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Abstract: This work renders the design of a robust state feedback optimal control strategy for
an Autonomous Underwater Robotic Vehicle (AURV). The control strategy is developed using a
polytopic approach based on hydrodynamic parameter variation. Besides, a backstepping approach
is designed to control the kinematics of the system. However, the dynamics of the AURV system
are controlled by a robust optimal control technique. In this work, the decoupled systems for both
horizontal and vertical dynamics of AURV are used for the development of the control algorithms.
Furthermore, the 3-D path following is achieved by integrating the control algorithms of both
horizontal and vertical dynamics of AURV. The proposed controller is formulated using semi-definite
programming (SDP). To track the 3-D path, it is intended to track both the desired depth and desired
yaw in diving and steering planes. The simulation studies are conducted through MATLAB/Simulink
environment using the YALMIP tool. Furthermore, the robust behavior of the proposed control
algorithm is verified by considering the uncertain hydrodynamic parameters.

Keywords: autonomous underwater robotic vehicle; 3D path following control; linear matrix
inequalities; robust control; backstepping

1. Introduction

The valuable resources which are available beneath the ocean are considered a source
for mankind. The exploration of these resources is considered a challenging task. Hence, the
manned missions for the exploration of these resources put human life at risk. Considering
these challenges in exploring the oceans, various AURVs were designed. Researchers had
developed different control algorithms for path following, motion control, and trajectory
tracking tasks to carry out various underwater missions. In recent years, various robust
control strategies have been developed to carry out these tasks. This paper focuses on
designing one such robust path following control strategy for an AURV to address the
aforementioned problems. Furthermore, a robust optimal control strategy is designed
for the dynamics of AURV considering an uncertain polytopic AURV system. Besides,
backstepping approaches are developed for the control of the kinematics of AURV using
the decoupled subsystems of AURV both in horizontal and vertical planes. Combining
both the decoupled subsystems, a 3D path following algorithm is explored. Various robust
control algorithms for path following of underwater vehicles which were developed in the
recent past are presented in the next paragraph to highlight the developed robust control
algorithms in this work.

Autonomous underwater robots in 3D space using different hybrid control laws using
sliding mode control (SMC) algorithms are discussed in [1–5]. Article [1] includes the
combination of an SMC and classical proportional integral derivative (PID). The authors
in [2] explored the combination of SMC and predictive control strategy to drive an under-
actuated AUV by following a desired 3D path in the presence of time-varying current
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disturbances. Similarly, attitude control for AUVs in the presence of input nonlinearities and
unknown disturbances is exploited in [3]. The authors proposed the sliding mode-based
adaptive control in combination with a nonlinear disturbance observer. Article [4] described
the 3D motion path of AUV based on the Dubins path planning method. The control of AUV
is carried out through a non-singular terminal SMC. A self-organizing robust fuzzy SMC
control for an AUV at a constant speed is explored in [5] that tracks a predefined planar path.
However, the works related to SMC focused less attention on hydrodynamic parameter
variations, minimization of small tracking errors, external disturbances, and sensor noises,
etc. Referring to [6], the authors discussed the design of a robust autopilot controller for an
AUV based on path-tracking maneuvers through H∞ loop shaping controller. However,
the limitation persists with the robust behavior of the controller. A nonlinear H∞ control
for diving/steering control of AUV using state feedback approach and nonlinear matrix
inequality approach is presented in [7–10]. Furthermore, the authors in [11,12] explored
the Nonlinear H∞ control design for an AUV in the vertical plane through state and
output feedback control schemes. However, the robustness study using the variation of
hydrodynamic parameters is conducted after the development of the control algorithm.
With many new inventions in the current technology, several optimization control algorithm
approaches were implemented in the area of AUVs. The authors in [13–18] presented
the recent algorithm approaches such as Dempster-Shafer theory, deep reinforcement
learning, Vornoi-based ant colony optimization, hunting algorithm, terrain aided navigation
(TAN) algorithm, quantum behaved particle swarm optimization (QPSO) for AUVs in
terms of path planning, path tracking, and trajectory tracking. However, the literature
based on these optimization algorithms lacks the uncertainty model design that is used to
address the robustness issue. Furthermore, the next paragraph renders various other path-
following control strategies based on path-following, path planning, and trajectory-tracking
algorithms for different applications.

