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Abstract: Bows and stems are often subjected to wave slamming loads. Stiffened plates with cur-
vatures in both longitudinal and transversal directions are the basic members of these structures.
As a result, it is important to investigate the lateral ultimate strength of the doubly curved stiffened
plates. In this study, the non-linear finite element method (NFEM) is selected to investigate the
collapse modes and lateral ultimate strengths of the doubly curved stiffened plates. Additionally,
the influences of curvature and geometrical properties on the collapse modes and ultimate strengths
of doubly curved stiffened plates are investigated. In the NFEM analysis, a series of numerical
simulations, covering different aspect ratios, curvatures, and structural scantlings are performed.
Different collapse modes of doubly curved stiffened plates under lateral loading cases are observed.
The relationships between the collapse modes and the geometrical properties are then discussed
based on the numerical results. Moreover, the results also show that larger curvatures along the
stiffeners and stronger stiffeners contribute more to the lateral ultimate strengths. Subsequently, an
empirical formula is derived and verified for predicting the lateral ultimate strength of the doubly
curved stiffened plates. The results of the empirical formula match well with numerical calculations.

Keywords: stiffened plates; longitudinal and transversal curvatures; lateral ultimate strength;
collapse modes; empirical formula

1. Introduction

Complicated curved surfaces exist in ship structures, e.g., the bow, stem, and hull
surfaces exhibit varying curvatures. Consequently, stiffened plates with curvatures in
both longitudinal and transversal directions are employed in these structures. In recent
years, there has been increasing interest from both industry and academia in the structural
ultimate strength and reliability of bows and stems.

Ultimate strengths of bows and stems are very important in the evaluation of ship
structures, especially in ship–ice collision and wave slamming cases. Yang et al. [1] re-
searched the dynamic behaviors of the large container ship’s bow structures subjected to
slamming pressures; a safety margin evaluating the safety performance of large container
ships under a slamming pressure coefficient was presented. Shabani et al. [2] investigated
the slamming loads and kinematics during bow entry events and derived an advanced
central bow designing method. In such cases, lateral loads with large amplitudes are
applied to doubly curved stiffened plates which constitute structures. The plates face the
risk of global buckling, which can result in the collapse of the entire structure. Therefore, it
is crucial to conduct further research on the ultimate strength issues associated with such
scenarios. Moreover, doubly curved stiffened plates are the basic units of ship structures
with complicated curved surfaces, of which the collapse mechanisms are not exactly the
same as with flat stiffened plates or singly curved stiffened plates. Related research into
doubly curved stiffened plates has seldom been reported.
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Research on the ultimate strengths and collapse mechanisms of flat stiffened plates
serves as a valuable reference for studying curved stiffened plates. Numerous empirical
formulae have been developed to conveniently obtain the ultimate strength of the plates
or stiffened plates. Liu and Zhang [3] analyzed the influence of the rotational stiffness,
aspect ratio, and initial deflection on the ultimate strengths of plates subjected to axial
compressions, and a modified empirical formula containing the above factors was pro-
posed. Hayward and Lehmann [4] presented a new formula of the load-bearing capacity
of plates under biaxial loads, which can capture the influences of the plate slenderness
and aspect ratio. Kim et al. [5] reviewed the well-known formula, predicting the ultimate
strength of stiffened plates by comparing it with analytical and FEA results, and proposed
the ultimate strength empirical formula without considering the fluctuation behavior. Li
et al. [6,7] presented an adapted algorithm to predict the stiffened plates’ collapse progress,
which extends the predicting capacity of the elastic stiffness and ultimate and post-ultimate
features. The ultimate strength of stiffened plates subjected to the combined longitudinal
compressive stress and lateral pressure has also been studied, with corresponding numer-
ical analysis, empirical formulae, and experiments. Yao et al. [8] explored the effect of
the boundary conditions on the ultimate strength of stiffened panels under the combined
action of longitudinal and lateral loads.

Many investigations on collapse behaviors of plane stiffened plates have also been
performed, through which several typical collapse modes, deformation mechanisms, and
some recommending modeling techniques have been explored. Paik [9] explored six kinds
of collapse modes for stiffened plates under different load cases and derived a series of
empirical formulae for combined load cases. Ma et al. [10] explored the influence of lateral
loads on ultimate strengths and collapse modes of stiffeners under combined load cases
and provided a useful explanation about different collapse modes of stiffeners. Xu et al. [11]
performed a series of NFEM analyses and investigated the influence of boundary conditions
on collapse behaviors of the stiffened plates under different load cases. Li et al. [12,13]
investigated the deformation behaviors of continuous plates under combined biaxial loads
and lateral pressure. The loading components include both constant loads and cyclic loads.

