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Abstract: Active sonar systems are one of the most commonly used acoustic devices for underwater
equipment. They use observed signals, which mainly include target echo signals and reverberation,
to detect, track, and locate underwater targets. Reverberation is the primary background interference
for active sonar systems, especially in shallow sea environments. It is coupled with the target echo
signal in both the time and frequency domain, which significantly complicates the extraction and
analysis of the target echo signal. To combat the effect of reverberation, an attention and cepstrum
analysis-guided network (ACANet) is proposed. The baseline system of the ACANet consists of
a one-dimensional (1D) convolutional module and a reconstruction module. These are used to
perform nonlinear mapping and to reconstruct clean spectrograms, respectively. Then, since most
underwater targets contain multiple highlights, a cepstrum analysis module and a multi-head self-
attention module are deployed before the baseline system to improve the reverberation suppression
performance for multi-highlight targets. The systematic evaluation demonstrates that the proposed
algorithm effectively suppresses the reverberation in observed signals and greatly preserves the
highlight structure. Compared with NMF methods, the proposed ACANet no longer requires the
target echo signal to be low-rank. Thus, it can better suppress the reverberation in multi-highlight
observed signals. Furthermore, it demonstrates superior performance over NMF methods in the task
of reverberation suppression for single-highlight observed signals. It creates favorable conditions
for underwater platforms, such as unmanned underwater vehicles (UUVs), to carry out underwater
target detection and tracking tasks.

Keywords: reverberation suppression; underwater acoustic signal processing; self-attention; cepstrum
analysis; convolutional neural network

1. Introduction

Sonar systems with long detection ranges are one of the most commonly used pieces
of equipment in underwater detection operations. Reverberation is one of the most critical
background interferences of active sonar systems, which limits the detection and identifica-
tion performance of the system, especially in shallow sea environments. The superposition
of scattered sound waves from different scatterers produces reverberation. These scatter-
ers [1] include organisms, sand grains, undulating sea surfaces, bubble layers, sediments
on the seafloor, etc. Similar to the target echo signal, the time–frequency characteristics of
the reverberation are also related to the transmitted signal. Thus, the reverberation and
the target echo signal overlap in both the time and frequency domains. Therefore, it is
challenging to perform reverberation suppression in the time domain or frequency domain
alone. How to effectively improve the signal-to-reverberation ratio (SRR) of the target echo
signal has always been one of the hottest topics in underwater acoustic signal processing.
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Currently, the research on reverberation suppression mainly focuses on two aspects:
transmit waveform design and signal processing algorithm. The basic principle of active
sonar waveform design is that the signal should have Doppler reverberation suppression
ability, noise suppression ability, and good emission performance. Therefore, ensuring the
ability of the active sonar system to detect medium and long-range targets [2]. Cox et al. [3]
refer to a pulse signal with multiple narrowband segments on the spectrum as a comb
waveform (CW), whose energy is distributed in multiple narrowband segments but is still a
broadband signal. Therefore, CW has the reverberation suppression characteristics of both
narrowband and wideband signals [4]. Typical comb spectrum signals include sinusoidal
frequency modulation (SFM), uniform comb spectrum signal (UC), and geometric comb
spectrum signal (GC) [5]. SFM has good peak-to-average power characteristics, but its high
range side lobes lead to the degradation of ranging accuracy. Hague et al. [6] effectively
suppressed the range side lobes by making the instantaneous frequency of SFM non-
periodic. However, they also made the signal lose its reverberation suppression ability.
Soli et al. [7] proposed a co-prime comb spectral signal (CC), which can achieve a range-
Doppler performance similar to UC while occupying reduced bandwidth. GC has good
ranging accuracy, but its high peak-to-average power leads to low emission efficiency.
Li et al. [8] proposed a comb spectrum waveform cognitive filtering detection algorithm,
which improved the output SRR by more than 6 dB.

This study focuses on reverberation suppression methods based on modern signal
processing, including space–time adaptive processing (STAP) and joint time–frequency
domain processing. The moving active sonar platform will cause the reverberation in
different orientations to have different Doppler shifts, leading to the Doppler spectrum
expanding. When the target and the sonar platform have a non-zero radial velocity,
the target signal and the reverberation is theoretically separable on the angle-Doppler
plane. This is how STAP achieves reverberation suppression. Jaffer et al. [9] were the
first to apply the STAP method to active sonar and proposed two space–time adaptive
filter structures. Karine et al. [10] studied the low-frequency sonar STAP method and
obtained better reverberation suppression performance than the standard method by
mixing waveform design and the STAP method. Li et al. [11] proposed a space–time
adaptive pre-whitener based on a two-dimensional autoregressive (2D-AR) algorithm.
Compared to one-dimensional (1D) autoregressive detectors, it exhibits better reverberation
suppression performance. Sasi et al. [12] proposed a low-complexity STAP algorithm
based on a multinomial filter structure, which reduces the computational complexity with
little impact on detection performance. Zhang et al. [13] exploited the sparsity of the
reverberation spectrum in the angle-Doppler plane. They proposed a sparse adaptive
covariance estimation STAP (SACE-STAP) algorithm, which improved the reverberation
suppression ability and object detection performance. Xing et al. [14] proposed a STAP
algorithm based on direct data domain, which can effectively suppress the reverberation
of active sonar by combining the advantages of joint domain localized (JDL) processing
and STAP. However, there are still many problems that limit the performance of STAP in
practical applications. For example, STAP estimates the NK × NK reverberation covariance
matrix C with many independent and identically distributed data. K is the number of
sampling points of the transmitted signal, and N is the number of array elements. To
generate the optimal weight vector, the matrix C−1 is calculated, which has a computational
complexity of O{(NK)3}. Thus, the computational complexity of the STAP method is
relatively high.