The authors in [19] used the techniques of acoustic lens-based multi-beam sonar to
explore underwater images through a 3-D point cloud generation. There was a necessity
to draw more attention to the robustness approach during the exploration of underwater
images. A 3D space-based trajectory tracking problem of an under-actuated underwater
vehicle using control moment gyros is explored in [20]. A 3D path following AUV using
integral vector field control is explained in [21]. However, the authors have not considered
the uncertainty of hydrodynamic parameters during path following and motion planning
in the existence of disturbances. In [22–24], the authors discussed robust fuzzy control
algorithms for achieving a 3D path following task for an AUV. Besides, the study of the
robust behavior of controllers is exploited in [25] using the disturbance observer-based
linear parameter varying (LPV) and the authors in [26] discussed the 3D path following
of AUV in the presence of uncertainties, internal and external disturbances. However, the
proposed LPV approach needs to focus on simplification of the dynamic controller in the
path following the approach of AUV. The authors in [27–30] explored the trajectory tracking
and path following techniques for AUVs using the backstepping approach. However, less
attention to the robustness study is possessed during trajectory tracking. As discussed in
the aforementioned literature, several controllers like SMC, optimization-based controllers,
and other robust control algorithms are designed for AUV by addressing issues related
to nonlinearities and unknown disturbances, etc. However, uncertainty modeling is not
considered in most of the aforesaid literature. Because of this, a novel robust optimal control
algorithm is proposed by considering an uncertain polytopic AURV system. The uncertain
model of the system is obtained by considering the polytopes. Some prior state-of-art
polytopic systems are reported in [31–39] in various applications. However, the design of
polytopic systems is based on variations of states, system parameter disturbances, sensor
noises, etc. Hence, this work focuses on designing the polytopic system using a variation
of specific hydrodynamics parameters.

This paper focuses on designing the polytopic AURV system in a 3D plane using
the decoupled models of AURV. In this, the polytopic system is designed by imposing
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uncertainties on some specific hydrodynamic parameters of AURV that cause the system
fully uncertain. Furthermore, the formulation of the optimal control problem is discussed
through the LMI approach in which the dynamics of the AURV system with polytopic
uncertainties are considered. Due to the simplified design, the backstepping approach
is used to control the kinematics of the decoupled AURV system. This forms a cascade
control structure to track the path in the 3D plane. Besides, a comparison is made between
the proposed optimal state feedback control algorithm and the adaptive neuro-fuzzy
sliding mode control (ANFSMC) by referring [40] to highlight the efficacious behavior.
The YALMIP tool in the MATLAB/Simulink environment is used to model the control
algorithm as explored in [41]. The main contributions of this paper are listed below.

• Design of robust optimal control algorithm is explored for an uncertain polytopic
AURV system in a 3D plane using an LMI approach.

• Uncertain hydrodynamic parameters are selected to form a polytopic AURV system
by proposing a novel technique.

• Tracking of the desired depth and the path following by AURV is employed using the
backstepping approach in a 3D plane in terms of the Serret-Frenet (SF) frame.

• A robust behavior is highlighted to show the efficiency of the proposed control algorithm.

The organization of this paper is discussed as follows. Section 2 will discuss the
problem formulation of AURV in a 3D plane comprising the vertical plane and horizontal
plane. Section 3 explains the kinematics control of AURV in which the backstepping
approaches for both the horizontal plane and vertical plane are presented. The following
Section 4 discusses the control of AURV dynamics by using an optimal control algorithm.
Results related to the vertical plane, horizontal plane, and 3D motion are depicted in
Section 5 followed by the conclusion in Section 6.

2. Problem Formulation in 3D Plane

This section deals with the formulation of the control problem using the AURV model.
The AURV model is reduced and presented in terms of two subsystems in the vertical as
well as horizontal plane. The states involved in a vertical plane include surge, heave, and
pitch motion. On the other hand, the horizontal plane includes the state’s surge, sway,
and yaw. Modeling of AURV in a 3D plane is explained by the kinematics and dynamics
involved in the vertical plane and horizontal plane simultaneously. Table 1 indicates the
various notations used to represent the dynamics and kinematics of the system. Figure 1
shows the schematic diagram of AURV with different motions concerning the body and
earth frames. Similarly, Figure 2 presents the different planes of an AURV. The AURV is
modeled in a 3D plane under the following assumptions.

Assumption 1. A constant surge velocity is maintained through the analysis of 3D control algorithm.

Remark 1. The design of the control algorithm deals with the path following control for which the
time factor is not a crucial one.

Assumption 2. The roll motion of AURV is neglected.

Remark 2. The roll effect is significant during the 3D motion of an AURV wherein diving and
steering dynamics are coupled. Here, the controller is designed for the diving and heading control
separately where the effect of roll motion is not significant. Furthermore, an Infante flat-fish type of
AURV has been considered in this paper for which roll motion is not desirable.
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Table 1. Nomenclature.

Symbols Description

F Body fixed frame
O NED frame
T Serret-Frenet reference frame
m Mass of the AURV
W Weight of AURV
B Buoyancy Force

u, v, w, q, r Linear and angular velocities
x, y, z, θ, ψ Linear and angular positions

Ix, Iy, Iz Moments of inertia about x, y, and z axes in the body-fixed frame
(xB, yB, zB) Center of buoyancy
(xG, yG, zG) Center of gravity

T Total thrust in vertical plane and horizontal plane
(Ξ, ε) Lyapunov function

δs Stern angle
δr Rudder angle

{x f /t} Error Space between body and SF frame along X-Axis
{y f /t} Error Space between body and SF frame along Y-Axis
dTO Position of T frame relative to O frame
dFT Position of F frame relative to T frame
dFO Position of F frame relative to O frame
ca Curvilinear abscissa along the path
ψt Yaw angle between O and T coordinate system

Subscripts
d Parameters of vertical plane
h Parameters of horizontal plane
D Desired values for depth tracking and yaw tracking
t Parameters of Serret-Frenet frame
E Error representation for depth and yaw

Figure 1. Structure of AURV based on Reference Frames.