By taking transversal curvature into account, many studies on singly curved stiffened
plates have been conducted. Cui et al. [14] investigated the ultimate strength and collapse
behaviors under different load cases of single-curved stiffened plates from cargo containers
and derived a series of empirical formulae for predicting the axial ultimate strength of
the single-stiffened plates. Park et al. [15] researched the fundamental buckling behaviors
of cylindrically curved plates subjected to axial loading and investigated the effects of
the curvature, magnitude of initial imperfection, slenderness ratio, and aspect ratio on
the characteristics of the buckling and post-buckling collapse behavior of cylindrically
curved plates. Seo et al. [16] researched the influence of curvatures on the buckling/post-
buckling characteristics and collapse behaviors of singly curved stiffened plates under
axial compression and then derived relevant formulae on axial strengths. Park et al. [17]
performed a series of elastic-plastic large deflection analyses on singly curved stiffened
plates to clarify the fundamental behaviors of cylindrically curved plates under axial
compression and lateral pressure. A double beta formula considering secondary buckling
behaviors was derived based on the results. Cho et al. [18] performed an experiment
on singly curved stiffened plates and investigated the influence of the curvature effect
on the ultimate strengths of the single-curved stiffened plates. Research on the collapse
modes and ultimate strengths of flat or singly curved stiffened plates has laid a foundation
for studying doubly curved stiffened plates. The methodologies, concepts, and ultimate
strengths’ influencing factors involved in these studies are instructive.

In this study, the collapse behaviors and ultimate strengths of doubly curved stiffened
plates under lateral loading cases are investigated. Considering different kinds of ship
structures, the influences of varying types of stiffeners, longitudinal and transversal curva-
tures, and geometric scantlings on the ultimate strengths and collapse modes are taken into
account. Based on above influential factors studies, a prediction formula for lateral ultimate
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strengths of such structures has been derived and verified, resulting in good accuracy with
simple form. The results from this research can be helpful for the understanding of doubly
curved panels’ ultimate strength and collapse behavior as well as its contribution to the
ultimate strengths of ship structures with complicated curved surfaces.

2. Methodology

In this study, the geometrical parameters of doubly curved stiffeners are firstly ob-
tained according to the data from different ships. The NFEM models of the doubly curved
with different slenderness ratios are established in the next step. Then, the lateral ulti-
mate strengths and collapse modes of the models are obtained via the NFEM. Finally, an
empirical formula of the doubly curved stiffened plates’ lateral ultimate strength is derived.

2.1. Description of Doubly Curved Stiffened Plate

Doubly curved stiffened plates make up the complex surfaces of bows and stems, and
they contribute to the strengths and the loading capacities of the structures. Such stiffened
plates have curvatures in both the longitudinal and transversal directions, and the plates
form complicated curved surfaces with varying curvatures. The stiffened plates in this
study are selected as single span and single bay models. According to the recommendation
of ISSC (2012) [19], such a model extent is acceptable. As such, stiffened plates are supported
by transversal and longitudinal primary supporting members (PSMs), and, in the case
of lateral loading, the boundary conditions of the stiffened structures at the PSMs can
be regarded as clamped supported. Considering the background of this study, several
stiffened plates derived from the bows and stems of an icebreaker, an oil tanker, and
a cargo container are selected as references models. Models with different curvatures
are set to explore the influence of curvature on the ultimate strengths of doubly curved
stiffened plates. The structural settings of the models are shown in Figure 1, and the original
geometric parameters can be found in Table 1. And the parameters appear in this research
are shown in Nomenclature Section, where units for geometry and stress are mm and MPa,
respectively. The detailed structural settings of the models in this research can be found in
Appendix A.
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Figure 1. Structural settings of typical doubly curved stiffened plates: (a) geometric model;
(b) NFEM model.

As shown in Figure 1a, a denotes the longitudinal span, b denotes the spacing between
adjacent stiffeners, RL denotes the curvature radius along the stiffeners, and RT denotes the
curvature radius along the direction that is perpendicular to the stiffeners. To illustrate the
curvature and its influence on the ultimate strengths, the curvatures in longitudinal and
transversal directions of all the models are represented by groups of dimensionless terms
θL= a/RL and θT = b/RT , which are shown in Figure 2. All the stiffeners are equipped
with a ‘T’ type section, which is depicted in Figure 3.
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Table 1. Structural settings of the original doubly curved stiffened plates models for this study.

Ship RL
(mm)

RT
(mm) a (mm) b (mm) Stiffener Aspect

Ratio
σY

(MPa)
Number of
Stiffeners

Icebreaker 14,523 40,306 4000 350 Tee bar, T360 × 20 + 90 × 20 11.42 355 5

Icebreaker 17,075 48,849 4000 350 Tee bar, T360 × 20 + 90 × 20 11.42 355 7

Icebreaker 5719 45,560 2375 350 Tee bar, T360 × 20 + 90 × 20 6.78 355 5

Icebreaker 5475 54,020 2375 350 Tee bar, T360 × 20 + 90 × 20 6.78 355 7

Container ship 74,243 4770 2400 650 Tee bar, T280 × 11 + 120 × 20 3.69 355 3

Container ship 13,104 7198 3044 675 Tee bar, T320 × 12 + 120 × 20 4.50 355 3

Icebreaker 11,500 59,500 2375 350 Tee bar, T360 × 20 + 90 × 20 6.78 355 5

Oil tanker 26,500 37,500 3200 800 Tee bar, T420 × 10 + 120 × 16 4 355 5

Oil tanker 41,600 27,200 3200 800 Tee bar, T420 × 10 + 120 × 16 4 355 5
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As there is curvature in the longitudinal or transversal direction, Seo et al. [16] in-
vestigated the singly curved stiffened plate and concluded that the ultimate strengths of
such plates are related to the slenderness of flat plates with identical geometric dimensions.
Therefore, the structural strengths of doubly curved stiffened plates can be evaluated by
the slenderness ratios λ and β, where λ denotes the column slenderness ratio of stiffener
with attached plating and β denotes the slenderness ratio of plating between stiffeners,
which are expressed by Equation (1):