The joint time–frequency domain processing method uses the difference in time–
frequency structure between the target echo and the reverberation. In recent years, joint
time–frequency domain processing methods such as short-time Fourier transform (STFT),
fractional Fourier transform (FRFT), Wigner–Ville distribution (WVD), and the Hilbert–
Huang transform (HHT) have been widely used. STFT is not affected by cross-term
interference, but has the disadvantage of lower time–frequency resolution. WVD has better
time–frequency resolution when dealing with single-component signals, but there will
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be severe cross-term interference when dealing with multi-component signals. Cohen’s
time–frequency distribution [15,16] reduces cross-term interferences to a certain extent by
adding kernel functions, but its applicability to different signals has significant differences.
Based on the joint time–frequency domain processing method, Li et al. [17] established
a joint feature space by studying the target echo and reverberation characteristics and
separated the target echo and reverberation in the joint feature space. Kay et al. [18]
proposed a pre-whitener based on an autoregressive model, which makes objects easier to
detect. Li et al. [19] combined image morphology and a time–frequency blind separation
algorithm to separate the target echo from reverberation. They also derived the expression
of reverberation in the WVD time–frequency domain. In addition, non-negative matrix
factorization (NMF) is also widely used in reverberation suppression tasks. Under non-
negative constraints, NMF is a fully additive model that achieves nonlinear dimensionality
reduction. It has been widely used in speech signal processing, pattern recognition, and
computer vision [20,21]. Lee et al. [22] proposed a reverberation suppression algorithm
for continuous wave signals based on the NMF method. Kim et al. [23,24] proposed
two preprocessing methods that facilitate the application of NMF methods. Jia et al. [25]
proposed an NMF-based reverberation suppression method that uses matrix rotation for
low-rank preprocessing. Even so, reverberation suppression remains a challenging problem
in underwater active sonar detection, especially for moving sonar platforms.

Over the past few decades, deep neural networks (DNNs) have been widely used
to solve regression and classification problems [26]. With theoretical innovations and the
improvement in computing speed, DNNs have achieved great success in the fields of
image processing [27,28], speech processing [29], and natural language processing [30].
In noise suppression [31] and reverberation suppression [32] of speech signals, DNNs
can predict clean speech spectrograms from complex inputs. Compared with traditional
methods based on statistical models, DNN-based methods have significant performance
improvements. Borgstrom et al. [33] proposed an end-to-end noise–reverberation joint
suppression network for speech enhancement which uses an attention masking mechanism.
Zhao et al. [34] proposed a single-channel speech reverberation suppression network based
on the self-attention mechanism and temporal convolutional network (TCN).

In general, since the received clutter is usually non-stationary, it is difficult to obtain a
sufficient quantity of independent and identically distributed data to calculate the clutter
covariance matrix. Thus, most of the research on STAP methods, including those mentioned
above and related works such as sparse recovery STAP (SR-STAP) [35–37] and knowledge-
aided STAP (KA-STAP) [38], are aimed at faster or better estimation of the clutter covariance
matrix. Furthermore, NMF-based methods and other machine learning methods, such
as low-rank matrix recovery [39], require target echo signals to be low-rank in the time–
frequency domain. However, the echo signals of targets with complex geometric structures
often contain multiple highlighted structures, which is challenging to meet the low-rank
requirements. Therefore, a better method is needed to create favorable conditions for
underwater platforms to carry out underwater target detection and tracking tasks [40,41].

The primary purpose of this study is to solve the problem of reverberation suppression
of non-low-rank target echo signals that NMF-based methods cannot handle. Therefore, a
single-channel underwater reverberation suppression network (ACANet) was proposed.
The spectrogram of the input waveform is obtained after STFT time–frequency analysis.
The cepstral analysis module is used to learn the features of the signal in the cepstral
domain, the self-attention module is used to represent different input features dynamically,
and the convolution module is used to learn the nonlinear mapping of the features. Finally,
the reconstruction module is used to reconstruct the spectrogram of the target echo signal.



J. Mar. Sci. Eng. 2023, 11, 313 4 of 18

2. Theory and Methods
2.1. Active Sonar Observation Signal Model
2.1.1. Reverberation Model

This study generates seabed reverberation data based on the cell scattering model.
Since the composition of reverberation is highly complex, some simplified assumptions are
used to make the simulation more feasible [42].