2.1. AURV Modeling in Vertical Plane

The Kinematics of AURV in vertical plane is given by

�
x d = ud cos θd + wd sin θd (1)
�
z d = −ud sin θd + wd cos θd (2)
�
θ d = qd (3)
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The AURV dynamics is given as

m
�
u d = CXuu u2

d + CXww w2
d + CXqq q2

d + u2
dCXδsδs δ2

s + CX�
u

�
u d + Td (4)

(
�

w d − udqd) = (W − B) cos θd + CZw udwd + CZq udqd + CZδs ud2 δs + CZ�
w

�
w d (5)

Iy
�
q d = zBB sin θd + CMw udwd + CMq udqd + CMδs u2

dδs + CM�
q

�
q d (6)

Rudder Plane 
(Fin)

Stern Plane 
(Fin)

Thruster

x (north)

y (east)

z (down)

TOP VIEW

SIDE VIEW

NOSE HULL TAIL

x (north)

Horizontal Plane

Vertical Plane

Figure 2. Different planes of AURV.

A constant forward velocity is considered to describe the nonlinear structure of AURV
which is expressed as

ẋ = fxd(x) + gxd(u) (7)

where,

fxd =


((W − B) cos(θd) + (Czw udwd)

+(Czq udqd + (mudqd))/(m− Czẇ)

(ZBB sin θd + (CMw udwd)
+(CMq udqd))/(Iy − CMq̇)

qd

 (8)

gxd =


(CZδsud2 )

(m−CZẆ
)

(Cmδsud2 )
Iy−Cmq̇

0

 (9)

where x = [wd, qd, θd] and u = δs.

2.2. AURV Modeling in Horizontal Plane

The kinematics of AURV in horizontal plane is given by

ẋh = uh cos(ψh)− vh sin(ψh) (10)

ẏh = −uh sin(ψh) + vh cos(ψh) (11)

ψ̇h = rh (12)

Subsequently, the AURV dynamics is given as
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mu̇h = CXuu u2
h + CXvv v2

h + CXrr r
2
h + u2

hCXδrδr
δ2

r + CXu̇ u̇h + Th (13)

m(v̇h + uhrh) = CYδr u2
hδr + CYr uhrh + CYv uhvh + CYv̇ v̇h + CYr|r|rh|rh|+ CYv|v|vh|vh| (14)

Iz ṙh = CNv uhvh + CNr uhrh + CNr|r|rh|rh|+ CNv|v|vh|vh|+ CN�
r
ṙh + CNδr u2

hδh (15)

where, the hydrodynamics coefficients [C(·)] are considered from the article [42,43]. Simi-
larly, the nonlinear structure of AURV in the horizontal plane is expressed as

ẋ = fxh(x) + gxh(x)u (16)

where x = [vh, rh, ψh] and u = δr and

fxh(x) =



(CYr|r|rh|rh|+ CYv|v|vh|vh|+ CYr uhrh

+CYv uhvh −muhrh)/(m− CYv̇)
(CNv uhvh + CNr uhrh + CNr|r|rh|rh|

+CNv|v|vh|vh|)/(Iz − CNṙ )

rh


(17)

gxh(x) =

 (CYδr u2
h)/(m− CYv̇)

(CNδr u2
h)/(Iz − CNṙ )

0

 (18)

The design of the control algorithm is carried out for a decoupled model of diving and
steering planes. However, a 3D path following task is achieved by considering the com-
bination of both as described in Figure 3. Besides, the path following task is achieved by
considering the kinematic model for AURV in terms of the SF frame.

A generalized linear system is considered as shown below by linearizing the nonlinear
AURV model as described earlier to the design of the control algorithm.

ẋ = HTx + GTu

y = CTx
(19)

where HT ∈ Rnxn, GT ∈ Rnxm, CT ∈ Rrxn are the state matrix, input matrix, and output
matrix respectively.

