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Abstract: A free-rising buoyant sphere can break an ice plate floating above it. The problem is when
the light sphere breaks the ice plate most, or the optimal relative density of the sphere which can
break the ice plate the most severely. This experimental study was done to answer this problem. A set
of experimental devices were designed, and a high-speed camera system was adopted to record the
whole dynamic process, including the free-rising of the sphere, the collision between the sphere and
the ice plate, the crack initiation and propagation, as well as the breakup of the ice plate. The failure
mode of the ice plate under impact load was analyzed. It was found that conical cracks were formed
under the reflected tensile wave at the top surface of the ice plate. On this basis, the influences of
ice thickness, the initial submergence depth, and the relative density of the sphere on icebreaking
were further investigated. An optimal relative density of the sphere was found when the sphere
was released at a certain initial submergence depth, at which point the ice was damaged the most
severely. For example, when the dimensionless initial submergence depth of the sphere was 2.31, the
optimal relative density of the sphere was close to 0.4, with the probability of the ice plate breakup
as high as 91.7%. It was also found from the experiments that the degree of damage to the ice plate
correlated well with the kinetic energy of the sphere just before collision. Results showed that the
optimal relative density can be estimated by theoretical analysis of the kinetic energy of the sphere,
which will provide a reference for potential icebreaking applications in the future.

Keywords: icebreaking; free-rising; buoyant sphere; impact load; experimental study

1. Introduction

The Arctic climate warming [1,2] has increased the frequency of human activities in
this area. In order to expand the scope of activities in the Arctic and realize Arctic year-
round navigation [3], icebreaking is a crucial technology [4]. Since the first true modern
sea-going icebreaker Yermak [5], human beings have been using icebreakers for icebreaking
operation in polar regions for more than one hundred years, and researchers are still
working on them [6–9]. In addition to using icebreakers, some researchers are also trying
to find new methods of breaking ice, including moving loads by virtue of flexural-gravity
waves [10–12], high-pressure bubble [13,14] and high-speed water jet [15] etc. On the other
hand, ice can also be broken under the impact vertically. Many scholars have also studied
ice-breaking in the vertical direction. Ye et al. [16] simulated a submarine surfacing through
the ice under a given constant speed by using the peridynamics method. However, for most
underwater bodies, constant speed is difficult to control and the ice needs to be broken by
net buoyance in many cases. For example, a bowhead whale needs to break the ice sheet
above it for ventilation and it can break an ice sheet up to 60 cm thick by buoyance [17].
Therefore, this paper explored when a light sphere breaks ice plate the most by using its
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net buoyance, or the optimal relative density of the sphere which can break the ice plate
the most severely.

Before studying this problem, there were several aspects to be introduced: first, the
damage criteria of ice plates under vertical loads, including static/quasi-static loads and
dynamic loads; second, methods to measure or judge the damage degree of impact between
bodies; third, relevant work on the collision of bodies and ice sheet along the vertical
direction. Then, we expanded the literature review from these three aspects.

First, the damage criteria of ice plates under vertical loads were reviewed. Static/quasi-
static loads can be divided into concentrated and distributed loads, according to the ratio of
contact area relative to ice thickness [18]. Various criteria have been proposed for predicting
the breakup of an ice sheet. The most common one is the stress criterion, which can be
obtained by the elastic analysis for the instantaneous loading case, and this method was
developed significantly by Kerr [19]. However, when the load at the moment of impact was
difficult to obtain or measure, some scholars, e.g., Shapiro [20], proposed that breakthrough
occurs when critical deflection is reached, regardless of creep before failure, which was also
named as deflection and strain criteria. The critical strain-energy per unit volume concept
is also used extensively in strength-of-materials literature [21]. The advantage of the strain
energy criterion relies on the fact it takes the loading and strain history into account. On
these bases, Assur [22] and Frankenstein [23] studied the sequence of failure of an ice cover
under static concentrated and distributed loads vertically downwards. There are usually
three stages: the first is a radial crack on the bottom of the ice plate as a result of significant
bending moments; the second is a circumferential crack on the top of the ice plate at some
distance away from the load; the third is the breakup of ice plate along the radial and
innermost circumferential cracks. The fracture stages are classical for ice plates subject to
vertical loading.

In addition to static or quasi-static loads, impact load is another type of icebreaking
load. Different from static or quasi-static loads, various shockwaves are observed in
the ice at the instant of load impacting the ice. For example, when a high-speed water
jet impacts an ice plate [15], the shock wave propagates in the form of volume waves
(including longitudinal waves and transverse waves) in the plate and propagates in the
form of Rayleigh surface waves on the surface of the plate [24]. Longitudinal waves are
compression waves before being reflected by the lower surface of the plate and become
expansion waves due to the acoustic impedance of the different media on both sides of
the interface. Transverse waves are shear waves. Rayleigh surface waves have vertical
and horizontal components that correspondingly induce tensile and shear stresses. The
propagation and interaction of shockwaves may be a fundamental cause of crack formation
and propagation [25].

Second, methods to measure or judge the damage degree of impact between bodies are
always challenging in experiments. On the one hand, researchers tried to explore contact
measurements to study impact. Bouzid et al. [26] concerned a glass plate subject to impact at
different loading rates by using two experiments: a compression split Hopkinson pressure
bar, and the normalized drop ball test. The pulse was obtained by the gauges attached on
the back of the glass sample. For studying the tensile strength of ice subjected to dynamic
loading, Zhang et.al [27] investigated the dynamic tensile behaviors of distilled-water and
river-water ice by a modified split Hopkinson pressure bar system.