1. Changes in the sound velocity caused by temperature, pressure, and other factors are
not considered. Thus, the sound trajectories are all straight lines;

2. Only the sound absorption effect and the spherical expansion effect of sound waves
are considered, while other attenuation effects are ignored;

3. The reverberant scattering units are uniformly distributed in distance, azimuth, and
elevation;

4. The scatterers are uniformly distributed in the entire scattering unit at any given
moment, and the density of the scatterer is large enough;

5. The pulse width is short enough that the propagation effect within the scattering units
is negligible;

6. No multiple scattering.

Both theoretical research and experimental results prove that these simplified assump-
tions only disregard some secondary factors and simplify the complexity of the simulation.
The reverberation generated in the simulation has the same statistical characteristics as
the detected reverberation. Both the reverberation intensity and the correlation coefficient
gradually decrease with the increase in time. The reverberation magnitude obeys the
Gaussian distribution, and the reverberation envelope obeys the Rayleigh distribution.
Therefore, the obtained reverberation simulation results have general guiding significance.

The seafloor is an effective reflector and scatterer of sound waves. The sound waves
projected on the irregular seafloor form the seafloor reverberation. In addition, the sea
surface, bubble layer, suspended sediment, plankton, and fishes are also effective scatterers.
The sound waves projected on the sea surface and the bubble layer are scattered to form the
sea surface reverberation. The sound waves projected on suspended sediment, plankton,
and fishes are scattered to form the volume reverberation. However, the intensity of
seafloor scattering usually exceeds the intensity of volume scattering and surface scattering.
Therefore, seafloor reverberation is the main interference background for active sonar
systems working in shallow waters [1]. Scatterers produce scattered echoes under the
excitation of incident sound waves. The superposition of the scattered echoes generated by
many seafloor scatterers constitutes seafloor reverberation. The Doppler frequency shift
resulting from the motion of the sonar platform is expressed as

fd = 2 f0v cos θ cos ϕ/c (1)

where f 0 is the pulse frequency, v is the speed of the sonar platform, θ and ϕ are the azimuth
and elevation angles of the scatterer relative to the sonar platform, respectively, and c is the
speed of sound in seawater.

Considering the Doppler frequency shift caused by the movement of the sonar plat-
form, when the incident sound wave is a linear frequency-modulated (LFM) pulse, the
scattered echo generated by the scatterer is expressed as

r(t) = A(t)u(t − τ) exp
[

j
(

2π( f0 + fd)(t − τ) + πk(t − τ)2
)

+ jφ
]

(2)

where A(t) is the random amplitude obeying a normal distribution, u(t) is the signal
envelope, τ is the time delay, k is the slope of the LFM pulse, and φ is the random phase
that obeys the uniform distribution of [0, 2π].

When the grazing angle of the incident sound wave is less than 45◦, the relationship
between the scattering intensity of the seafloor and the grazing angle satisfies Lambert’s
law. The scattered acoustic wave of the seafloor reverberation consists of non-specular
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reflection obeying Lambert’s law. Therefore, the scattering intensity of the scatterer can be
expressed as

Sb = 10 log10 µ + 10 log10 sin2 ϕ (3)

where µ is the seafloor scattering constant and is confirmed to be −2.7 by measurements
over a wide frequency range [1]. The equivalent plane wave reverberation level of the
seabed reverberation is expressed as

RLb = SL − 2TL + Sb + 10 log10(∆θ · ∆R) (4)

where SL is the source level, TL is the propagation loss, Sb is the seabed scattering intensity,
and ∆θ·∆R is the size of the scattering unit.

At a certain time, the shape of the reverberation area is an annular sector [42]. Assum-
ing that there are Nθ × NR scattering units in this area, each scattering unit contains Nn
scatters. According to Equations (2) and (4), and the principle of linear superposition, the
seafloor reverberation generated by the superposition of these scatters can be expressed as

r(t) =
Nθ

∑
i = 1

NR

∑
k = 1

Nn

∑
j = 1

√
10RLik/10rijk(t) (5)

2.1.2. Target Echo Highlight Model

The highlight model assumes that the target echo signal of any complex underwater
target can be equivalent to the coherent superposition of sub-echoes generated by several
highlight components on the target [43]. Affected by target geometry and incident angle, the
highlight components on the target surface and corners will generate scattered geometric
waves under the excitation of the incident sound wave. These scattered waves together
constitute the geometric highlight echo of the target. In addition, due to the influence of
the target material and structure, the boundary of the target surface and the medium will
generate orbiting waves and scattered elastic waves, which together constitute the elastic
highlight echo of the target.

The highlight model treats the target as a linear system with a transfer function defined
as [25,43]

H( f ) = Aej fdτejφ (6)

where A is the amplitude of the highlight echo, τ is the delay, and φ is the phase jump
generated during the echo formation.

When the incident sound wave is an LFM pulse, the target echo signal generated by a
target containing multiple highlights is expressed as

s(t) =
N

∑
i = 1

Aiu(t − τi) exp
[

j
(

2π( f0 + fd)(t − τi) + πk(t − τi)
2
)

+ jφi

]
(7)

where N is the number of highlights.
It is worth noting that this study did not consider the multi-path effect. Training deep

neural networks with feature-rich data can improve the performance and robustness of
the network. This study uses the highlight model to generate a series of observed signals
containing different highlight structures. These signals with different highlight features
are used to train and evaluate the proposed ACANet. Taking multi-path into account
does not cause changes in the highlight structure, but instead increases the computational
complexity of the highlight model. Therefore, to simplify the model, this study did not
consider the multi-path effect.
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2.2. Proposed Method

The underwater reverberation suppression network ACANet is introduced in this
section. It consists of a cepstrum analysis module, a multi-head self-attention module, a
one-dimensional (1D) convolutional module, and a reconstruction module.