2.3. Path Following Kinematics: Serret-Frenet Frame

The S-F frame is used in designing a kinematic model for the AURV so that the 3D
path following task of an AURV is achieved. In achieving a path following task, the time
factor is not considered a constraint. The objective is that AURV needs to be converged
along the specified path placed at some depth by considering the SF frame as shown in
Figure 4. The kinematic model in terms of SF frame is represented as follows(

ẋ f /t
ẏ f /t

)
=

(
cos ψt f − sin ψt f
sin ψt f cos ψt f

)
−
(

ċa
0

)
− ċa

(
0 −pe(ca)

pe(ca) 0

)(
x f /t
y f /t

)
(20)

where ψt f = ψt − ψ f , denotes the steering angle of the body relative to the steering angle

of SF, pe(ca) indicates the path curvature for a circular path and
(

x f /t, y f /t

)T
indicate the

error space between body and SF frame along X and Y axes respectively.
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AURV 
Dynamics

AURV 
Kinematics

Optimal Robust 
Control for   

Vertical Plane

Pitch Control using 
Backstepping 

Approach

Path Following 
Control

ψ

ψD
xD

yD

rD

+
_

+
_

+ _
Optimal Robust 

Control for 
Horizontal Plane

Yaw Control using 
Backstepping 

Approach

zD

x
y

v

r

+
_

w

q
θ

z

θD
+

_

δr

δs

+

_

Figure 3. Controller Configuration in 3D Plane.

(North)

(East)

{O}

xh

yh

uh

vh

xf/t

yf/t

ψt

ψh

ca

dFO

dTO

{T}

{F}

dFT

Figure 4. Description of S-F Frame in steering plane.

2.4. Problem Statement

In the design of a 3D path following control algorithm, the desired depth and desired
yaw need to be achieved by minimizing the depth error and yaw orientation error respec-
tively. Furthermore, the path following task needs to be achieved through the guidance
law. The state feedback optimal control algorithm is developed using Equation (19).

• The desired depth zD is achieved by minimizing the depth error, i.e.,

lim
t→0

zE(t) = 0 (21)

where zE = zd − zD. It is intended to design a backstepping control algorithm to
achieve an Equation (21).

• Subsequently, a desired pitch angle θD is achieved by reducing the pitch orientation
error to zero, i.e.,

lim
t→0

θE(t) = 0 (22)

where θE = θd − θD. As a cascaded structure is adopted in the control structure, the
desired pitch angle is generated by the backstepping approach. In this, an optimal
robust control strategy is designed to achieve the Equation (22).
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• The desired yaw ψh needs to be achieved by minimizing the yaw error i.e.,

lim
t→0

ψE(t) = 0 (23)

where ψE = ψh − ψD. The design of the backstepping controller is intentionally made
to achieve an Equation (23).

• Subsequently, yaw orientation error is reduced to zero to achieve the desired yaw
angle ψD i.e.,

lim
t→0

rE(t) = 0 (24)

where rE = rh − rD. A cascaded structure is adapted in the control design and the
backstepping approach is employed in producing the desired yaw angle.

3. Control of AURV Kinematics

This section explores the control of the kinematics of the AURV system through the
backstepping approach in both the vertical plane and the horizontal plane. Furthermore,
an explanation of the guidance law required for the path following through the SF frame is
also exploited.

3.1. Backstepping Approach for Depth Control

The desired depth of AURV is tracked efficiently by employing the backstepping
technique. The backstepping technique requires the desired pitch angle which is obtained
through the following theorem. This pitch angle is further used in the proposed robust
state feedback optimal control law. Figure 3 depicts the backstepping approach involved in
the vertical plane.

Theorem 1. Considering the Equation (2) a desired pitch angle is derived as follows

θD = θG tanh(Kpze) + σG (25)

where θG indicates the maximum allowable approaching angle, Kp is a positive gain and
σG = tan−1(wd/ud).

Proof. The existence of Lyapunov function Ξd = 1/2(ze
2) is shown for all values of ze

provided, Ξd ≤ 0 Derivation of the Lyapunov function will further lead to

Ξ̇d = ze żd = −udze sin θd + wdze cos θd (26)

Furthermore the above Equation (26) is simplified as shown below.

Ξ̇d = −wv(sin θd cos σG − cos θd sin σG) (27)

Ξ̇d = −wv sin(θd − σG) (28)

where wv =
√

ud
2 + wd

2. Hence, for θd − σG = θG tanh(Kpze) the condition Ξ̇d ≤ 0 will
always be satisfied irrespective of ze value.

3.2. Backstepping Approach for Yaw Control

Here, the backstepping approach in the horizontal plane is discussed for effective yaw
tracking. The backstepping approach is used in the generation of a desired yaw orientation.
Furthermore, the same backstepping law is applied to generate the desired yaw angle.
Figure 3 depicts the backstepping approach involved in a horizontal plane.

Theorem 2. A desired yaw rate is derived by referring to Equation (12).

rD = −KψhψE (29)
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where Kψh indicates the positive gain and ψE represent the yaw tracking error.

Proof. The existence of a Lyapunov function εh = 1
2 ψ2

E is shown for all values of ψE such
that εh ≤ 0. The further computation of the derivative of the Lyapunov function is given as

ε̇h = ψEψ̇E (30)

ψE = ψh − ψD (31)

On computing the derivative of (31),

ψ̇E = rh (32)

From (30) and (32), it is obtained as

ε̇h = ψE(rh) (33)

Considering rh as rD it is desired to get ε̇h = −KψhψE the condition ε̇h ≤ 0 will always be
satisfied irrespective of any value of ψE.