β = b
tp

√
σY
E

λ = a
πr

√
σY
E

r =
√

I
A

(1)
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To clarify the influence of initial imperfections on lateral ultimate strengths, a curved
stiffened plate with transversal curvature identical to model ‘R5’ is established. The
‘buckling’ mode initial imperfection recommended by ISSC [19] and the ‘thin horse’ mode
initial imperfection conducted by Yao et al. [20] are applied to the model, respectively. The
modes of the initial deflections are depicted in Figure 4 and Equations (2)–(5). As shown
in Figure 5, the lateral strengths of models with different geometrical imperfections are
similar. Moreover, the lateral ultimate strength does not significantly decrease with the
occurrence of the initial deflections, and the differences in the ultimate strengths between
models with and without initial deflection are less than 5%. Consequently, the influence of
the initial deflection on lateral ultimate strengths is actually limited. And the results from
models without initial imperfections can be considered reasonable.
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voc = B0 sin
(πz
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where B0 denotes the magnitude of column type mode and is recommended as 0.0015a.
The initial tripping distortion of a stiffener:

voc = B0 sin
(πz

a

)
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(πx

B

)
(3)

The buckling mode initial deflection of local plating:

vopl = A0 sin
(mπz

a

)
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(πx

b

)
(4)
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The thin horse mode initial deflection of local plating:

vopl =

∣∣∣∣∣ 11

∑
k=1

A0k sin
(

kπz
a

)
sin
(πx

b

)∣∣∣∣∣ (5)

where A0k are determined according to the empirical value derived by Yao et al. [20],
and is shown in Table 2, and the maximum magnitude A0 is the same as the previous
buckling mode.

Table 2. Coefficients of initial deflection magnitudes.

A01/A0 A02/A0 A03/A0 A04/A0 A05/A0 A06/A0 A07/A0 A08/A0 A09/A0 A10/A0 A11/A0

1.1439 −0.0677 0.3385 0.0316 0.1579 −0.0149 −0.0043 0.0008 0.0039 −0.0002 −0.0011

In shipyards, the manufacturing of doubly curved plates with complicated curvatures
is achieved through the line heating technique. Consequently, the existing empirical
formulae for initial imperfections such as ‘buckling’ and ‘thin horse’ are not suitable for
such plates. Moreover, in actual conditions, residual stress will shake down after multiple
loading and de-loading processes; thus, the influence of residual stress is negligible in a
real ship structure. The calculations performed above have proved that the influence of
the initial deflection is neglectable, and there are few data about the initial imperfections
that are applicable for doubly curved stiffened plates. Therefore, the influence of the initial
deflections and residual stress is not considered in this study.

2.2. NFEM Analysis

The computer code ABAQUS is considered as the numerical analyzing method in
this study. The type of elements is chosen as S4R, which simulates the shell and possesses
four nodes and six degrees of freedom. In the NFEM models, the nonlinearities of material
and geometry are all taken into account. The geometrical nonlinearity is performed by the
using the ‘NLGEOM’ option in the code. This option takes large deformations and the
nonlinearity between displacements and strains into account. And the nonlinearity of the
material is performed by considering the yielding strength in the constitutive relationship
of the material. Material nonlinearity and geometric nonlinearity must be considered
in research, while initial imperfection is not a mandatory input; meanwhile, there is no
relevant data available for doubly curved stiffened plates, so it is not considered in this
study. The property of steel is defined with the ideal elastic-plastic model (the material
has no plastic strain, and the nonlinearity is realized by yielding strength, σY), which is
illustrated in Figure 6.
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Additionally, the implicit static method is applied during the calculation. As the size
of the mesh has an important impact on the speed and results of the calculation, to keep a
balance between the accuracy and efficiency of the calculation, an appropriate size of the
mesh should be confirmed. The mesh sizes are selected as 10 mm, 15 mm, 20 mm, 25 mm,
and 45 mm, respectively. As shown in Figure 7, the ultimate strength exhibits a stable
state when the element sizes are within 10 mm and 20 mm. As a result, an element size of
20 mm was used in the finite element model to ensure relatively accurate results and higher
calculation efficiency. Moreover, to justify the reliability of the NFEM, we also performed
a comparison calculation on an axial ultimate strength problem of the standard stiffened
plates conducted by ISSC 2012 [19], and the relevant information and results are shown in
Table 3. The error between the results of the NFEM and ISSC is within 2.5%, signifying that
the NFEM employed in this study is reliable.
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Table 3. Results of the benchmark calculation.