However, in most cases, it is very hard to obtain data through contact measurement.
Non-contact measurements and analysis were also adopted. Woodward et al. [28] studied
the damage of brittle materials with different rigidity caused by projectiles of different
diameters, in which the kinetic energies of the projectiles and the debris were recorded and
analyzed. Dooge et al. [29] used ice particles with different mass and velocity to impact the
aluminum plate in the experiment and made qualitative and quantitative analysis of the
damage. They found that the incident kinetic energy of the ice ball had a good correlation
with the expected damage of the aluminum plate. Kim et al. [30] investigated the damage
resistance of thin-walled composite structures to ice impact by experiment, and one of the
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experiments was performed on a dynamic force measurement device. The experimental
results showed a linear relationship between the measured peak force and the kinetic energy
of the projectile, regardless of the projectile size. Some authors [31–33] have also studied
the impact of ice ball on a rigid plate from experimental and numerical ways. One of the
main conclusions was that microstructure of ice did not play an important role under these
conditions and there was a correlation between impact force and kinetic energy. By contrast,
some authors put forward different opinions on the study of impact. Xue et al. [34] studied
the response of glass under dynamic impact load by using the drop ball test and proposed
that the energy threshold was not specified as a prediction index, which did not take the
time spent in contact during the impact event into account. Therefore, a metric for impact
testing based on a momentum change threshold was established, and it was found that the
momentum change had a linear relationship with the maximum deformation of the glass.
They concluded that the momentum change was more suitable for predicting the maximum
deformation. There are also some other problems concerning impact, such as dynamic
compaction. Knut et al. [35] conducted field and laboratory experiments, respectively, to
explore the influence of momentum and energy on the performance of dynamic compaction
technologies. It was found that kinetic energy had no obvious effect on the crater depth.
For an inelastic compaction process, they concluded that the momentum rather than energy
determined the depth of the crater.

It can be seen from the above that there is always a controversy whether kinetic energy
or momentum dominates the damage degree of impact between bodies [28–35]. For the
collision between ice plate and a buoyant sphere, it will become more complex, as it is still
difficult to define the damage degree of ice plate.

Third, there is relevant work on the collision of bodies and ice sheet along vertical
direction. Kozlov [36] studied the collision between a rigid sphere with a high initial speed
and a very thick ice on water. He found that after the first collision with the ice plate,
the maximum value of the sphere’s intrusion at a certain point in time depended on its
own kinetic energy before impact. Orlov and Bogomolov [37] quantitatively described the
process of large impactors penetrating ice in the initial range below the speed of sound in
air. It was found that the increase in crater depth was directly proportional to the impact
velocity. The volume of ice destroyed was insignificant. Ren and Zhao [38] studied the
process of a sphere falling from the top of an ice plate, breaking ice before entering water.
Attention was paid to the numerical modelling of the interaction of ice, water and sphere.
Wang et al. [39] simulated the process of an underwater cylinder breaking ice vertically
before exiting water. The collision direction of this work was also from bottom to top, but
the motion of the cylinder was prescribed, rather than free rising.

It can be seen that most previous work on the collision of a body and ice along vertical
direction either concerned the intrusion of the sphere into the thick ice, or the damage of
ice under the body with a prescribed velocity. To the best of our knowledge, no research on
icebreaking by a free-rising buoyant sphere has been published. Many interesting problems
are involved in the icebreaking process under such an icebreaking scenario. When does
a light sphere break ice plate most by using its net buoyance? How can we define the
damage degree in experiments? Does kinetic energy or momentum dominate the damage
degree of ice plate? All these problems formed the main motivation and innovation of this
paper. The paper studied the icebreaking process of a free-rising light sphere with variable
weight in experiments. The whole process of the motion of sphere and the response of
the ice plate was recorded and analyzed. On the basis of the experimental results, some
simplified theoretical approaches were also adopted to find an explicit expression of the
optimal relative density of the sphere. The results may provide potential applications in
guiding an underwater vehicle that navigates under the ice sheet and needs to break ice by
net buoyance in case of a mission or an emergency.
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2. Theory

Driven by the buoyant force, a light sphere starts to accelerate from a resting position
under the ice plate until it collides with the ice plate. A sketch of the problem with variables
is presented in Figure 1. The definition of variables is as follows: D is the diameter of the
sphere; L0 is the initial submergence depth, which is the distance between the center of
the sphere and the bottom surface of the ice plate while the sphere is stationary; h is the
thickness of the ice plate; ρs is the density of the sphere; ρw is the density of water; g is the
acceleration of gravity; U is the velocity of the sphere.

J. Mar. Sci. Eng. 2023, 10, x FOR PEER REVIEW 4 of 24 
 

 

2. Theory 

Driven by the buoyant force, a light sphere starts to accelerate from a resting position 

under the ice plate until it collides with the ice plate. A sketch of the problem with varia-
bles is presented in Figure 1. The definition of variables is as follows: D is the diameter of 

the sphere; 
0L  is the initial submergence depth, which is the distance between the center 

of the sphere and the bottom surface of the ice plate while the sphere is stationary; h is the 

thickness of the ice plate; 
s  is the density of the sphere; 

w  is the density of water; g  is 

the acceleration of gravity; U  is the velocity of the sphere. 

s

U

w

D

Ice Plate h

g

0
L

 

Figure 1. Sketch of the problem. 