In Figure 1, the observed waveform is the reverberant target echo signal received by
the sonar platform, which can be written as

x(t) = s(t) + r(t) (8)

where s(t) and r(t) are the target echo signal and reverberation. This study aims to recover
the clean target echo signal s(t) from the reverberant observation x(t). The following
subsections will first describe the joint time–frequency domain processing method. Then
the details of each component of the network will be introduced.
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2.2.1. Joint Time–Frequency Domain Processing

In terms of physical structure, the target echo signal may contain multiple highlight
echoes so that the target echo signal might be a multi-component signal. WVD suffers
from severe cross-term interference when dealing with multi-component signals. Cohen’s
time–frequency distribution reduces the interference of cross terms to a certain extent by
adding kernel functions, but its applicability to different signals has significant differences.
Therefore, STFT is chosen as the joint time–frequency domain processing method for feature
extraction of the observed signal x(t).

This study divides the time domain observed signal x(t) into several frames with a
hamming window. Then, a 256-point discrete Fourier transform (DFT) is performed on
each frame. Finally, the spectrogram of the observed signal is obtained by stacking the DFT
results along the time dimension. X(m) is used to denote the features of the observed signal
at time frame m, which is a 256-D vector. It is important to note that all the features have
been mapped to [0, 1] by normalization. Therefore, the following consecutive feature vector
will be used as the input of the network

X = {X(1), X(2), X(3), . . . , X(N)} (9)

where N is the total number of frames.
S(m) is used to denote the features of the clean target echo signal at time frame m,

which can be expressed as

S = {S(1), S(2), S(3), . . . , S(N)} (10)
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Taking S as the training target of the network, the reverberation suppression task is
now formulated as a seq-to-seq mapping problem.

F[X(i)]→ S(i), i = 1, 2, 3, . . . , N (11)

2.2.2. Cepstrum Analysis Module

Cepstrum analysis is a widely used nonlinear digital signal processing method in
speech processing. It transforms a signal into a cepstrum domain to reveal the pseudo-
frequency features of the signal. The traditional cepstrum processing method [44] consists
of a logarithmic operation and a discrete cosine transform (DCT).

In ACANet, the cepstrum analysis module (CAM) simulates the traditional cepstrum
processing method, and is used to extract the different features of the signal in the cepstrum
domain. The difference between the system in this study and the traditional system is
that the CAM consists of an element-wise log operational layer, a 1 × 1 convolutional
layer with a ReLU activation function [45], and a normalization layer. The traditional DCT
process is replaced with a CNN layer to achieve a trainable linear transformation. The
layer normalization layer makes the input features follow the standard normal distribution,
which ensures the stability of the features and makes the training process more stable. The
layer normalization process can be expressed as

LayerNorm(ILN) =
ILN − E[ILN ]√

Var[ILN ] + ε
· γ + β (12)

where ILN is a dynamic representation of the input feature output by the CNN layer. Both
mean and standard deviation are calculated on the ILN matrix. Note that compared to
the statistical formula, here there are three more variables: ε is a small constant used to
ensure that the denominator is non-zero, and γ and β are trainable affine transformation
parameters. A deep network may suffer from overfitting problems. Therefore, CAM is used
to enrich the features of the input signal, which helps to reduce the network’s depth while
improving its performance. The implementation of CAM can be expressed as

OCAM = LayerNorm
(

ReLU
(
Conv(log(1 + X))

))
(13)

2.2.3. Self-Attention Module

In recent years, attention-based models have been successfully applied to many deep
learning tasks and have achieved impressive performance. These tasks include machine
translation [30] and speech enhancement [34]. To ensure that the network can adapt to
a variety of different reverberation environments, a multi-head attention mechanism in
the self-attention module (SAM) is introduced to learn the dynamic representation of the
input features. Figure 2 shows the diagram of the multi-head attention module, where the
number of heads is 2.

It has been found beneficial to replicate the attention mechanism into multiple heads,
each being able to focus on different subsequences of the input by using different query (Q),
key (K), and value (V). Q, K, and V are the input vectors of the attention mechanism. In
the multi-head attention mechanism, they are first mapped to Q’, K’, and V’ through linear
transformation, respectively. Then they are divided into multiple subsequences based on the
number of heads to focus on the information in different subspaces. Qh, Kh, and Vh denote the
subsequences on different heads, respectively, where h = 1, 2, . . . , M, and M is the number of
heads. The similarity between Qh and Kh determines the weight distribution of Vh. Here, a
scaled dot product is used to measure the similarity, which can be expressed as

Similarity(Qh, Kh) = SoftMax

(
QhKh√

dKh

)
(14)

where dKh is the dimension of the vectors in the submatrix Kh.
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Attention is a weighted summation of the similarity and Vh. It is a compact dy-
namic representation including relevant information learned from the whole subsequence.
Therefore, attention can be defined as