3.3. Path Following Guidance Law

Guidance law is presented in this section which considers the SF frame so that the path
following task can be achieved. Besides, a desired yaw which is generated by the guidance
law is tracked as shown in Figure 3. Figure 3 indicates the control strategy associated
with the path following. Furthermore, guidance law is employed to obtain an appropriate
desired yaw angle for the AURV to converge into the path. The error coordinates of the
body and SF frames have to be minimized. They are described as follows

lim
t→∞

x f /t = 0, lim
t→∞

y f /t = 0 (34)

For the path following problem to be realized, it requires the guidance and update law [10]
which are given as

ψD = ψt − tan−1
[

vh
uh

]
− tan−1

 y f /t√
χ3D2 +

(
x f /t

)2

 (35)

ċa =
√

uh
2 + vh

2


√

χ3D2 +
(

x f /t

)2
+ x f /t√

χ3D2 +
(

x f /t

)2
+
(

y f /t

)2

 (36)

where χ3D indicates a positive design parameter known as look-ahead distance. It is treated
as a constant, function of time, error coordinates, or any other parameters. In this case, it is
appropriated as a constant.

4. Control of AURV Dynamics

Referring to Figure 3, this section exploits the robust optimal control algorithm in the
diving plane and steering plane. Here, stability analysis in terms of LMI and robustness
is explored.

4.1. LMI Based Optimal State Feedback Controller

The linearized AURV system represented by Equation (19) is controlled by describing
the LMI-based control algorithm.
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Lemma 1. For the closed loop system to be asymptotically stable, a constant gain matrix KT ∈
Rnxn such that

u = −KTx (37)

Proposition 1. Referring to linearized system (19) and Equation (37), the closed loop system is
represented as

ẋ = (HT − GTKT)x (38)

This proposition will have a solution which is described in the next theorem.

Theorem 3. If the matrices P andR exist, then the solution to proposition 1 exists whose necessary
and sufficient condition will depend on the matrices whereP = PT ,P ∈ Rnxn, R ∈ Rnxn such that

−HT
TP −PHT + PGT(R−T +R−1)GT

TP ≤ 0

P ≥ 0
(39)

On satisfying the above condition (39), a state feedback matrix that solves Proposition 1 is given by

KT = R−1GT
TP (40)

Proof. Taking VT (x) = xTPx, where P is a positive definite matrix, i.e., P > 0, the closed
loop system stability is discussed. For the closed loop system (38) to be stable, the condition
that has to be satisfied is that the energy should decrease with time i.e., V̇T ≤ 0. Then, V̇T
is presented as

V̇T(x) = ẋTPx + xTP ẋ (41)

From Equations (19) and (37)

V̇T(x) = [(HT − GTKT)x]TPx + xTP [(HT − GTKT)x] (42)

From Equation (40), the above expression is represented as

V̇T(x) = xT [(HT
T − (R−1GT

TP)TGT
T)P + P(HT − GT(R−1GT

TP)]x (43)

= xT [(HT
TP + PHT −PGTR−TGT

TP −PGTR−1GT
TP)]x (44)

Rearranging the above equation, we get

V̇T(x) = −xT [PGT(R−T +R−1)GT
TP −HT

TP −PHT ]x (45)

= −xT [PGT((R−T +R−1)
−1

)
−1
GT

TP −HT
TP −PHT ]x (46)

= −xT [PGT(Y)
−1GT

TP −HT
TP −PHT ]x (47)

where Y = (R−T +R−1)
−1

4.2. Robust LMI BASED Optimal Control Law

Referring to state space representation presented in Equation (19), the convex combi-
nation of polytope vertices is represented as

ẋ(t) =
n

∑
i=1

γi(HTRix + GTRiu) = HTR(γ)x + GTR(γ)u (48)
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where n represents the polytope vertices. The parameters γi, i = 1, 2, . . . n are considered as
constant and real numbers of unknown type. They belong to unitary simplex Us which is
given by

Us =
n

∑
i=1

γi = 1, γi ≥ 0, i = 1, 2, . . . n (49)

Lemma 2. For the closed loop system to be asymptotically stable, a constant gain matrix KTR ∈
Rnxn such that

u = −KTRx (50)

Proposition 2. Referring to (48) and (50), the closed loop system is expressed as

ẋ = HTR(γ)x + GTR(γ)(−KTRx)

ẋ = (HTR(γ)− GTR(γ)KTR)x
(51)

The following theorem will describe the solution for the above proposition.

Theorem 4. The solution to the Proposition 2 exists such that the necessary and sufficient condi-
tions depend on the existence of matrices P = PT andR where P ∈ Rnxn,R ∈ Rnxn such that

−HTR(γ)
TP −PHTR(γ) + PGTR(γ)(R−T +R−1)GTR(γ)

TP ≤ 0.