The ascension of a rising buoyant sphere is modeled with a simple theoretical force 

balance illustrated in Figure 2 and demonstrated as follows [40]: 

Ice Plate

+

m

bF

gF

dF

a

dU
m

dt
−

 

Figure 2. Free body diagram of a rising buoyant sphere. 

( )a b g d

dU
m m F F F

dt
+ = − − , (1) 

where sm V=  is the mass of the sphere, where 
3

4

3 2

D
V 

 
=  

 
 is the volume of the sphere; 

a m wm C V=  is the added mass of the sphere and mC  is the added-mass coefficient; 

b wF gV=  is the buoyant force; g sF gV=  is the gravity force; 21

2
d w dF U C A=  is the 

drag force, where 
2

2

D
A 

 
=  

 
 is the cross-sectional area and dC  is the drag coefficient. It 

is remarkable that mC  is concerned with the distance between boundary to the sphere [37–

39]. 

To facilitate unified expression, Equation (1) is rewritten as follows: 

Figure 1. Sketch of the problem.

The ascension of a rising buoyant sphere is modeled with a simple theoretical force
balance illustrated in Figure 2 and demonstrated as follows [40]:

(m + ma)
dU
dt

= Fb − Fg − Fd, (1)

where m = ρsV is the mass of the sphere, where V = 4
3 π
(

D
2

)3
is the volume of the

sphere; ma = CmρwV is the added mass of the sphere and Cm is the added-mass coefficient;
Fb = ρwgV is the buoyant force; Fg = ρsgV is the gravity force; Fd = 1

2 ρwU2Cd A is the drag

force, where A = π
(

D
2

)2
is the cross-sectional area and Cd is the drag coefficient. It is

remarkable that Cm is concerned with the distance between boundary to the sphere [37–39].
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To facilitate unified expression, Equation (1) is rewritten as follows:

(m + ma)
dU
dx
· dx

dt
= Fb − Fg − Fd, (2a)

U
dU
dx

=
−3Cd ·U2 + 4Dg(1− ρ)

4D(ρ + Cm)
. (2b)
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In Equation (2a,b), x is the displacement of the rising buoyant sphere; ρ = ρs
ρw

is the
dimensionless density of the sphere. When the sphere moves in an unbounded fluid, Cm is
equal to 0.5. However, when the sphere approaches to the wall vertically, the expression of
Cm changes with the distance to the wall. Many researchers studied the variation law of
Cm with wall [41,42] and Kharlamov et al. [43] provided a fitting formula of Cm of a sphere
approaching to a rigid wall vertically with a maximum deviation from the computed data
4× 10−3:

Cm = 0.5 + H1l
t1 + H2l

t2 , (3)

where l =
(

L0−x
D

)
is a dimensionless distance between the center of the sphere and the

wall, and constants H1 = 0.2182, t1 = −3.21; H2 = 0.081, t2 = −19.
If one assumes Cm as 0.5 and Cd as a constant during the movement, Equation (2) can

be rewritten as follow:

U
dU
dx

= − 3Cd
2D(1 + 2ρ)

U2 +
2g(1− ρ)

(1 + 2ρ)
, (4)

The general solution of Equation (4) can be written as [44]:

U =

[
2
∫

Q · e−2
∫

Pdxdx + R
] 1

2
· e
∫

Pdx, (5)

where P = − 3Cd
2D(1+2ρ)

, Q = 2g(1−ρ)
(1+2ρ)

, R is a constant confirmed by the initial condi-
tions, i.e., U = 0 when x = 0 in the case in this paper. Therefore, R can be written as
R = Q

P = − 4gD(1−ρ)
3Cd

.
Since we are concerned with the velocity just before the sphere impacting the ice plate,

the upper limit of the integral for displacement x should be L0 − D
2 right before contacting

the ice plate. As a result, when the sphere contacts the ice plate, the velocity U of the
sphere is

U2
t =

4gD(1− ρ)

3Cd

[
1− e−

3Cd
(1+2ρ)

(L0− 1
2 )
]

, (6)

where L0 = L0
D is dimensionless initial submergence depth. If one further assumes that the

viscosity of the fluid can be ignored, i.e., Cd = 0.
Equation (4) can be simplified further as:

U
dU
dx

=
2g(1− ρ)

(1 + 2ρ)
. (7)

One can easily get the velocity U of the sphere when it contacts the ice plate as

U2
t =

4gD(1− ρ)

(1+2ρ)

(
L0 −

1
2

)
. (8)

Then in the nondimensionalized system, the following three parameters are chosen as
the characteristic quantities: diameter of the sphere D, water density ρw and gravitational
acceleration g.