Attention(Qh, Kh, Vh) = SoftMax

(
QhKh√

dKh

)
Vh (15)

Finally, the attention vectors from each head are concatenated, and a linear transfor-
mation is performed to generate a new dynamic representation of the input features. Thus,
multi-head attention can be expressed as

Attention(Q, K, V) = Concat(Attention(Qh, Kh, Vh))W (16)

A normalization layer with a residual connection is used to ensure the stability of
the dynamic representation of the input features. It is worth noting that in SAM, Q, K,
and V come from the same sequence, which is the output of CAM. This is why it is called
self-attention. Therefore, the implementation of SAM can be expressed as

OSAM = LayerNorm(OCAM + Attention(OCAM, OCAM, OCAM)) (17)

2.2.4. Convolution Module

In ACANet, a large number of residual units are used to build the convolutional
module (CM). The deep residual network is a deep network that has been widely used in
recent years. It consists of a large number of residual units, and has achieved remarkable
performance in accuracy and convergence [27]. In CM, a pre-activated residual unit [28]
is used because it performs better than post-activation. Figure 3 shows the pre-activation
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residual unit. It consists of two 1D convolutional layers, and the ReLU activation function
in each layer is applied before the convolution operation.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 9 of 19 
 

 

( ) ( )( )Attention , , Concat Attention , ,=
h h h

Q K V Q K V W  (16) 

A normalization layer with a residual connection is used to ensure the stability of the 

dynamic representation of the input features. It is worth noting that in SAM, Q, K, and V 

come from the same sequence, which is the output of CAM. This is why it is called self-

attention. Therefore, the implementation of SAM can be expressed as 

( )( )= +Att ,L entionayerNorm ,
SAM CAM CAM CAM CAM

O O O O O  (17) 

2.2.4. Convolution Module 

In ACANet, a large number of residual units are used to build the convolutional 

module (CM). The deep residual network is a deep network that has been widely used in 

recent years. It consists of a large number of residual units, and has achieved remarkable 

performance in accuracy and convergence [27]. In CM, a pre-activated residual unit [28] 

is used because it performs better than post-activation. Figure 3 shows the pre-activation 

residual unit. It consists of two 1D convolutional layers, and the ReLU activation function 

in each layer is applied before the convolution operation. 

 

Figure 3. Diagram of the residual unit. 

Therefore, the implementation of the pre-activation residual unit can be expressed as 

( )( )( )( )( )( )Conv ReLU LayerNorm Conv ReLU LayerNorm
RU

O X X= +  (18) 

where X is the input of each residual unit. 

Reverberation may cause a smearing effect in the spectrogram. To ensure the perfor-

mance of reverberation suppression, more contextual information needs to be captured 

while learning the mapping function. Enlarging the receptive field size is a commonly 

used method for CNNs to capture more contextual information. In general, increasing the 

depth or width of the network is the most commonly used method to expand the receptive 

field of CNN, but increasing the depth of the network will drastically increase the net-

work’s computational cost and memory consumption. Dilated convolution [46] makes a 

tradeoff between increasing the depth and width of the network, which can minimize the 

depth of the network while increasing the receptive field. For example, the receptive field 

of a 1D dilated convolutional network with kernel size 3 and dilation rate 2 is (4n + 1). The 

Figure 3. Diagram of the residual unit.

Therefore, the implementation of the pre-activation residual unit can be expressed as

ORU = X + Conv

(
ReLU

(
LayerNorm

(
Conv

(
ReLU(LayerNorm(X))

))))
(18)

where X is the input of each residual unit.
Reverberation may cause a smearing effect in the spectrogram. To ensure the perfor-

mance of reverberation suppression, more contextual information needs to be captured
while learning the mapping function. Enlarging the receptive field size is a commonly used
method for CNNs to capture more contextual information. In general, increasing the depth
or width of the network is the most commonly used method to expand the receptive field
of CNN, but increasing the depth of the network will drastically increase the network’s
computational cost and memory consumption. Dilated convolution [46] makes a tradeoff
between increasing the depth and width of the network, which can minimize the depth
of the network while increasing the receptive field. For example, the receptive field of a
1D dilated convolutional network with kernel size 3 and dilation rate 2 is (4n + 1). The
receptive field of a standard convolution network with kernel size 3 and dilation rate 1 is
(2n + 1), where n is the depth of the network. Therefore, the receptive field of one-layer
dilated convolution is equal to the receptive field of two-layer standard convolution. In CM,
dilated convolution with dilation rate 2 and standard convolution are used to construct the
residual units, corresponding to the dilated convolution blocks and convolution blocks in
Figure 1, respectively.

Table 1 illustrates the parameters of each convolutional layer used in the experiments.
To minimize the training time of the network while maximizing its reverberation suppres-
sion performance, 14 convolutional layers are deployed in the CM. Increasing the number
of channels in a deep neural network means increasing the number of features available
during the training process. Thus, the first layer performs a linear projection from 256-D to
512-D to double the number of features. The last layer performs a linear projection from
512-D to 256-D to recover the number of channels. In the remaining 12 convolutional layers,
dilated and standard convolutions are deployed interleaved, achieving a receptive field
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size of 38. Compared with a 12-layer standard convolution, the receptive field is expanded
by 1.52 times. In addition, the same padding is applied to all 14 convolutional layers to
ensure that the input sequence is the same length as the output sequence.