σY (MPa) tp (mm) Stiffeners’
Parameters (mm)

Result
(MPa)

Result of
ISSC (MPa) Error

313.6 15 580 × 15/150 × 20,
Tee Bar 232.52 227.05 2.4%

2.3. Boundary Conditions and Load Applications

The quantity of longitudinal and transversal primary supporting members in bow
or stem structures is generally larger than those in other parts; therefore, doubly curved
stiffened plates are subjected to stronger constraints than stiffened plates in other parts.
Additionally, the deformations of the shell, when subjected to uniformly distributed lat-
eral loads, are symmetric in longitudinal or transversal direction. Consequently, in the
investigation of the lateral ultimate strength of the doubly curved stiffened plates, the
clamped constraint is applied on the boundaries of the numerical model, restricting all
the translations and rotations. The lateral loads are applied on the outer surface without
stiffeners in the form of a uniformly distributed normal load. The settings of load and
boundary conditions are shown in Figure 8.
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3. Results and Discussion

Based on the NFEM, a series of calculations have been performed on typical doubly
curved stiffened plate models designed according to corresponding ships. The following
results have been obtained by analyzing the target models with 144 different structural
dimensions. The variations in the curvature radius, plate thickness, and stiffeners’ sections
are considered in the design of these numerical models. According to the structural designs
of target ships and the information from Zhang [21], the column slenderness of the model
ranges from 0 to 1.5 and the plate slenderness ranges from 0 to 3. To describe the geometrical
properties conveniently, the stiffeners are named in the form of ‘Curvature radius-Plate
thickness-Stiffener’. Nine groups of curvature radiuses are represented by ‘R1’-‘R9’. In each
group, four types of plate thickness and stiffeners’ sections are selected, denoted as ‘T1’–‘T4’
and ‘S1’–‘S4’, respectively, and the corresponding number represents a specific type. For
example, ‘R2’ denotes these models have the same longitudinal and transversal curvature
radius as those in group 2, while ‘T1’ or ‘S1’ denotes the same setting as the original model.
Similarly, the model ‘R7T2S3’ signifies that the plate thickness and stiffeners’ properties
differ from those of the original models.
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3.1. The Determination of the Lateral Ultimate Strength

In this study, the lateral ultimate strength of the doubly curved stiffened plate is
determined by identifying the lateral load at the inflection point of the lateral load-central
displacement curve. The magnitude displacement of the central point is selected as the
response of the structure in the lateral loading cases. Figure 9b illustrates the lateral load-
magnitude displacement curve for each case, where four points are selected to define
two straight lines. These lines represent different parts of the curve; namely, the linear
loading stage before buckling occurs and the post-buckling stage with large deformations.
The lateral load at the intersection of these lines is considered as the lateral ultimate load,
measured in MPa. The lateral ultimate strength and the structural response are normalized
by σU/σY and w/tp, respectively, where σY denotes the yielding stress of the material and
uc denotes the normal displacement of the central point of the model.
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Figure 9. The definition of the lateral ultimate strength. (a) The central point of the model (the red
highlighted node); (b) the determination of the lateral ultimate load.

3.2. Collapse Modes and Ultimate Strength of Doubly Curved Stiffened Plates under Lateral
Pressure Loading
3.2.1. The Lateral Ultimate Strength of the Doubly Curved Stiffened Plates