P ≥ 0
(52)

When (52) is satisfied then a state feedback matrix that solves the Proposition 2 is given by

KTR = R−1GT RTP (53)

Proof. Taking VT R(x) = xTPx, i.e., P > 0, the closed loop system stability is discussed.
For the closed loop system (38) to be stable, the condition that has to be satisfied is that the
energy should decrease with time i.e., V̇TR ≤ 0. Then, V̇TR is presented as

V̇TR(x) = ẋTPx + xTP ẋ (54)

From Equations (19) and (50)

V̇TR(x) = [(HTR(γ)− GTR(γ)KTR)x]TPx + xTP [(HTR(γ)− GTR(γ)KTR)x] (55)

From Equation (53), the above expression is represented as

V̇TR(x) = xT [(HTR(γ)
T − (R−1(GTR(γ))

TP)T
(GTR(γ))

T)P (56)

+P(HTR(γ)− GT(R−1(GTR(γ))
TP)]x

= xT [((HTR(γ))
TP + PHTR(γ)−PGTR(γ)R−T(GTR(γ))

TP (57)

−PGTR(γ)R−1(GTR(γ))
TP)]x

Rearranging the above equation, we get

V̇TR(x) = −xT [PGTR(γ)(R−T +R−1)(GTR(γ))
TP (58)

−(HTR(γ))
TP −PHTR(γ)]x

= −xT [PGTR(γ)((R−T +R−1)
−1

)
−1

(GTR(γ))
TP (59)

−(HTR(γ))
TP −PHTR(γ)]x

= −xT [PGTR(γ)(Y)
−1(GTR(γ))

TP (60)

−(HTR(γ))
TP −PHTR(γ)]x
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where Y = (R−T +R−1)
−1

Furthermore, the above condition (52) is represented in LMI form as shown below.(
−HTR(γ)

TP −PHTR(γ) −PGTR(γ)

GTR(γ)
TP Y

)
≤ 0 (61)

Now for the system to be stable, V̇TR ≤ 0, which indicates that PGTR(γ)(Y−1)
−1GTR(γ)

TP −
(HTR(γ)

TP +PHTR(γ)) has to be positive definite. From the above, it is deduced that the
condition (52) exists for the system (48) whereHTR(γ) = γ1HTR1 + γ2HTR2 + . . .+ γnHTRn

and GTR(γ) = γ1GT1 + γ2GT2 + . . . + γnGTn . Finally, concerning Theorem 4, the matrix
P = PT exists such that (52) holds which will be a sufficient condition for the solution of
Proposition 2. Furthermore, the above condition (61) is represented by considering the
polytopic vertices as (

−HTRi
TP −PHTRi −PGTRi

GTRi
TP Y

)
≤ 0 (62)

where i = 1, 2, . . . n, indicate the number of polytopic vertices.

5. Results and Discussion

This section elaborates on the numerical analysis of the proposed control algorithm
along with the simulation results. The simulation results and the numerical analysis are
presented for both the vertical plane, the horizontal plane, and the 3D plane. The equilib-
rium point is considered as [0.1, 0.1, 0.1] and [0.1, 0.1] for the vertical plane and horizontal
plane respectively. Referring to Section 2, the state matrix, input matrix, and output matrix
are obtained by considering the equilibrium point as [wd, qd, θd] = [0.1 0.1 0.1].

HT =

−0.8761 1.4166 −0.0003
1.2450 −3.7164 −0.2633

0 1.000 0

,

GT =

−0.4027
−0.9331

0

, CT =
(
0 0 1

)
The simulation of the developed control algorithm is carried out by considering a constant
surge velocity of ud = 2 m/s. Considering the nonlinear AURV structure as shown in (7),
the generation of polytopic vertices of AURV is considered for the uncertainty of 10%
change in the hydrodynamic parameters CZẇ and CMq̇ . The ranges of the values to generate
the polytope vertices for 10% uncertainty are depicted in the Table 2.

Table 2. Robustness Analysis Showing Different ranges of CZẇ and CMq̇ in vertical plane.

Hydrodynamic Parameters Uncertainty Percentage Range Obtained

CZẇ ±10% −5079.25 ≤ CZẇ ≤ −4155.75

CMq̇ ±10% −1861.64 ≤ CMq̇ ≤ −1523.16

For an uncertainty of±10%, the polytope vertices of AURV are generated as shown below.

