# Three-Dimensional Iterative Enhancement for Coverage Hole Recovery in Underwater Wireless Sensor Networks

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Proposed Coverage Enhancement Modeling

#### 2.1. Coverage Description and Node Motion Model

#### 2.2. Enhanced Coverage and Protocol Modeling

## 3. Numerical Evaluations and Experimental Analyses

#### 3.1. Parameter Settings

#### 3.2. Simulation Results and Analysis

## 4. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Jiang, J.; Han, G.; Lin, C. A survey on opportunistic routing protocols in the Internet of Underwater Things. Comput. Netw.
**2023**, 225, 109658. [Google Scholar] [CrossRef] - Razzaq, A.; Mohsan, S.A.H.; Li, Y.; Alsharif, M.H. Architectural Framework for Underwater IoT: Forecasting System for Analyzing Oceanographic Data and Observing the Environment. J. Mar. Sci. Eng.
**2023**, 11, 368. [Google Scholar] [CrossRef] - Truong, V.T.; Ha, D.B.; So-In, C. On the System Performance of Mobile Edge Computing in an Uplink NOMA WSN with a Multiantenna Access Point over Nakagami-m Fading. IEEE/CAA J. Autom. Sin.
**2022**, 9, 668–685. [Google Scholar] [CrossRef] - Zhang, S.; Chen, H.; Xie, L. ASVMR: Adaptive Support-Vector-Machine-Based Routing Protocol in the Underwater Acoustic Sensor Network for Smart Ocean. J. Mar. Sci. Eng.
**2023**, 11, 1736. [Google Scholar] [CrossRef] - Hajjej, F.; Hamdi, M.; Ejbali, R.; Zaied, M. A distributed coverage hole recovery approach based on reinforcement learning for Wireless Sensor Networks. Ad Hoc Netw.
**2020**, 101, 102082. [Google Scholar] [CrossRef] - Yao, Y.D.; Wen, Q.; Cui, Y.P.; Zhao, F.; Zhao, B.Z.; Zeng, Y.P. Coverage Enhancement Strategy in WMSNs Based on a Novel Swarm Intelligence Algorithm: Army Ant Search Optimizer. IEEE Sens. J.
**2022**, 22, 21299–21311. [Google Scholar] [CrossRef] - Pundir, S.; Wazid, M.; Singh, D.P.; Das, A.K.; Rodrigues, J.J.; Park, Y. Intrusion detection protocols in wireless sensor networks integrated to Internet of Things deployment: Survey and future challenges. IEEE Access
**2019**, 8, 3343–3363. [Google Scholar] [CrossRef] - Wen, Q.; Zhao, X.Q.; Cui, Y.P.; Zeng, Y.P.; Chang, H.; Fu, Y.J. Coverage enhancement algorithm for WSNs based on vampire bat and improved virtual force. IEEE Sens. J.
**2022**, 22, 8245–8256. [Google Scholar] [CrossRef] - Habibiyan, R.; Sabbagh, A.G. Connectivity analysis of 2D underwater optical wireless sensor networks using a geometric approach. Ad Hoc Netw.
**2022**, 134, 102910. [Google Scholar] [CrossRef] - So-In, C.; Nguyen, T.G.; Nguyen, N.G. An efficient coverage hole-healing algorithm for area-coverage improvements in mobile sensor networks. Peer—Peer Netw. Appl.
**2019**, 12, 541–552. [Google Scholar] [CrossRef] - Zhang, Z.; Tian, S.; Yang, Y. Node Depth Adjustment Based Target Tracking in Sparse Underwater Sensor Networks. J. Mar. Sci. Eng.
**2023**, 11, 372. [Google Scholar] [CrossRef] - Wang, Z.; Wang, B. A novel node sinking algorithm for 3D coverage and connectivity in underwater sensor networks. Ad Hoc Netw.
**2017**, 56, 43–55. [Google Scholar] [CrossRef] - Zhang, J.; Han, G.; Sha, J.; Qian, Y.; Liu, J. AUV-assisted subsea exploration method in 6G enabled deep ocean based on a cooperative pac-men mechanism. IEEE Trans. Intell. Transp. Syst.
**2021**, 23, 1649–1660. [Google Scholar] [CrossRef] - Wei, L.; Song, X.; Zheng, X.; Wu, X.; Gui, G. Boundary node identification in three dimensional wireless sensor networks for surface coverage. IEICE Trans. Inf. Syst.
**2019**, 102, 1126–1135. [Google Scholar] [CrossRef] - Yao, Y.; Hu, S.; Li, Y.; Wen, Q. A node deployment optimization algorithm of WSNs based on improved moth flame search. IEEE Sens. J.
**2022**, 22, 10018–10030. [Google Scholar] [CrossRef] - Zhao, X.Q.; Cui, Y.P.; Gao, C.Y.; Guo, Z.; Gao, Q. Energy-efficient coverage enhancement strategy for 3-D wireless sensor networks based on a vampire bat optimizer. IEEE Internet Things J.
**2019**, 7, 325–338. [Google Scholar] [CrossRef] - Yi, J.; Qiao, G.; Yuan, F.; Tian, Y.; Wang, X. Sensor Deployment Strategies for Target Coverage Problems in Underwater Acoustic Sensor Networks. IEEE Commun. Lett.
**2023**, 27, 836–840. [Google Scholar] [CrossRef] - Zhang, Y.; Wang, M.; Liang, J.; Zhang, H.; Chen, W.; Jiang, S. Coverage enhancing of 3D underwater sensor networks based on improved fruit fly optimization algorithm. Soft Comput.
**2017**, 21, 6019–6029. [Google Scholar] [CrossRef] - Fattah, S.; Ahmedy, I.; Idris, M.Y.I.; Gani, A. Hybrid multi-objective node deployment for energy-coverage problem in mobile underwater wireless sensor networks. Int. J. Distrib. Sens. Netw.