The lateral load—central displacement curves of model R1 are shown in Figure 10. The
column slenderness ratios of model R1 range from 0.368 to 0.684, while the plate slenderness
ratios range from 0.605 to 1.816. The thicknesses of plates are set as 24 mm, 14 mm, 11 mm,
and 8 mm, respectively, and are labeled as ‘T1’–‘T4’. Initially, the displacement of the
central point increases slowly as the lateral load increases, indicating that the lateral load
applied to the stiffened plate is within its loading capacity. However, once the lateral load
exceeds the ultimate lateral strength, even a small increment in lateral load leads to rapid
growth in the normal displacement of the central point, indicating the loss of the loading
ability and collapse of the stiffened plate. Figure 10 shows that when λ is set constant, the
lateral ultimate strengths decrease significantly for the stiffened plates with thinner plates.
Models with thickness ‘T4’ exhibit the lowest lateral ultimate strength. It can be inferred
that for the doubly curved stiffened plates with stronger stiffeners, the thicknesses of the
plates exert a significant influence on the lateral ultimate strength.
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The lateral ultimate strengths of models ‘R1’–‘R4’ are depicted in Figure 11. The
distance between adjacent stiffeners and the plate slenderness ratios of models ‘R1’–‘R4’
are identical. Models ‘R3’ and ‘R4’ have smaller longitudinal curvature radiuses, resulting
in significantly larger longitudinal curvature angles (0.415 rad for ‘R3’; 0.434 rad for ‘R4’;
0.275 rad for ‘R1’; and 0.234 rad for ‘R2’). Figure 11 shows that as the stiffeners become
weaker, the lateral ultimate strengths of the doubly curved stiffened plates decrease. The
relationship between lateral ultimate strength and column slenderness is inversely propor-
tional. An interesting phenomenon is observed in cases with different plate thicknesses:
the lateral bearing capacity increases significantly as the curvature angle decreases. On one
hand, the curves for ‘R3’ and ‘R4’ are above those for ‘R1’ and ‘R2’. On the other hand, the
lateral bearing ability of models ‘R3’ and ‘R4’ are stronger than those of models ‘R1’ and
‘R2’ even if the column slenderness ratios are significantly larger. As the curvature angle of
the stiffener increases, the shapes of the stiffened plates approach spherical shells, leading
to more restrained deformation of plates and stiffeners. Consequently, the lateral bearing
capacities increase significantly.
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In addition, the influence of low temperature has been considered in this study. Wang
et al. [22] conducted a uniaxial tensile experiment on the marine steel selected for this study
to investigate the effect of low-temperature conditions on the steel’s properties. The results
indicate that low temperature increases the elastic modulus and yielding strength, and
the ideal elastic-plastic model is still applicable under these conditions. According to the
outcomes of the experiment, the elastic modulus is set as 228,000 MPa and the yielding
strength is set as 373 MPa (to simulate the steel at −20 ◦C). Figure 12 shows the lateral
strengths of model ‘R4T1S1’ under 20 ◦C and −20 ◦C. The shape difference between the
two curves is not significant, while the lateral ultimate strength of the model under −20 ◦C
is higher. And the difference between the two cases is 4.13%. As the temperature selected
in the calculation is similar to the actual working conditions of ice breakers, it can be
concluded that the lateral ultimate strength of the plates will increase slightly in the actual
low-temperature environment. Consequently, results from models employed in this paper
are conservative.
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The influence of the boundary condition has also been researched. The simply sup-
ported boundary condition is set on the edges of model ‘R4S1’. The ultimate strengths
under different boundary conditions are shown in Figure 13. There is a difference of around
10% between the results from models with different boundary conditions. From Figure 10,
it can be concluded that the clamped boundary condition results in much larger ultimate
strengths. However, since the members in the bows and stems are stronger, the results of
the models with clamped boundary conditions are still referential.
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3.2.2. Typical Collapse Modes of the Doubly Curved Stiffened Plates

The stress distribution and collapse mode of models ‘R1T1S1’ and ‘R2T1S1’ are shown
in Figure 14a–d. From the picture, it can be inferred that for stiffened plates with longi-
tudinal curvature angles around 0.2, yielding and severe deformation mainly occur in
the center of the plate, the upper part of the mid-span of the stiffeners, and the areas
around the endings of the stiffeners. Figure 10a,b show that under lateral loading, the
yielding firstly occurs around the endings of the stiffeners, and the yielding of the plates
and the mid-span of the flanges occurs suddenly after the collapse around the endings of
the stiffeners. Figure 15a,b demonstrate that under lateral loading, yielding first occurs
around the endings of the stiffeners. The plates and mid-span of the flanges suddenly yield
after the stiffeners collapse around the endings. Such a phenomenon indicates that the
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plate and the stiffener buckle from the peak of the curved surface simultaneously, and the
corresponding collapse mode of doubly curved stiffened plates can be described as global
collapse originating from the central point.
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The collapse modes and stress distributions of the models with larger curvature an-
gles are shown in Figure 16. In Figure 16b,f, besides global deformation, the local buckling 
of plates is also observed. In comparing with the phenomena shown in Figure 14, the am-
plitude of the global collapse decreases, whereas the area of yielding in the plate expands. 
Figure 17 shows the stress distribution in model ‘R3T1S1’ and model ‘R4T1S1’ before 
reaching the ultimate state. It is evident that the global buckling and tripping of the stiff-
eners occur simultaneously. These phenomena signify that the plates are subjected to 

Figure 14. The collapse modes of models R1T1S1 and R2T1S1: (a) the deformation and stress
distribution at the ultimate state of model ‘R1T1S1’; (b) the front view of model ‘R1T1S1’; (c) the
deformation and stress distribution at the ultimate state of model ‘R2T1S1’; (d) the front view of
model ‘R2T1S1’. Scale: 10.
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(a) the global view of model ‘R1T1S1’; (b) the front view of model ‘R1T1S1’. Scale: 10.

The collapse modes and stress distributions of the models with larger curvature
angles are shown in Figure 16. In Figure 16b,f, besides global deformation, the local
buckling of plates is also observed. In comparing with the phenomena shown in Figure 14,
the amplitude of the global collapse decreases, whereas the area of yielding in the plate
expands. Figure 17 shows the stress distribution in model ‘R3T1S1’ and model ‘R4T1S1’
before reaching the ultimate state. It is evident that the global buckling and tripping of
the stiffeners occur simultaneously. These phenomena signify that the plates are subjected
to stronger constraints in the normal direction, leading to increased participation of the
stiffened plates in the loading capacity. In model ‘R3T1S1’ and model ‘R4T1S1’, larger
curvature angles enhance the lateral bearing capacity of the stiffeners; hence, stronger