3. Experimental Methods
3.1. Ice Specimen Preparation

From the perspective of ice mechanics, ice can be regarded as one of the most complex
materials in nature [45–47]. Ice in nature contains many defects, including preexisting
cracks, inclusions, pores, grain boundaries, etc. [48,49] which further aggravates the uncer-
tainty of the experiment. Therefore, some researchers [50–52] proposed using freshwater
as the material to prepare experimental ice in the laboratory. Figure 3 shows a schematic
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diagram of the freshwater ice plate preparation method. The ice plates in this study were
made by freshwater in a cryostat at−20 ◦C. The freshwater was boiled in order to maximize
the removal of dissolved air in the water and to avoid the presence of bubbles. The boiled
fresh water was placed in a cylindrical container without a top cover. The container was
made of expanded polystyrene (EPS), whose good adiabatic properties ensure that the heat
transfer direction was from top to bottom, in the same way as the growth direction of the
ice crystal in reality. When the requirements of the thickness of the ice plates were met,
the ice plates were removed from the container and moved into a cryostat at −5 ◦C for
10 h, which was to prevent the ice plate from breaking due to the excessive temperature
difference between the ice plate and water [15,53]. Figure 4 shows a picture of the ice
plate samples. The diameter of ice plates was 345 mm, and the thicknesses were 6 mm,
8 mm, and 10 mm, respectively. The mechanical properties of the ice plate were obtained
by testing at −5 ◦C. The average value of Young’s modulus of ice was 6.2 GPa, and the
average compressive and flexural strengths of ice were 9.4 MPa and 2.4 MPa, respectively.
The rest of the properties can be found in Ni et al. [53].
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3.2. Experimental Setup

Figure 5 shows the experimental setup. The experimental setup can be divided into
four systems: (1) the sphere location and releasing system; (2) the fixing system; (3) the
supporting system; (4) the camera system.
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The sphere location and releasing system included a lift platform (in blue) and a
releasing device (in yellow), as shown in Figure 5a,b. The former was placed in the center
of the bottom of the tank, which was used to manipulate the initial submergence depth of
the sphere below the ice plate. The latter was placed above the lift platform and adopted
an electromagnet to control the release of the sphere. Finally, the light sphere with an iron
button was placed on the releasing device. The sphere was made of poly lactic acid (PLA)
using 3D printing and painted with black nitrocellulose lacquer. Its diameter was 112.5 mm.
The size of the sphere was determined by the size of water tank. The weight of the sphere
was variable by using different ballasts inside it, so the relative density of the sphere was
achieved easily in the experiment.

The fixing system was adopted to restrict the motion of the ice plate on the free
surface. We tried to simulate the collision of a sphere with a very large ice sheet, rather
than a free-floating ice. However, due to the limitation of ice-making technology and
experimental equipment, the size of the ice plate could not be very large. Considering that
the displacement and ration angle of the ice sheet tend to be zero at a very large distance,
we designed a fixing system to rigid fix the edge of the ice plate. The main body of the
fixing system was a supporter made of polymethyl methacrylate (PMMA). The supporter
had a groove with diameters of 345 mm and 325 mm, as shown in Figure 5c. During the
experiment, the ice plate was first put into the groove of the supporter, and then the fixed
ring was covered over the ice plate, as shown in the enlarged view of Figure 5c, and finally,
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the fixed ring was fixed with the supporter by four Clamps2. Under the joint constraint
of supporter and fixed ring, the boundary condition of the ice plate was completely fixed.
The ice fixing system was fixed with the water tank by eight Clamps1.

The supporting system consisted of a square water tank and an outside shell frame. The
water tank was made of transparent glass, and its principal dimension was 0.6 m in length.

The camera system included two high-speed cameras and four LED lamps. One
camera was a PHANTOM VEO-640S (Phantom/AMETEK, USA), placed on the horizontal
surface with the resolution rate of 1024 × 1024, which captured photos at 10,000 frames
per second. The other was a PHOTRON Fastcam Mini A1300 (Photron, Japan), placed
on the vertical surface with the resolution rate of 768 × 528, which captured photos at
1000 frames per second. Camera 1 was in charge of capturing the motion trajectory of
the floating sphere. The velocity and corresponding kinetic energy of the sphere were
obtained by image recognition technology. Meanwhile, the destruction of the ice plate was
captured by Camera 2. By sending a pulse signal from Camera 1 and receiving it by the
other, synchronous triggering and shooting of two cameras were achieved. Four flicker-free
LED lamps were installed on the transparent water tank’s side and bottom to ensure a
bright shooting environment.

4. Result and Discussion

In this section, we chose a case study to analyze the icebreaking process by the buoyant
sphere before discussing the influence of several parameters, including dimensionless initial
submergence depth L0, dimensionless density ρ and dimensionless ice thickness h.

4.1. Case Study

A case study was chosen with the following parameters: dimensionless initial submer-
gence depth L0 was 2.31, dimensionless density ρ was 0.4 and dimensionless ice thickness
h was 0.089. The movement process of the floating sphere and interactions between the
sphere and the ice plate were recorded and analyzed.

Figure 6 shows curves of the velocity of the sphere along with the displacement before
colliding with the ice plate. It contains: (1) initial experimental data; (2) curve obtained after
filtering experimental data; (3) theoretical results with Cm = Equation (3) and Cd = 0.44;
(4) theoretical results with Cm = 0.5 and Cd = 0.44; (5) theoretical results of Equation (8)
with Cm = 0.5 and Cd = 0.
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According to the experiment curves (1) and (2), the sphere with zero initial velocity
accelerated under the effect of net buoyant force after being released, but the acceleration
amplitude gradually decreased. When the displacement of the sphere was about 0.16 m
(x = 1.42) (that is, the distance from the center of the sphere to the ice plate was about 0.1 m
(l = 0.89)), the velocity of the sphere was almost uniform, which indicated that the forces on
the sphere were almost balanced. On the one hand, the viscous resistance increased with
the velocity of the sphere. On the other hand, the additional mass force increased with the
decrease of the spacing according to Equation (3). Both contributed to the balance of the
net buoyant force. Therefore, in a theoretical prediction, the selections of drag and added
mass coefficients Cd and Cm need to be discussed.