Table 1. Conventional module architecture in ACANet.

Layer

1D CNN Layer

Layer-Norm Activation
Block

in Figure 1Kernel Size Input
Channels

Output
Channels Dilation

1 3 256 512 1 7 ReLU 1D Conv

2 3 512 512 2 3 ReLU
Dilated Conv Block3 3 512 512 2 3 ReLU

4 3 512 512 1 3 ReLU
Conv Block5 3 512 512 1 3 ReLU

6 3 512 512 2 3 ReLU
Dilated Conv Block7 3 512 512 2 3 ReLU

8 3 512 512 1 3 ReLU
Conv Block9 3 512 512 1 3 ReLU

10 3 512 512 2 3 ReLU
Dilated Conv Block11 3 512 512 2 3 ReLU

12 3 512 512 1 3 ReLU
Conv Block13 3 512 512 1 3 ReLU

14 3 512 256 1 7 ReLU 1D Conv

2.2.5. Reconstruction Module

The common goal of the above modules is to output a multiplication mask, and
the reconstruction module (RM) aims to use this multiplicative mask to suppress the
reverberation in the spectrogram of the observed signal. First, the Hadamard product of
the spectrogram matrix and the multiplication mask is computed. In Figure 1, ⊗ represents
the Hadamard product operator. Then, a 1 × 1 convolutional layer with a ReLU activation
function is used as the fully connected layer of the network to achieve better regression
performance. Since the data have been normalized to [0, 1] during the joint time–frequency
domain processing, the network’s output needs to be non-negative, which can be achieved
by the ReLU activation function. Ocm is used to denote the output of the CM. Thus, the
implementation of the RM can be defined as

ORM = ReLU(Conv(X⊗OCM)) (19)

2.2.6. Loss Function

The training process of ACANet aims to make the difference between the spectrogram
matrix output by the network and the spectrogram matrix of the target echo signal as
small as possible. On the one hand, a more negligible difference means a better rever-
beration suppression performance. On the other hand, this also maximizes the power
difference between the target echo signal and the background interference. Therefore, the
mean squared error (MSE) is used as the loss function when training the reverberation
suppression network. The MSE loss function can be expressed as

L(Θ) =
∥∥∥F(X) − S

∥∥∥2

2
(20)

where Φ is the parameter learned during training, F is the mapping function learned by the
network, and ‖·‖2 denotes the L2 norm.
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3. Data and Implementation
3.1. Dataset
3.1.1. Training Dataset

The ACANet is trained with simulated data. Table 2 lists the configurations for
simulated training and test datasets. Specifically, 3 frequencies, 4 bandwidths, and 3 pulse
widths are used to generate 36 LFM signals, which are the sonar system’s transmitted
signals. Assume that the source level of the sonar system is 220 dB, the emission period is
3 s, the distance to the sea surface is 20 m, the depth of the ocean channel is 300 m, and the
target is 50 m away from the seabed. This study simulated three targets, containing one,
two, and three highlights, respectively. Each target is activated by 36 transmitted signals.
Based on this, 108 clean target echo signals are generated in the simulation. Reverberation
is a random process, and 10 reverberations are generated for each target echo signal.
In general, the reverberation interference suffered in short-range detection tasks is very
serious, while that in long-range detection tasks is relatively slight. Therefore, to simulate
different reverberation levels, the reverberation and the target echo signal are combined
according to five different SRRs. Finally, a dataset with 5400 training data points is obtained
in this study.

Table 2. Configuration for simulated dataset.

Item Training Dataset Test Dataset

Target 3 targets contain 1, 2, and 3 highlights, respectively

Transmitted Signal 3 (frequency) × 4 (bandwidth)
× 3 (pulse width) = 36

3 (frequency) × 3 (bandwidth)
× 3 (pulse width) = 27

Target Echo Signal 36 for each target 27 for each target
Reverberation 10 for each target 3 for each target

Observed Signal 36 × 3 × 10 × 5 (SRRs) = 5400 27 × 3 × 3 × 5 (SRRs) = 1215

Figure 4 shows the STFT spectrograms of nine observed signals randomly selected from
the training dataset. This training dataset contains different transmitted signals, target echo
signals with different numbers of highlights, reverberation in different environments, and
observed signals with different SRRs, which can reflect the variability and complexity of the
underwater environment to a certain extent. Thus, the reverberation suppression network can
improve its performance and efficiency by training with a dataset with robust features.