J. Mar. Sci. Eng. 2023, 11, 2315 14 of 25

normal constraints are applied to the plates. The lateral bearing capacity of the stiffened
plates is finally enhanced.
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Figure 16. The collapse mode of models ‘R3’ and ‘R4’: (a) the deformation and stress distribution at
the ultimate state of model ‘R3T1S1’; (b) the front view of model ‘R3T1S1’; (c) the deformation and
stress distribution at the ultimate state of model ‘R3T1S3’; (d) the front view of model ‘R3T1S3’; scale:
15. (e) The deformation and stress distribution at the ultimate state of model ‘R4T1S1’; (f) the front
view of model ‘R4T1S1’; (g) the deformation and stress distribution at the ultimate state of model
‘R3T1S3’; (h) the front view of model ‘R3T1S3’; scale: 15.
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The collapse modes and stress distribution in models ‘R3’ and ‘R4’ with weaker
stiffeners are illustrated in Figure 16c,d,g,h. In these models, the global collapse occurs
during the loading process. It is because the lateral bearing capacity of stiffeners decreases
as the column slenderness ratio increases, resulting in the global buckling collapse mode.
As shown in Figure 17c,d, the yielding happens in the areas around the endings of the
stiffeners and the center of the plates before reaching the ultimate state. This phenomenon
indicates that larger curvature angles also enhance the lateral bearing capacity of the plates,
and the yielding of the plates occurs earlier, which differs from the collapse mode observed
in models ‘R1’ and ‘R2’.

The deformation behaviors and stress distributions of model ‘R1S1’ at the ultimate
state are shown in Figure 18. It is observed that the thickness of the plate gradually
decreases, leading to a more noticeable buckling of local plates. Particularly, the most
severe local buckling occurs in the mid-span of the plates. As the plate slenderness ratio
increases, the local buckling of the plates becomes significant, and the collapse mode
converts to the combination of global buckling of the stiffened plates and the local buckling
of the plates when the plate slenderness ratio becomes larger.

The deformation behaviors and stress distributions of models ‘R3S1’ are shown in
Figures 19 and 20. In models with larger curvature angles along the stiffeners, the local
buckling of plates becomes more significant as the plate slenderness ratio increases. As
the plates become thinner, the local buckling of the plates becomes more severe, and the
buckling of plate happens earlier. Consequently, the dominant collapse mode converts into
the local buckling of the plates.

The deformation behaviors and stress distribution of models with larger slenderness
ratios of plates are shown in Figure 21. In contrast to the models ‘R1’ and ‘R2’ taken from
an ice breaker, these models have larger plate slenderness ratios. Another collapse mode,
which is different from the models discussed above, can be observed. Figure 21b,d,f show
the stress distribution and deformation behaviors of these models before reaching the
ultimate state. From these figures, it can be concluded that the yielding and collapse of both
the plate and stiffeners occur almost simultaneously during the lateral loading process of
such stiffened plates. As shown in Figure 16a–c, the buckling of plates is quite significant
at the ultimate state, and the deformations of stiffeners has also become more severe.
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4. Empirical Formula of the Lateral Ultimate Strengths

Although the NFEM codes is a powerful tool for structural strength analysis, it requires
a relatively long time to calculate and process data. Therefore, in practical structure design,
it is highly desirable to use an empirical formula that contains key variables and provides
a straightforward prediction for the lateral ultimate strength of stiffened plates. Before
the empirical formula is presented, certain preparations have been made. First of all, the



J. Mar. Sci. Eng. 2023, 11, 2315 18 of 25

design variables have been confirmed based on experiences from structural design and
analysis. Next, the variables for the formula are selected. Then, an appropriate form of
the formula is constructed, considering the analyzing examples and reflecting the impact
of geometrical properties on ultimate strengths. Finally, a formula is derived using the
minimum mean-square error method and the NFEM results.

There are various empirical formulae for predicting the axial ultimate strength of the
stiffened plates, which can provide a reasonable reference for the choice of the structure of
the empirical formula for the lateral ultimate strength of the doubly curved stiffened plates.
Some are only related to plate slenderness (Faulkner [23] and Paik [24]), Moreover, there
are two influencing factors in other empirical formulae, including the plate slenderness and
the column slenderness. As mentioned in the analysis above, both the plate’s slenderness
ratio and the column’s slenderness ratio are the key influence factors of the lateral ultimate
strength of the doubly curved stiffened plates.

Zhang and Khan [21] presented an empirical formula for calculating the axial com-
pression ultimate strength of a stiffened plate, as shown in Equation (6). Based on this
form, Shi [25] derived an empirical formula for evaluating the axial strength of the U-type
stiffened plates, as shown in Equation (7). From the formula, we can discover that there
are three coefficients selected according to the specific situation. The coefficients in such
a form can signify certain characteristic of different models and load cases and it is well
worth applying in other situations.

σUA
σY

=
1

β0.28
1

(1 + λ3.2)0.5 (6)

σUA
σY

=
1

β0.2
1

(1 + λ20)0.05 (7)

Taking the variations in the curvatures and sections of the stiffeners into consideration,
a series of doubly curved plates models are established, and the lateral ultimate strength
can be calculated by employing the NFEM and the results are shown in the Appendix. The
influence of the curvatures on the ultimate strength is one of the main concerns. Based on
these results, using the basis function fitting method and the minimum mean-square error
(MMSE) technique, the corresponding ultimate strength prediction formulae in terms of
slenderness ratios λ and β and the curvature angles θL and θT are derived.