First, we considered the influence of added masses Cm, which was less complicated
than the choice of Cd. Curves (3) and (4) showed velocities at different added mass
coefficients of a sphere with and without of influence of the wall surface. When the
displacement of the sphere was less than 0.16 m (x = 1.42), curves (3) and (4) overlapped
basically. Beyond that, there was a deviation between two results, which denoted that the
influence of wall surface should not be ignored when the sphere was very close to the wall.
Once again, the comparison of curves (3) and (4) validated that the increase of added mass
coefficient contributed to the balance of the sphere.

Second, the choice of Cd was particularly worth discussing. For unsteady motion,
the drag coefficient Cdu is different from the counterpart Cd at steady state. Many re-
searchers [54–57] have carried out experimental and theoretical studies on it. For the
convenience, we temporarily assumed Cdu = Cd. As we know, Cd of a sphere is closely
related to Re number. When 1.0 × 103 < Re < 2.0 × 105, Cd is around 0.44 [58–61]. Re
number of the sphere in this case was mostly distributed in this interval, so the resistance
coefficient was taken as 0.44 in curves (3) and (4). By comparison, Cd = 0 was adopted in
curve (5). However, it can be seen from the comparison between curve (4) and curve (5) that
the resistance coefficient of the sphere in actual motion was less than 0.44, which coincided
with the researches of [62,63] on the point that Cdu was smaller than Cd. For this reason,
we decreased the resistance coefficient Cd. By trying a series of resistance coefficients, we
found that when Cd = 0.12 (as shown in Figure 7) could predict the motion of the sphere
well in our cases, especially considering the influence of the wall surface on Cm.
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Under the acceleration process in water, as shown in Figure 6, the buoyant sphere
obtained a certain velocity and started to collide with the ice plate. Figure 8 shows the
typical characteristics and corresponding time during the process of the sphere impacting
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the ice plate until it is broken. The moment when the sphere just contacted the bottom
surface of the ice plate was defined as the initial time (t′ = 0 ms), as shown in Figure 8a.
At the time of t′ = 0.2 ms, the first radial cracks (RCs) appeared on the ice plate clearly
under the collision of the sphere, shown in Figure 8b. The patterns of cracks were quite
similar to those during icebreaking under distributed loads by Ashton [49]. Under the
continuous loads from the buoyant sphere, radial cracks extended to the edge of the ice
plate at the time of t′ = 0.6 ms in Figure 8c, as marked by the red line. Figure 8d shows the
formation of circumferential cracks (CCs), which were generated on the basis of RCs [26].
After generating CCs, cone cracks could be observed in the vicinity of the contacting point
(stuck out by the green dotted line and partial enlarged in Figure 8e). After that, the ice
plate began to break, and air entered under the ice plate through the cracks, which appeared
as bubbles along the cracks in Figure 8f (stuck out by the blue dotted line). Then, cone
cracks penetrated the ice plate and the debris splashed by the impact of the sphere (shown
by the green circle in Figure 8g). Finally, under the action of the sphere, the wedge-shaped
ice pieces in the center of the ice plate failed, and the sphere broke through the ice plate
and pushed the polygonal ice fragments aside, as shown in Figure 8h. The damage process
of the ice plate after impact can be summarized as follows: first, the ice plate produced RCs
(RCs pattern); second, CCs were generated on the basis of RCs (RCs⊕CCs pattern); third,
the ice debris splashed (debris-splashing pattern); finally, the ice plate broke up (ice-plate
breakup pattern).
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In order to intuitively explain the cause of the destruction of the ice plate after the
impact, Figure 9 is demonstrated. As shown in Figure 9a, when the sphere collided with
the ice plate, a compressive wave before a tensile wave was transmitted from the collision
point. When the compressive wave arrived and was reflected by the upper surface of the
ice plate, it became a tensile wave due to the acoustic impedance of the different media
on both sides of the interface. Because the tensile strength of the ice (about 2.2 Mpa at
−5 ◦C) is much lower than its compressive strength (about 9.4 Mpa at −5 ◦C), ice is more
fragile under tensile waves compared with compressive waves [27]. Especially, when the
reflected tensile waves encountered and interacted with incident tensile waves, as shown
in Figure 9b, the ice plate became very fragile, as shown in Figure 9c. As a result, the ice
plate broke up in spalling, leaving sloped fractures, as shown in Figure 9d. In fact, there
may be more forms of wave transmission, such as shear or Rayleigh waves, whose effects
complicated the destruction of the ice plate [64]. However, due to the limited shooting
equipment, it was hard to record the wave propagation in ice accurately.
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Figure 9. Schematic sequence of events in the impact, adapted from [29]: (a) immediately after impact,
stress waves are generated; (b) relief waves propagate from the upper surface and fine debris splits
away off; (c) interacting relief waves cause fragmentation and spalling; and (d) the broken ice plate
is reassembled, and the center of the ice plates forms some sloped fractures due to the impact of
the sphere.

4.2. The Effect of Dimensionless Initial Submergence Depth L0 on Ice Plate Damage

The effect of dimensionless initial submergence depth L0 was investigated by changing
L0 from 0.9 to 2.31, with dimensionless ice thickness h = 0.071 and dimensionless density
ρ = 0.6 constant.