**2022**, 18, 15501329221123533. [Google Scholar] [CrossRef] - Kapileswar, N.; Phani Kumar, P. Energy efficient routing in IOT based UWSN using bald eagle search algorithm. Trans. Emerg. Telecommun. Technol.
**2022**, 33, e4399. [Google Scholar] [CrossRef] - Jiang, P.; Wang, X.; Liu, J. A sensor redeployment algorithm based on virtual forces for underwater sensor networks. Chin. J. Electron.
**2018**, 27, 413–421. [Google Scholar] [CrossRef] - Li, X.; Ci, L.; Yang, M.; Tian, C.; Li, X. Deploying three-dimensional mobile sensor networks based on virtual forces algorithm. In Proceedings of the Advances in Wireless Sensor Networks: 6th China Conference, CWSN 2012, Huangshan, China, 25–27 October 2012; Revised Selected Papers 6, 2013. pp. 204–216. [Google Scholar]
- Wang, W.; Huang, H.; He, F.; Xiao, F.; Jiang, X.; Sha, C. An enhanced virtual force algorithm for diverse k-coverage deployment of 3D underwater wireless sensor networks. Sensors
**2019**, 19, 3496. [Google Scholar] [CrossRef] - Liu, C.; Zhao, Z.; Qu, W.; Qiu, T.; Sangaiah, A.K. A distributed node deployment algorithm for underwater wireless sensor networks based on virtual forces. J. Syst. Archit.
**2019**, 97, 9–19. [Google Scholar] [CrossRef] - Jun, W.; Haoyang, G. Virtual force field coverage algorithms for wireless sensor networks in water environments. Int. J. Sens. Netw.
**2020**, 32, 174–181. [Google Scholar] [CrossRef] - Hu, Y.; Sun, Y.; Chen, L. The VF-PSO optimization algorithm for coverage and deployment of underwater wireless sensor network. Indian J. Geo-Mar. Sci. (IJMS)
**2022**, 51, 219–228. [Google Scholar] - Xie, P.; Cui, J.H.; Lao, L. VBF: Vector-based forwarding protocol for underwater sensor networks. In Proceedings of the NETWORKING 2006. Networking Technologies, Services, and Protocols; Performance of Computer and Communication Networks; Mobile and Wireless Communications Systems: 5th International IFIP-TC6 Networking Conference, Coimbra, Portugal, 15–19 May 2006; pp. 1216–1221. [Google Scholar]
- Nicolaou, N.; See, A.; Xie, P.; Cui, J.H.; Maggiorini, D. Improving the robustness of location-based routing for underwater sensor networks. In Proceedings of the Oceans 2007-Europe, Aberdeen, Scotland, 18–21 June 2007; pp. 1–6. [Google Scholar]
- Yan, H.; Shi, Z.J.; Cui, J.H. DBR: Depth-based routing for underwater sensor networks. In Proceedings of the NETWORKING 2008 Ad Hoc and Sensor Networks, Wireless Networks, Next Generation Internet: 7th International IFIP-TC6 Networking Conference, Singapore, 5–9 May 2008; pp. 72–86. [Google Scholar]
- Wahid, A.; Kim, D. An energy efficient localization-free routing protocol for underwater wireless sensor networks. Int. J. Distrib. Sens. Netw.
**2012**, 8, 307246. [Google Scholar] [CrossRef] - Luo, C.; Wang, B.; Cao, Y.; Xin, G.; He, C.; Ma, L. A hybrid coverage control for enhancing UWSN localizability using IBSO-VFA. Ad Hoc Netw.
**2021**, 123, 102694. [Google Scholar] [CrossRef] - Tsai, P.H.; Tsai, R.G.; Wang, S.S. Hybrid localization approach for underwater sensor networks. J. Sens.
**2017**, 2017, 5768651. [Google Scholar] [CrossRef] - Caruso, A.; Paparella, F.; Vieira, L.F.M.; Erol, M.; Gerla, M. The meandering current mobility model and its impact on underwater mobile sensor networks. In Proceedings of the IEEE INFOCOM 2008—The 27th Conference on Computer Communications, Phoenix, Arizona, 13–18 April 2008; pp. 221–225. [Google Scholar]
- Luo, C.; Cao, Y.; Xin, G.; Wang, B.; Lu, E.; Wang, H. Three-dimensional coverage optimization of underwater nodes under multiconstraints combined with water flow. IEEE Internet Things J.
**2021**, 9, 2375–2389. [Google Scholar] [CrossRef] - Singh, P.; Khosla, A.; Kumar, A.; Khosla, M. Optimized localization of target nodes using single mobile anchor node in wireless sensor network. AEU-Int. J. Electron. Commun.
**2018**, 91, 55–65. [Google Scholar] [CrossRef] - Liu, H.; Zhang, X.W.; Tu, L.P. A modified particle swarm optimization using adaptive strategy. Expert Syst. Appl.
**2020**, 152, 113353. [Google Scholar] [CrossRef] - Qi, X.; Li, Z.; Chen, C.; Liu, L. A wireless sensor node deployment scheme based on embedded virtual force resampling particle swarm optimization algorithm. Appl. Intell.
**2022**, 52, 7420–7441. [Google Scholar] [CrossRef] - Luo, C.; Yang, X.; Wang, L.; Xin, G.; Ge, X.; Kong, F.; Wang, B. A node deployment-aided intelligent optimization estimation for WSNs positioning refinement. IEEE Trans. Instrum. Meas.
**2023**. [Google Scholar] [CrossRef] - Zhang, X.; Liu, H.; Zhang, T.; Wang, Q.; Wang, Y.; Tu, L. Terminal crossover and steering-based particle swarm optimization algorithm with disturbance. Appl. Soft Comput.
**2019**, 85, 105841. [Google Scholar] [CrossRef]