Based on the form of Equation (6), the empirical formula for predicting the lateral ulti-
mate strength of the doubly curved stiffened is expressed as follows. To consider the effect
of the curvature in longitudinal and transversal directions, the coefficients are replaced by a
series of rational low-order polynomial functions. The basic form of the empirical formula
is shown in Equation (8), and functions α1, α2, and α3 are expressed in Equations (9)–(11),
where the parameters α1, α2, and α3 denote the influences of the curvature.

σU
σY

=
1

βα1

1
(1 + λα2)α3

(8)

α1 = 2.489 − 61.76θT − 24.98θL + 345.4(θT)
2 + 771θLθT + 78.29(θL)

2

−2398(θT)
2θL − 1549θT(θL)

2 − 71.21(θL)
3

(9)

α2 = 0.4812 − 0.02773θT − 3.222θL − 26.46(θT)
2 − 95.56θLθT

+21.94(θL)
2 − 959.5(θT)

2θL − 13.93θT(θL)
2 − 33.28(θL)

3
(10)

α3 = 7.671 + 44.03θT − 2.319θL − 469.6(θT)
2 + 295.2θLθT

+94.74(θL)
2 + 2716(θT)

2θL − 2848θT(θL)
2 − 170.4(θL)

3
(11)
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Comparisons with results derived from the formula and the practical NFEM are shown
in Figure 22. We can find that the prediction of the formula and the NFEM results match
well, with R2 > 0.95. We can also find that the lateral ultimate strengths of the doubly
curved stiffened plates decrease with the increase of the parameters λ and β from the
picture; moreover, the difference distribution frequency is shown in Figure 23.

A stiffened plate captured from an oil tanker (θL = 0.022 and θT = 0.13) is calculated
using the formula and the NFEM, and the comparison between the two methods is shown
in Figure 24. The values obtained from both methods are similar, and the difference between
them is around 5%. And the results from the formula are slightly smaller than those from
the NFEM.
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Comparisons with results derived from the formula and the practical NFEM are 
shown in Figure 22. We can find that the prediction of the formula and the NFEM results 
match well, with 2 0.95R > . We can also find that the lateral ultimate strengths of the dou-
bly curved stiffened plates decrease with the increase of the parameters λ  and β  from 
the picture; moreover, the difference distribution frequency is shown in Figure 23. 
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5. Conclusions

In this paper, the collapse modes and ultimate strengths of doubly curved stiffened
plates under lateral pressure have been investigated by using the NFEM, where different
groups of curvature angles have been considered and the influences of plates and stiffeners
scantlings have been studied. Meanwhile, the deformation behaviors and collapse sequence
of target models in lateral loading cases have been also studied. The following conclusions
can be drawn:

(1) The curvature angle, along the direction of stiffeners, has significant impact on the
lateral ultimate strength of the doubly curved stiffened plate. The normal bearing
capacity of the stiffener enhances as the curvature of stiffeners increases. As a result,
a stronger constraint is applied to the plates, which strengthens the lateral bearing
capacity and the ultimate strength of the doubly curved stiffeners.

(2) In the lateral loading process, yielding firstly happens in the areas around the endings
of the stiffeners. In most load cases, the stiffeners collapse before the plates. In actual
designs, enhancing the strength of the stiffeners is a more effective way to improve
the lateral loading capacity.

(3) The collapse modes of the doubly curved stiffened plates can be concluded as the
combination of global buckling and the local buckling of the plates. If the strength of
the stiffener and the plates are similar or if the column slenderness is quite large, the
global buckling will become the dominant collapse mode. The local buckling of the
plates is significant in the cases with strong stiffeners and weak plates.

(4) A new empirical formula Equation (4) is proposed for lateral ultimate strength predic-
tion of doubly curved stiffeners. The proposed formula is applicable with R2 > 0.95
comparing with 144 NFEM results. And the average absolute differences between the
results from the formula and the NFEM is 3.7%. Over the wide range of λ (0–1.5) and
β (0.6–3) considered in this paper, the agreement between the proposed formula and
numerical results is very good. Additionally, the differences between the values from
the formula and the NFEM on a practical case are around 5%, which can be acceptable
in engineering.
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Nomenclature

Notations Descriptions
a Plate length
b Plate breath
tp Thickness of attached plate
tw Web thickness of the stiffener
hw Web height of the stiffener
t f Flange thickness of the stiffener
b f Flange breadth of the stiffener
uC The magnitude displacement of the doubly curved stiffened plate’s central point
E Elastic modulus
I The moment of inertia of the stiffener with the attached plate
A Area of transverse section of the stiffened plate
r Gyration radius of the stiffened plate
σY Yield stress of the material

σU
The normalized lateral ultimate stress of the ultimate state (Defined as the ratio of
the lateral ultimate load-carrying capacity to the sectional area and the value of the
yield stress.)

σUA
The normalized axial ultimate stress of the ultimate state (Defined as the ratio of
the axial ultimate load-carrying capacity to the sectional area and the value of the
yield stress.)