HT1 =

 −0.8208 1.3271 −0.0003
1.3104 −3.9116 −0.2772

0 1.0000 0
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HT2 =

 −0.8208 1.3271 −0.0003
1.1859 −3.5399 −0.2508

0 1.0000 0



HT3 =

 −0.9394 1.5189 −0.0004
1.3104 −3.9116 −0.2772

0 1.0000 0



HT4 =

 −0.9394 1.5189 −0.0004
1.1859 −3.5399 −0.2508

0 1.0000 0


and

GT1 =

 −0.3773
−0.9821

0

, GT2 =

 −0.3773
−0.8888

0



GT3 =

 −0.4318
−0.9821

0

, GT4 =

 −0.4318
−0.8888

0


Semi-definite programming is used in the generation of positive definite matrices P , Q,
andR by solving the Proposition 2 through YALMIP tool as shown below

P = 1× 103 ×

3.9191 1.3155 0.2462
1.3155 1.6282 0.5522
0.2462 0.5522 1.8064



Q = 1× 103 ×

4.3974 0 0
0 4.3974 0
0 0 4.3974


R =

(
8.3455× 103

)
Referring to Equation (53), the gain values for 10% uncertainty is generated as

shown below.
KT R = [−0.3362− 0.2455− 0.0736]

The Figure 5a indicates the desired depth ranges as shown below.

zD =


4m, 0 ≤ t ≤ 200

8m, 200 ≤ t ≤ 400

6m, 400 ≤ t ≤ 600

The tracking of the desired depths at different time instants are plotted in Figure 5a.
Once the desired depth can track, it leads to the smooth control input signal as shown
in Figure 5b. Figure 5c represents the pitch rate for an imposed uncertainty of 10% and
Figure 5d indicates the error signal. Less amount of time is consumed for the error signal
to reach zero.
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Figure 5. Control of depth for ±10% uncertainty. (a) Tracking of Desired Depth, (b) Control Input,
(c) Pitch Rate, (d) Error Signal.

A comparison between the proposed optimal state feedback control algorithm and
the adaptive neuro-fuzzy sliding mode control (ANFSMC) by referring [40] is presented in
Figure 6. As seen in Figure 6a, the performance of the proposed control algorithm possesses
better compared to the ANFSMC. Figure 6b indicates the amount of energy utilized in
tracking the sine wave. It depicts that the energy consumption is more in the case of the
proposed optimal state feedback controller. However, the settling time is less for the case of
the proposed optimal state feedback control when compared with the ANFSMC design.
Figure 6c indicates an improved pitch rate by the proposed optimal state feedback control
when compared with the ANFSMC control. Figure 6d depicts the error tracking of the
sine wave.
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Figure 6. Path Following in Vertical Plane for ±10% Uncertainty. (a) Tracking of Desired Sine Wave,
(b) Control Input for a Sine wave, (c) Pitch Rate for a Sine Wave, (d) Error Signal for a Sine wave.
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5.1. Path Following Control in Horizontal Plane

Referring to Section 2, the state matrix, input matrix, and output matrix is obtained by
considering the equilibrium point as [vh, rh] = [0.1 0.1].

HT =

(
−0.2094 −0.9124
−0.3837 −0.8518

)
,

GT =

(
0.1187
−0.3178

)
, CT =

(
0 1

)
The simulation of the developed control algorithm is carried out by considering a constant
surge velocity of uh = 2 m/s.

Considering the nonlinear AURV structure as shown in Equation (7), the generation
of polytopic vertices of AURV is considered for the uncertainty of 10% change in the
hydrodynamic parameters CYv̇ and CNṙ . The ranges of the values to generate the polytope
vertices for 10% uncertainty are depicted in the Table 3.

Table 3. Robustness analysis showing different ranges of CYv̇ and CNṙ in vertical plane.

Hydrodynamic Parameters Uncertainty Percentage Range Obtained

CYv̇ ±10% −1886.94 ≤ CYv̇ ≤ −1543.86

CNṙ ±10% −1861.64 ≤ CNṙ ≤ −1523.16

The generation of polytope vertices for an uncertainty of 10% is shown below.

HT1 =

(
−0.2007 −0.8744
−0.3689 −0.8188

)

HT2 =

(
−0.2007 −0.8744
−0.3998 −0.8876

)
HT3 =

(
−0.2189 −0.9538
−0.3689 −0.8188

)
HT4 =

(
−0.2189 −0.9538
−0.3998 −0.8876

)
and

GT1 =

(
0.1138
−0.3054

)
, GT2 =

(
0.1138
−0.3311

)
GT3 =

(
0.1241
−0.3054

)
, GT4 =

(
0.1241
−0.3311

)
YALMIP tool is used in solving the Proposition 2 through semi-definite programming to
generate the positive definite matrices P , Q, andR as shown below.

P = 1× 10−8 ×
(

0.0761 0.1966
0.1966 0.5006

)

Q =

(
119.9299 0

0 119.9299

)
R =

(
1.5146× 10−10

)
From (53), on substituting the above required matrices, the gain matrix is generated as
shown below.

KTR = (−3.5292− 8.9634)
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The tracking of the desired yaw at different time instants are depicted in Figure 7a. The
control input signal is plotted in Figure 7b. Figure 7c depicts the yaw rate for an uncertainty
of 10% and the Figure 7d indicates the error signal for an uncertainty of 10%. Less amount
of time is consumed for the error signal to achieve zero value.
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Figure 7. Control of yaw for ±10% uncertainty. (a) Tracking of Desired Yaw, (b) Control Input,
(c) Yaw Rate, (d) Error Signal.