Figure 10 provides the ice damage at four initial submergence depths, in which the
time was all chosen at t′ = 0.1 s. In Figure 10a, it can be observed that there were slight and
inconspicuous RCs extending from the center of the ice plate to the edge, i.e., RCs pattern.
With the increase of the initial submergence depth of the sphere, in Figure 10b, the ice
was damaged severely with a greater number of RCs and several slight CCs at a distance
from the center, i.e., RCs⊕CCs pattern. In Figure 10a,b), ice plates did not break up, or the
cracks did not penetrate the ice plate, which was also named ‘part-through’ cracks [65]. In
terms of the damage pattern of the ice plate, the phenomenon shown in Figure 10c was not
changed significantly from that shown in Figure 10b. However, one can observe that air
bubbles were captured under the ice plate, as denoted in the blue circles. This is because
the cracks had penetrated the ice plate and air entered through the cracks and edges. When
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the initial submergence depth increased to 2.31, as shown in Figure 10d, in addition to RCs
and CCs on the ice plate, ice debris can be clearly found splashing from the center of the ice
plate, i.e., a debris-splashing pattern.
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Figure 10. Typical damage patterns of ice plates with different L0, as denoted in the subfigures, with
the initial condition of ρ = 0.6 and h = 0.071 at t′ = 0.1 s.

As mentioned in the previous section, affecting by the nature of the ice plate, we cannot
obtain the strain of the ice plate during the collision directly by using contact measurement
methods, such as strain gauges attached to the surface of the ice plate. For this reason, we
adopted an indirect method to describe the damage degree of the ice plate as above. For the
condition in this section, it is common to expect the result before the experiment, i.e., that
within a certain range (will be discussed in Section 4.4), the greater the initial submergence
depth of the sphere is, the more severely the ice plate is damaged. Experimental results
validated this expectation. Therefore, we can predict that the damage degree of the ice
plate becomes more severe from “RCs” to “RCs⊕CCs” and then to “splashing”.

4.3. The effect of Dimensionless Ice Thickness h on Ice Plate Damage

On the basis of Figure 10 in Section 4.2, the effect of ice thickness was further investi-
gated by changing h from 0.053 to 0.089, with L0 = 2.31 and ρ = 0.6 constant.

In the case of h = 0.089, both radial and circumferential cracks (namely RCs⊕CCs
pattern) can be observed (Figure 11a). When the dimensionless ice thickness decreased
to 0.071, not only were RCs and CCs observed in the ice plate, but debris splashing was
found in Figure 11b, which showed a debris-splashing damage pattern. With the decrease
of dimensionless thickness to 0.053, the damage to the ice plate became quite serious. The
sphere broke up the ice plate into multiple triangular and quadrilateral pieces and the
number of ice debris became larger, as shown by the green circle in Figure 11c, presenting
an ice plate-breakup pattern.
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Figure 11. Typical damage patterns of ice plates with different dimensionless thickness h with the
initial condition of ρ = 0.6 and L0 = 2.31 when t′ = 0.1 s. (upper photos are captured a from bird’s eye
view by Camera 2 and lower ones are captured from a horizontal perspective by Camera 1).

Figure 12 displays final equilibrium positions of the sphere after resting. By com-
parison, it can be found that although the sphere did not break through the ice plate in
Figure 12a,b, the final submergence depth was different. l1 was larger than l2 a bit, while l1
and l2 were both larger than l3 distinctly. This can be expected as the thinner the ice plate
was, the damage the ice plate became more severe. The damage to the ice plate, including
debris and hole, provided space for the sphere to rise.
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Similar to Section 4.3, it is common to expect the result before the experiment, i.e., the
thinner the ice plate was, the more severely it was damaged by the sphere with the same
submergence depth and relative density. Experimental results validated this expectation.
Therefore, we can show that the damage degree of the ice plate becomes more severe from
“‘RCs⊕CCs” to “splashing” and then to “breakup”. Together with Section 4.3, we can
ascertain that the pattern is becoming worse from “RCs” to “breakup”, which will lay a
foundation for judging the damage degree of the ice plate hereinafter.

4.4. The Effect of Dimensionless Density ρ on Ice Plate Damage

This section explores the effect of dimensionless density ρ on ice plate damage. Spheres
with different dimensionless densities were used to break the ice plate with h = 0.089 and
L0 = 2.31 constant.

Figures 13–15 represent the dimensionless velocity, dimensionless kinetic energy,
and dimensionless momentum of spheres with different relative densities at the moment
of contact with the ice plate. There are three curves in each figure, representing the
experimental value, theoretical predicted values with Cm = Equation (3); Cd = 0.12 and
Cm = 0.5; Cd = 0.12, respectively. Similar to that in Figures 6 and 7, the results with Cm in
Equation (3) were better than Cm = 0.5. The trend of the three curves in Figure 13 was the
same, that is, the velocity of the sphere impacting the ice plate was inversely proportional
to the relative density. This is in line with our common sense. In Figures 14 and 15, with the
increase of relative density, the kinetic energy and momentum of the sphere at the moment
of impact both rose before they fell, and the trend was little-affected by the choice of Cm. As
a result, there were two different relative densities that maximized the kinetic energy and
momentum of the sphere, respectively. Because we tried to find an optimal dimensionless
density ρop to break the ice plate the most, we needed to sort out the failure state of the ice
plate impacted by the spheres with different relative densities.
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Figure 15. Dimensionless momentum Mt of the sphere just before contacting the ice plate versus the
relative density obtained by three methods with h = 0.089 and L0 = 2.31 constant.