**Figure 4.**Comparison of coverage rate optimization of different coverage algorithms with changes in node numbers.

Surveyed Works | Proposed Method | Solved Problem | Advantages |
---|---|---|---|

So-In, C., 2019 [10] | CHHA | Coverage holes | Apply virtual force under Delaunay triangulation. |

Yao, Y., 2022 [15] | VF-IMFO | Coverage holes | Analyze virtual force for node path optimization. |

Zhao, X.Q., 2019 [16] | VBO | Energy consumption | Multi-energy optimization during redeployment. |

Yi, J., 2023 [17] | IGS | Node coverage | Transform coverage problem into multiple local optimal. |

Zhang, Y., 2017 [18] | UFOA | Node coverage | Optimal coverage under drosophila foraging behavior. |

Jiang, P., 2018 [21] | VFRBEC | Node coverage | Correct node displacement underwater flow force. |

Wang, W., 2019 [23] | k-ERVFA | k-coverage | An uneven coverage for k-coverage requirements. |

Liu, C., 2019 [24] | DABVF | Node coverage | Node virtual force and fault judgment mechanism. |

Hu, Y., 2022 [26] | VF-PSO | Node coverage | Optimize network coverage and distance threshold. |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zhang, L.; Luo, C.; Ge, X.; Cao, Y.; Zhang, H.; Xin, G.
Three-Dimensional Iterative Enhancement for Coverage Hole Recovery in Underwater Wireless Sensor Networks. *J. Mar. Sci. Eng.* **2023**, *11*, 2365.
https://doi.org/10.3390/jmse11122365

**AMA Style**

Zhang L, Luo C, Ge X, Cao Y, Zhang H, Xin G.
Three-Dimensional Iterative Enhancement for Coverage Hole Recovery in Underwater Wireless Sensor Networks. *Journal of Marine Science and Engineering*. 2023; 11(12):2365.
https://doi.org/10.3390/jmse11122365

**Chicago/Turabian Style**

Zhang, Lingli, Chengming Luo, Xiyun Ge, Yuxin Cao, Haobo Zhang, and Gaifang Xin.
2023. "Three-Dimensional Iterative Enhancement for Coverage Hole Recovery in Underwater Wireless Sensor Networks" *Journal of Marine Science and Engineering* 11, no. 12: 2365.
https://doi.org/10.3390/jmse11122365