3.1.2. Test Dataset

The reverberation suppression performance of ACANet is also evaluated with simulated
data. In this phase, 27 LFM signals are randomly selected from the above 36 LFM signals
as the transmitted signals of the sonar system. Then, the target echo signals with different
powers and highlight structures are generated in the simulation, which ensures that the target
highlight features in the test dataset differ from the training dataset. By setting different seeds
for the random number generator, three different reverberations are generated for each target
echo signal. Finally, the reverberation and the target echo signal are combined according to
5 different SRRs to form a test dataset consisting of 1215 data points.
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3.2. Implementation Detail

The initial parameters of ACANet are a learning rate of 2 × 10−3, batch size of 64, and
epoch of 20. The Adam optimization algorithm is used to update the parameters of the
network, which is more efficient than traditional gradient descent and stochastic gradient
descent. The Adam optimization algorithm can also adjust the learning rate automatically
during training.

PyTorch 1.12.1 and Python 3.8 are applied to train and test the proposed ACANet.
All the simulations and experiments are conducted on Windows 10 with an Intel Core
i5-10400 CPU, 16 G RAM, and Nvidia GeForce GTX 1080 Ti GPU. The Nvidia CUDA 11.6
and cuDNN 8.4.1 are employed to speed up the training process.

The joint time–frequency domain processing in Section 2.2.1 is designed and performed
in MATLAB R2022a. With this exception, the whole network is designed and performed
in Python.
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4. Results
4.1. Evaluation Metrics

Peak signal-to-noise ratio (PSNR) and SRR are used as the primary metrics to eval-
uate the proposed ACANet. For both of these metrics, a higher value indicates better
performance.

The PSNR evaluation is defined as

PSNR = 10 log10

(
MAX2/MSE

)
(21)

where MAX is the maximum value of the spectrogram matrix, and MSE is the error between
the spectrogram of the clean target echo signal and the ACANet output.

The SRR evaluation is expressed as

SRR = 10 log10(Ps/Pr) (22)

where Ps is the power of the clean target echo signal, and Pr is the power of the reverberation.

4.2. Evaluation Results

First, an ablation study was conducted to assess the effectiveness of the various
modules that make up ACANet; the results are provided in Table 3. The reverberation
suppression performance of the proposed ACANet is evaluated with multiple groups
of input signals containing one, two, and three highlights, respectively. Each group has
three columns corresponding to three different reverberation environments. The results
are reported in terms of PSNR. The table first includes the PSNR evaluation results for the
unprocessed input signal. Next, in each row, an additional feature is added to the ACANet.
They all further improve the performance of the network.

Table 3. Ablation study for the ACANet.

Methods PSNR

Number of
Highlights 1 2 3

Input 23.94 24.39 24.10 23.00 23.32 23.31 22.88 22.91 23.06
Baseline system 31.58 31.76 31.11 29.61 29.69 29.47 28.36 28.24 27.89

Cepstrum Analysis 32.01 32.68 31.78 30.20 30.39 30.24 29.15 28.90 28.74
Self-Attention 32.43 32.69 32.09 30.43 30.68 30.48 29.71 29.36 29.34

The second row provides the results when the baseline system is introduced, which
consists of the convolutional module (CM) and the reconstruction module (RM) proposed
in Sections 2.2.4 and 2.2.5, respectively. Benefiting from the dilated convolution, which
has a larger receptive field and the residual connection, thus overcoming the gradient
disappearance problem, the baseline system offers significant performance improvements
over input signals. The PSNR evaluation results of each group of input signals are improved
by 7.34, 6.38, and 5.21 dB on average, respectively.

The third row provides the results when the cepstrum analysis module (CAM) is
introduced, which is proposed in Section 2.2.2. This module is used to extract the features
of the input signal in the cepstrum domain. Compared with the baseline system, the PSNR
evaluation results of each group of input signals are improved by 0.67, 0.69, and 0.77 dB on
average, respectively. The results illustrate that the reverberation suppression performance
is further improved after adding this module, especially for those input signals with
multiple highlights. Thus, the proposed CAM is beneficial for processing multi-highlight
input signals in reverberation suppression tasks.

The last row provides the results when the self-attention module (SAM) is introduced,
which is proposed in Section 2.2.3. The suggested SAM can dynamically represent global
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features while focusing on the vital part of the input signal. The PSNR evaluation results of
each group of input signals are improved by 0.24, 0.25, and 0.54 dB on average, respectively.
Therefore, SAM also significantly improves performance when dealing with multi-highlight
input signals.

Moreover, Table 3 reveals that the range of PSNR results for the baseline system is
3.87 dB. With the introduction of CAM, the range changed to 3.94 dB. The final range is
reduced to 3.35 dB after the introduction of SAM. It can be seen that the proposed SAM
makes the dispersion of the results smaller. Therefore, SAM improves the robustness of the
network to a certain extent.

Figure 5 shows the difference in reverberation suppression results generated by the
SAM. It can be seen from Figure 5b that the network consisting of the baseline system
and the CAM suppresses the reverberation effectively. However, the reconstructed signal
lost some components. In Figure 5c, the addition of SAM makes the proposed ACANet
reconstruct the signal more completely.
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Next, an experiment was designed to compare the performance of the proposed
ACANet with the method from Jia et al. [25], representing a state-of-the-art solution for
single-channel underwater reverberation suppression. They use the NMF with matrix
rotation as a low-rank preprocessing to suppress the reverberation. The premise of the
NMF algorithm to suppress the reverberation is that the signal must be low-rank. Therefore,
matrix rotation is used as a preprocessing method in [25] to ensure the low rank of the
LFM signal on the spectrograms. However, for multi-highlight target echo signals, the
multi-highlight structure destroys the low-rank feature of the signal. Therefore, the NMF
algorithm cannot effectively suppress the reverberation in multi-highlight signals.

