close to the side bulkheads of the ventilation duct downstream of
the air deflector where the air velocity is going down below 4 m/s, but only for a short
distance. Overall, the air deflectors upstream and downstream of the beam have a big
positive impact on the airflow, and the total pressure drop is improved from 133 Pa to
about 9.6 Pa. In addition, the noise and vibration could be improved by canceling the high
turbulences and by removing the big vortices.
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3.4. The Energy Saving by Improving the Airflow across the Structural Beam

The power of the fan can be reduced by decreasing the airflow or by reducing the total
pressure drop of the ventilation system and choosing a fan with lower pressure. In the
case of an airflow of 13,200 m3/h used in the experimental model, this cannot be further
reduced, and the galley ventilation is arranged according to Figure 1. In this case, we can
calculate the energy saved if the two structural beams are improved with air deflectors
compared to the structural beam without air deflectors.

In this respect, the power of the fan is calculated using the following equation [13–15],
estimating a medium efficiency of the fan of 70%. In practice, the efficiency of the fan may be
lower. Therefore, more energy could be saved by adding deflectors on the structural beam.

P = dp q/η (3)

where:

P = power consumption (W, Nm/s);
dp = total pressure increases in the fan (Pa, N/m2);
q = air volume flow delivered by the fan (m3/s);
η = global efficiency (mechanical and electrical).

In Table 6, the power of the fan with the airflow of 13,200 m3/h is calculated for
the supply and exhaust ventilation ducts of the galley room indicated in Figure 1. Four
alternatives with and without beams inside are analyzed. In the last column, the energy
saved is indicated for different alternatives compared with the alternative of the beams
without deflectors or holes.

Table 6. Calculation of the power and energy needed to pass the air through the supply and exhaust
ventilation ducts with a beam of 288 mm.

Alternative for Ventilation Ducts Airflow
m3/h

Press. Drop
Pa

Power
kW

Energy
kWh/30 year

Energy Save
kWh/30 year

Beams without deflectors 13,200 266 1.39 152,570 0
Beams with deflectors upstream 13,200 62 0.32 35,561 117,009
Beams with deflectors up and downstream 13,200 19.2 0.10 11,013 141,557
Ventilation ducts without beams 13,200 7.8 0.04 4474 148,096

According to the results presented in Table 6, the energy wasted across the structural
beam can be highly improved by adding a deflector that can be easily built from a thin
steel plate and fixed inside the structural ventilation duct upstream and downstream of
the beam. It is concluded that the air deflector can save over 115 MWh/30 years in case
of deflectors installed only upstream of the beam and over 130 MWh/30 years in case
the deflectors are installed on both sides of the structural beams. The calculation is made
considering an average running time of 10 h per day of the galley ventilation system with
two beams inside.

In case the beam height is bigger than half of the ventilation duct, the airflow down-
stream the beam has the same turbulences, vortices, and backflow in the lower part of the
ventilation duct, but the total pressure drops are increased. The calculation is made con-
sidering the same cross section of the ventilation duct and the fan capacity of 13,200 m3/h
but with a beam height of 388 mm. According to the results indicated in Table 7, the
energy wasted across the structural beam can be highly improved by adding air deflectors.
Considering the average working time of 10 h per day, it should be mentioned that in
30 years of vessel operation, the energy saved by the air deflectors for two beams can be
about 425 MWh.
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Table 7. Calculation of the power and energy needed to pass the air through the supply and exhaust
ventilation ducts with a beam of 388 mm.

Alternative for Ventilation Ducts Airflow
m3/h

Press. Drop
Pa

Power
kW

Energy
kWh/30 year

Energy Save
kWh/30 year

Beams without deflectors 13,200 840 4.40 481,800 0
Beam with about 30% holes 13,200 180 0.94 103,243 378,557
Beams with deflectors up and downstream 13,200 98 0.51 56,210 425,590
Ventilation ducts without beams 13,200 7.8 0.04 4474 477,326

Another possibility to reduce the pressure drop is to provide holes in the structural
beam, but deciding the location and the area of the holes, structural strength analyses
will be necessary. In case the hole area on the structural beam is about 30% of the total
area of the beam, there will be a good improvement in the pressure drop, but the energy
wasted across the beam will double compared with the beam provided with air deflectors.
However, if the beam is provided with holes in 30% of the total area, the energy saved in
30 years of operation, 10 h/day, will be about 375 MWh compared with the beam without
holes or air deflectors.

4. Conclusions

Based on the results of the CFD analysis, confirmed by wind tunnel experimental
measurements, it can be concluded that the ventilation ducts with structural elements
inside must be carefully analyzed and designed in order to keep a good distribution of
the air velocity, to reduce the air turbulences and backflows, and, finally, to keep the
pressure losses as low as possible. Therefore, with a relatively small effort and costs, it
is possible to obtain great benefits for the operation of the ship by reduction of energy
consumption, especially for the ventilation systems with high flow rates. In addition, by
reducing the pressure losses in the ventilation systems, the capacity of the fans will also be
reduced, and consequently, the construction cost will be reduced by installing smaller and
cheaper equipment.

According to the results presented above, the pressure losses in the beam area can be
reduced by up to 90% if the beam is provided with air deflectors located upstream and
downstream, compared with the beam without an air deflector. The improvement in the
pressure drop is from 420 Pa to 49 Pa in the case of a beam height of 388 mm and from
133 Pa to 9.6 Pa in the case of a 288 mm beam height. Therefore, the energy wasted across
the beam can also be reduced by up to 90%. In addition, the air deflectors will reduce the
turbulences of the air and the vortices, then the noise and vibration could also be reduced.

If the beam is provided with holes, this improves the airflow and reduces the pressure
drop, but the efficiency will be lower than the efficiency of the air deflectors, and the
structure strength should be analyzed.

Another solution to improve the ventilation system and save energy is to reduce the
number of elbows and the length of the ventilation duct. This can be achieved during the
concept design by choosing a good location for all rooms with a high amount of airflow,
such as the engine room, emergency generator room, large hazardous spaces, galley, etc.,
and by assuring the necessary spaces for the straight vertical ventilation ducts led from
external louvers to the room, in the area where the horizontal ventilation ducts can be
reduced at minimum.

Taking into account the results of the present work, in future research, the following
topics are intended to be analyzed:

- the position of the fan relating to the ventilation duct and inlet/outlet louvers;
- the air distribution inside the engine rooms using horizontal distribution ducts versus

air distribution without horizontal ventilation ducts inside but providing inlets and
outlets with increased air velocity and air deflectors to direct the airflow for good
circulation inside the room.
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Abbreviations

Acronym Meaning
RH Relative humidity
kW Kilo watt (1000 watt)—power
MW Megawatt (1000 kW)—power
rpm Revolution per minute—power
V Volts
A Amps
Hz Hertz
v Air velocity
pd Dynamic pressure
pt Total pressure
ps Static pressure
P Power consumption (W)
dp Total pressure increases in the fan (Pa, N/m2)
q Airflow delivery by the fan (m3/s)
η Total efficiency (mechanical and electrical)
SOLAS International Convention for Safety of Life at Sea
ISO International Organization for Standardization
CFD Computational Fluid Dynamics
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