Figure 16 shows typical pictures of the damage on the ice plate caused by spheres of
different densities, at t′ = 0.1 s from a bird’s-eye view and horizontal view, respectively.
From Figure 16a–c, it can be seen that with the increase of the relative density of the sphere,
the damage state of the ice plate changes from “debris splashing” to “ice plate breakup”
patterns; while from Figure 16c–e, the damage state of the ice plate changes from “ice plate
breakup” to “debris splashing” and then to “RCs” patterns.
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Figure 16. Destructiveness of ice plates caused by different relative densities of spheres ρ, as denoted
in the subfigures, from different views.

To avoid randomness in the results, at least 10 repeated experiments were done for
each density case. The failure mode of the ice plate caused by spheres with different
densities is shown in Figure 17. Because it was difficult to ensure that the properties of each
ice plate were the same exactly due to the limits of icebreaking technology, different failure
modes may appear at the same relative density. However, it was still reasonable to classify
the damage degree of ice plates by statistical data of different failure modes.
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Figure 17. Probability of failure mode of ice plate impacted by spheres with different densities.

As discussed in Sections 4.3 and 4.4, the “ice plate breakup” pattern is the most severe
of all the patterns. We took the probability of this pattern as a criterion and tried to link
the damage degree of the ice plate with Ekt and Mt of the sphere in Figures 14 and 15. As
shown in the Figure 18, the dimensionless kinetic energy of the sphere achieves the largest
at ρ = 0.4, while the dimensionless momentum of the sphere achieves the largest at ρ = 0.6.
Compared with the probability of the ice-breakup pattern, when the kinetic energy of the
sphere is the largest, the probability of the ice plate breakup peaks (91.7%). From this point,
it can be concluded that the kinetic energy of the sphere, rather than momentum, at the
moment of collision dominates the damage degree of the ice plate. As a result, we adopt
kinetic energy of the sphere at the moment of collision as a criterion for the icebreaking
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ability of a floating light sphere driven by net buoyant force hereinafter. This conclusion
can also be well explained from the perspective of energy. When the sphere collided with
the ice plate, the sphere converted its kinetic energy into kinetic and potential energies
of the ice plate including cracks (or fracture energy), debris and fragments, kinetic and
potential energies of fluid, the potential energy of the sphere as well as thermal energy [29].
The more kinetic energy the sphere gained before impact, the worse the ice plate was
damaged (presenting in the generation of cracks, area of the hole, the motion of the debris
and fragments, etc.).
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Figure 18. The relationship between Ekt, Mt and the probability of the ice breakup with the relative
density obtained in experiments.

We further plot the curve of Ekt versus ρ to find ρop with the case of h = 0.089 and
L0 = 2.31 in Figure 19. As mentioned above, considering that the added mass coefficient
has little influence on the optimal density, we chose Cm = 0.5 as convenience and still chose
Cd = 0.12 as before. It is clear that the theoretical optimal relative density ρop = 0.390 was
very close to the result in Figure 18 in the experiment. Therefore, when the initial depth L0
and ice thickness h were constant, one can predict the optimal relative density ρop in theory.
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On the other hand, we further considered the relationship of ρop with L0 and Cd. First,
we studied a simplified model with a non-viscous assumption, i.e., Cd = 0. Under this
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assumption, the dimensionless kinetic energy Ekt of the sphere can be obtained on the basis
of Equation (8):

Ekt =
π

3

(
L0 −

1
2

)
· ρ
(

1− ρ

1 + 2ρ

)
. (9)

ρop can be obtained by:

∂Ekt
∂ρ

=
π

3

(
L0 −

1
2

)
· 1− 2ρ− 2ρ2

(1 + 2ρ)2 = 0, (10)

ρop =

√
3− 1
2

≈ 0.366. (11)

Furthermore, for viscous assumption (Cd 6= 0), the dimensionless kinetic energy and
its derivation with respect to ρ are

Ekt =
ρπ

12
(
U
)2

=
πρ(1− ρ)

9Cd

[
1− e−

3Cd
(1+2ρ)

(L0− 1
2 )
]

, (12)

∂Ekt
∂ρ

= −
πe−

3Cd(L0−
1
2 )

1+2ρ

{
1 +

[
2 + 6Cd

(
L0 − 1

2

)]
ρ− 2ρ2

[
2 + 3Cd

(
L0 − 1

2

)]
− 8ρ3

}
9Cd(1 + 2ρ)2 +

π(2ρ− 1)
9Cd

= 0. (13)

By solving Equation (13), one can obtain ρop with given L0 and Cd. As Equation (13) is
complex and it is hard to obtain an explicit ρop, we solved Equation (13) numerically. The
relationship between ρop and L0 at different Cd is demonstrated in Figure 20.
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Figure 20. The relationship between ρop and L0 with different Cd.