The path following in the horizontal plane is presented by a spline path. The Carte-
sian space coordinates are considered in designing the spline path for which polynomial
parameterization is given as

xD(ca) =
n

∑
i=0

pica
i, yD(ca) =

n

∑
i=0

qica
i

In the above representation, the path parameters are indicated as pi, and qi concerning
polynomial functions along the x-coordinate and y-coordinate respectively. The path
parameters are indicated in the Table 4.

Table 4. Spline Path Parameter Values.

p0 p1 p2 p3 p4

0 0.81 −0.018 1.3× 10−5 1.7× 10−6

q0 q1 q2 q3 q4

0 0.52 −5× 10−5 1.3× 10−4 1.2× 10−7

The tracking of the desired spline wave is reported in Figure 8a by considering the
initial conditions as [10,−5]. It is observed from the figure that the tracking desired value
using the proposed algorithm is better compared to ANFSMC. Furthermore, the steady
state errors in the x and y axes are more in the case of ANFSMC as shown in Figure 8c,d
respectively. The control input which depicts the energy consumed for the proposed
optimal state feedback control and ANFSMC is shown in Figure 8b. From the figure, it is
seen that less amount of energy is consumed by the proposed control to track the desired
path as compared to ANFSMC.
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Figure 8. Path Following in Horizontal Plane for ±10% Uncertainty. (a) Tracking of Desired Spline
Path, (b) Control Input for a Spline Path, (c) x-axis path error for spline path, (d) y-axis path error for
spline path.

5.2. 3D Path Following

This section shows the tracking of a desired circular path which is considered at a
constant depth of zD = 10m. For the desired path, the path coordinates are considered as
xD(ca) and yD(ca). To evaluate the required parameters, the path curvature ca is involved
in designing the yaw orientation as discussed below

ψt(ca) = arctan
(yD)

′

(xD)
′

pe(ca) =
dψt(ca)

dca

ψ̇t = pe(ca)ċa

where (xD)
′
= dxD

dca
and (yD)

′
= dyD

dca
. The simulation for the path following control is

performed by considering uh = 2 m/s and η = 10 which is a positive design parameter and
termed as look ahead distance. The desired path coordinates are given by

xD(ca) = 100 cos(0.01ca), yD(ca) = 100 sin(0.01ca)

The desired coordinates for circular path tracking of AURV in a 3D plane are shown
in Figure 9. As indicated in the figure, the initial position of the AURV is considered as
[0,0,10]. Referring to Figure 9a, it is observed that the proposed optimal state feedback
control tracks the desired circular path by achieving the desired depth. While in the case of
ANFSMC control, it is seen that the AURV is taking more time to reach the desired depth
in tracking the desired circular path. A deviation in tracking the desired 3D circular path
can be observed in the case of ANFSMC control. Figure 9b,c present the rudder and stern
movement respectively. In both cases, the proposed control algorithm performs better
compared to ANFSMC.
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Figure 9. 3D Path Following for Circular Path for ±10% Uncertainty. (a) 3D Plane Path Following,
(b) Rudder Angle, (c) Stern Angle.

6. Conclusions

A state feedback approach for an AURV system using a polytopic approach is dis-
cussed in this paper. The state feedback control law is developed by considering a polytopic
uncertain system that is formulated using the selected hydrodynamic parameters of AURV
in both horizontal and vertical planes. Besides, separate backstepping control algorithms
for the kinematics of AURV are designed in both horizontal and vertical planes. Further-
more, a control structure is developed from the decoupled models of AURV to achieve the
3D path following task. The effectiveness of the developed control algorithm is verified
by implementing it for different paths. From the results, it is observed that the control
effort generated by the control algorithm is minimal compared to the ANFSMC algorithm.
Besides, the error is minimum in the case of the proposed control algorithm as compared
to the ANFSMC algorithm. The polytopic model is designed using ±10% uncertainty on
selected hydrodynamic parameters in order to ensure the robust behaviour of the closed
loop system. The developed control law depicts the tracking of the desired circular path
in the presence of uncertain hydrodynamic parameters. The path error coordinates are
minimized to achieve the desired tracking of the path. The simulation studies are carried
out in MATLAB/Simulink environment using the YALMIP tool.
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Abbreviations
The following abbreviations are used in this manuscript:

AURV Autonomous Underwater Robotic Vehicle
NED North-East-Down
AUV Autonomous Underwater Vehicle
SF Serret-Frenet
SMC Sliding Mode Control
MPC Model Predictive Control
QPSO Quantum behaved Particle Swarm Optimization
PID Proportional Integral Derivative
LPV Linear Parameter Varying
TAN Terrain Aided Navigation
CMG Control Moment Gyros
LMI Linear Matrix Inequality
ANFSMC Adaptive Neuro Fuzzy Sliding Mode Control
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