As the PSNR evaluation results in Table 4 indicate, the NMF algorithm does suffer
from significant performance degradation when dealing with multi-highlight input signals.
For some groups of input signals, it even leads to counterproductive reverberation suppres-
sion performance. The proposed ACANet also faces the same performance degradation
problem. Due to the rich features brought by CAM and the robustness brought by SAM,
the evaluation results after decay are within an acceptable range. Under this PSNR, the
target echo signal is relatively pure, and the structure of the highlights is pronounced.

Table 4. Evaluation results of input signals with different numbers of highlights.

Methods PSNR

Number of
Highlights 1 2 3

Input 23.94 24.39 24.10 23.00 23.32 23.31 22.88 22.91 23.06
NMF * 27.24 27.56 27.12 23.34 23.40 23.29 21.90 21.84 21.83

ACANet * 32.43 32.69 32.09 30.43 30.68 30.48 29.71 29.36 29.34

* Comparison of ACANet to the NMF with matrix rotation preprocessing.
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The final experiment is conducted to verify the reverberation suppression performance
difference under five PSNRs and five SRRs. As shown in Table 5, with the increase in input
PSNR and SRR, the reverberation in input signals gradually decreases. Therefore, the PSNR
and SRR gain that the reverberation suppression method can bring gradual decreases. At
this time, the matrix rotation preprocessing method, which cannot make multi-highlight
LFM signals satisfy the low-rank condition, becomes a fatal flaw of NFM. Thus, the counter-
productive reverberation suppression performance caused by the NMF algorithm becomes
more apparent. In contrast, the proposed ACANet provides performance improvements
for all input signals. Compared with the NMF algorithm proposed in [25], the evaluation
results of the proposed ACANet are improved by about 3–5 dB.

Table 5. Evaluation results of input signals with five different PSNRs and SRRs.

Methods PSNR SRR

Input 18.55 19.68 22.25 26.12 30.58 −9.2 −3.98 1.22 6.41 11.6
NMF * 21.81 22.64 24.37 25.73 26.28 −5.94 −1.01 3.34 6.03 7.3

ACANet * 26.59 26.29 27.49 30.32 32.94 −1.17 2.64 6.46 10.61 13.96

* Comparison of ACANet to the NMF with matrix rotation preprocessing.

Figures 6–8 show the spectrogram results of the pre-rotation NMF method and the
proposed ACANet. Specifically, Figure 6b illustrates that the pre-rotation NMF method
suppresses the reverberation well when there is only one highlight in the signal. However,
it could perform better when it comes to multi-highlight signals. Since the matrix rotation
preprocessing fails to make multi-highlight signals to satisfy the low-rank condition, the
results of the NMF method deteriorate predictably. In Figures 7b and 8b, it can be seen that
the structure of the highlight has changed, which may lead to the failure of tasks such as
target recognition.
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From Figures 6c, 7c and 8c, it can be seen that the reverberation suppression per-
formance of the proposed ACANet is relatively stable. It can effectively complete the
reverberation suppression job while retaining the highlight features of the target echo
signal. By analyzing output spectrograms of the proposed ACANet, target parameters can
be predicted based on features such as the time delay between highlights.

5. Conclusions and Future Scope

Reverberation is the primary background interference for active sonar systems. There-
fore, reverberation suppression is a crucial issue in underwater active sonar detection tasks.
To improve the reverberation suppression performance for most underwater targets, which
usually contain multiple highlights, the ACANet with a multi-head self-attention module
and a cepstrum analysis module is proposed. Systematic evaluations demonstrate that
due to the rich cepstrum features provided by CAM, the dynamic features and robustness
provided by SAM, and the larger receptive field provided by CM, the proposed ACANet
is very effective at reverberation suppression in active sonar observed signals. On the one
hand, the ACANet performs better than NMF methods in suppressing reverberation in
single-highlight observed signals, with about 5 dB improvement in PSNR evaluation. On the
other hand, when processing multi-highlight input signals that destroy the signal’s low-rank
feature, it is difficult for NMF methods to separate target echo signals and reverberations. In
contrast, the ACANet improves the PSNR of the input signal by about 7 dB. The robustness
of the ACANet makes it effectively suppress the reverberation in multi-highlight signals
and the trained model generalizes well to untrained reverberation environments.

Further research will focus on completely reconstructing the target echo signal in
the time–frequency spectrogram. From the above analysis, the proposed ACANet shows
impressive reverberation suppression performance. However, it only suppresses the
reverberation via a multiplicative mask. The reconstructed target echo signal still differs
from the clean target echo signal. One of the reasons for this result may be the low resolution
of the STFT time–frequency distribution, which leads to reverberation and target echo
signal coupling. Thus, the target echo signal affected by the reverberation needs to be
further enhanced. Since the target echo signal has the same time–frequency structure as
the transmitted signal, the enhancement of the target echo signal can fully use the known
features of the transmitted signal.
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