According to Figure 20, one can find that no matter what L0 is, ρop is always not larger
than 0.5. When considering the viscosity of water (Cd 6= 0), optimal relative density ρop

of the sphere gradually approaches 0.5 with the increase of the initial depth L0. In fact,
according to Equation (12), we can obtain the dimensionless kinetic energy of the sphere
when the L0 approaches infinity:

Ekt(L0→∞) =
πρ(1− ρ)

9Cd
, (14)

and ρop of this state can be obtained as

ρop(L0→∞) = 0.5, (15)
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which coincides well with the trend in Figure 20. By observing the curves with different Cd
in Figure 20, one can find that ρop declines along with the decrease of Cd for a given L0. The
smaller Cd is, the larger the initial depth L0 is required for ρop approaching to 0.5. When Cd
is small enough but non-zero, it will need a very large initial depth for ρop approaching to
0.5. In other words, as long as the sphere moves in a viscous fluid (Cd is a constant), ρop

increases with the initial depth L0 until it is infinitely close to 0.5.
On the contrary, when the sphere moves in a non-viscous fluid, ρop is not affected by

the initial depth L0, which is constantly equal to
√

3−1
2 . The jump of ρop at a very large L0

for viscous and non-viscous cases can be attributed to the properties of viscous force. As
the viscous force is proportional to the square of the velocity, the acceleration of the sphere
decreases as the velocity increases. The acceleration would infinitely approach zero and
the velocity of the sphere approaches a stable value. By contrast, the sphere which moves
in a non-viscous environment will always accelerate under the action of the combined
force. Therefore, the state of motion of the sphere differs at a very large L0 for viscous and
non-viscous cases. From another point of view, the effect of fluid viscosity on the motion of
the sphere needs time, and as long as the time is large enough, it changes the motion of the
sphere as well as ρop no matter how small Cd is, compared to the non-viscous case. This
can also be validated from another phenomenon in Figure 20. When the initial depth L0

tends to 0.5, i.e.,
(

L0 − 1
2

)
→ 0 , all the optimal relative density ρop of the sphere in viscous

cases tends to the counterpart of the non-viscous case, that is ρop →
√

3−1
2 . This is because

that the displacement of the sphere is too small for fluid viscosity to exert influence on the
motion of the sphere.

5. Conclusions

Icebreaking by a free-rising sphere driven by its buoyance was studied in this paper.
The main concern was determining when the light sphere breaks the ice plate the most
severely, or the optimal relative density of the sphere. A set of indoor experimental devices
were designed, and high-speed photography was adopted to record the whole process,
including the free-rising of the sphere, the collision between the sphere and the ice plate,
crack initiation and propagation as well as breakups of the ice plate. The failure mode of the
ice plate caused by the impact and the influence of different parameters on the icebreaking
ability of the sphere were explored. Conclusions were drawn as below:

(1) Impacted by the free-rising buoyant sphere, the ice plate was broken. In some cases,
a conical crevasse was formed under the reflected tensile wave at the top surface of
the ice plate. A typical damage mode of the ice plate under this impact was ‘radial
cracks, circumferential cracks, debris splashing and ice plate breakup’ in sequence.
As a result, four damage patterns were concluded as “RCs”, “RCs⊕CCs”, “debris
splashing” and “ice-plate breakup” patterns, with the damage degree of the ice plate
rising;

(2) Since it was impossible to directly measure the ice plate at the moment of impact
of the sphere, we took the probability of the breakup of ice plate as a criterion and
tried to link it with the kinetic energy and momentum of the sphere, which were two
controversial parameters in determining the damage degree of ice. For the working
conditions described in this paper, we found that when the kinetic energy of the
sphere peaks at ρ = 0.4, the probability of the ice plate breakup is the highest, which is
91.7%. It was found that the kinetic energy of the sphere, rather than momentum at
the moment of collision, dominates the damage degree of the ice plate. The greater
the kinetic energy of the sphere, the more severely the ice plate was damaged. It
was considered that part of the kinetic energy of the sphere was transformed into
the fracture energy of the ice plate as well as the kinetic and potential energies of ice
debris and fragments;
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(3) The optimal density of the sphere ρop damaged the ice plate the most severely. ρop can
be estimated by theoretical analysis of the kinetic energy of the sphere. It was found
that ρop depends on the viscous effect of the fluid to a great extent. If the viscous

effect is neglected, or for a non-viscous case, ρop equals to
√

3−1
2 (or 0.366) identically.

Otherwise, ρop declines along with the decrease of Cd at a given L0, and rises along
with the increase of L0 at a given Cd, approaching to 0.5 for a very large L0 in the end.

In the future, research on numerical modelling based on the interaction of ice, water
and a buoyant sphere will be carried out. Furthermore, the effect of the boundary conditions
of the ice plate will be studied, including free-floating boundary conditions, etc.
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Nomenclature

Parameters
A cross-sectional area;
Cd drag coefficient;
Cdu drag coefficient for unsteady motion;
Cm added-mass coefficient;
D diameter of the sphere;
Fb buoyant force;
Fd drag force,
Fg gravity force;
g acceleration of gravity;
h thickness of the ice plate;
L0 initial submergence depth of the sphere;
m mass of the sphere;
ma added mass of the sphere;
U velocity of the sphere;
Ut velocity of the sphere when it contacts the ice plate;
V volume of the sphere;
x displacement of the rising buoyant sphere;
ρs density of the sphere;
ρw density of water;
Dimensionless Parameters
Ekt dimensionless kinetic energy of the sphere just before contacting the ice plate;
h dimensionless thickness of the ice plate;
l dimensionless distance between the center of the sphere and the wall;
L0 dimensionless initial submergence depth of the sphere;
Mt dimensionless momentum of the sphere just before contacting the ice plate;
t′ initial time when the sphere just contacted the bottom surface of the ice plate;
ρ dimensionless density of the sphere;
ρop an optimal dimensionless density of the sphere to break the ice plate most
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