λ Column slenderness
β Plate slenderness
RL Longitudinal curve radius of the plate
RT Transversal curve radius of the plate
θL Longitudinal curvature angle
θT Transversal curvature angle
αi(i = 1, 2, 3) Parameters in terms of curvature angles

Appendix A. Structural Dimensions, Properties, and NFEM Solutions of the Models

RL RT a b θL θT tp hw tw b f t f σY E λ β σU /σY

mm mm mm mm - - mm mm mm mm mm MPa MPa - - -

14,523 40,306 4000 350 0.00868 0.275

24 360 20 90 20 355 206,000 0.368 0.605 0.00568
14 360 20 90 20 355 206,000 0.366 1.038 0.00506
11 360 20 90 20 355 206,000 0.369 1.321 0.00466
8 360 20 90 20 355 206,000 0.375 1.816 0.00431

24 330 20 80 18 355 206,000 0.41 0.605 0.00504
14 330 20 80 18 355 206,000 0.404 1.038 0.00431
11 330 20 80 18 355 206,000 0.406 1.321 0.004
8 330 20 80 18 355 206,000 0.412 1.816 0.00361

24 280 20 60 12 355 206,000 0.518 0.605 0.00365
14 280 20 60 12 355 206,000 0.503 1.038 0.003
11 280 20 60 12 355 206,000 0.501 1.321 0.00284
8 280 20 60 12 355 206,000 0.504 1.816 0.00250

24 220 20 50 10 355 206,000 0.684 0.605 0.00254
14 220 20 50 10 355 206,000 0.652 1.038 0.00197
11 220 20 50 10 355 206,000 0.646 1.321 0.00195
8 220 20 50 10 355 206,000 0.644 1.816 0.00175
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RL RT a b θL θT tp hw tw b f t f σY E λ β σU /σY

mm mm mm mm - - mm mm mm mm mm MPa MPa - - -

17,075 48,849 4000 350 0.00717 0.234

24 360 20 90 20 355 206,000 0.368 0.605 0.00575
14 360 20 90 20 355 206,000 0.366 1.038 0.00496
11 360 20 90 20 355 206,000 0.369 1.321 0.00466
8 360 20 90 20 355 206,000 0.375 1.816 0.00425

24 330 20 80 18 355 206,000 0.41 0.605 0.00499
14 330 20 80 18 355 206,000 0.404 1.038 0.00439
11 330 20 80 18 355 206,000 0.406 1.321 0.00397
8 330 20 80 18 355 206,000 0.412 1.816 0.00361

24 280 20 60 12 355 206,000 0.518 0.605 0.0038
14 280 20 60 12 355 206,000 0.503 1.038 0.00337
11 280 20 60 12 355 206,000 0.501 1.321 0.00314
8 280 20 60 12 355 206,000 0.504 1.816 0.00270

24 220 20 50 10 355 206,000 0.684 0.605 0.00237
14 220 20 50 10 355 206,000 0.652 1.038 0.002
11 220 20 50 10 355 206,000 0.646 1.321 0.00195
8 220 20 50 10 355 206,000 0.644 1.816 0.00169

5719 45,560 2375 350 0.00768 0.415

24 360 20 90 20 355 206,000 0.218 0.605 0.0148
14 360 20 90 20 355 206,000 0.217 1.038 0.0118
11 360 20 90 20 355 206,000 0.219 1.321 0.0113
8 360 20 90 20 355 206,000 0.222 1.816 0.0105

24 280 20 60 16 355 206,000 0.298 0.605 0.0109
14 280 20 60 16 355 206,000 0.29 1.038 0.00831
11 280 20 60 16 355 206,000 0.29 1.321 0.00749
8 280 20 60 16 355 206,000 0.292 1.816 0.00690

24 110 20 40 10 355 206,000 0.84 0.605 0.00515
14 110 20 40 10 355 206,000 0.78 1.038 0.00352
11 110 20 40 10 355 206,000 0.76 1.321 0.00298
8 110 20 40 10 355 206,000 0.74 1.816 0.00230

24 80 20 40 10 355 206,000 1.138 0.605 0.00462
14 80 20 40 10 355 206,000 1.061 1.038 0.00306
11 80 20 40 10 355 206,000 1.028 1.321 0.00256
8 80 20 40 10 355 206,000 0.993 1.816 0.00195

5475 54,020 2375 350 0.00648 0.434

24 360 20 90 20 355 206,000 0.218 0.605 0.0151
14 360 20 90 20 355 206,000 0.217 1.038 0.0120
11 360 20 90 20 355 206,000 0.219 1.321 0.0112
8 360 20 90 20 355 206,000 0.222 1.816 0.0109

24 280 20 60 16 355 206,000 0.298 0.605 0.01115
14 280 20 60 16 355 206,000 0.29 1.038 0.00869
11 280 20 60 16 355 206,000 0.29 1.321 0.00789
8 280 20 60 16 355 206,000 0.29 1.816 0.00731

24 110 20 40 10 355 206,000 0.84 0.605 0.00552
14 110 20 40 10 355 206,000 0.78 1.038 0.00372
11 110 20 40 10 355 206,000 0.76 1.321 0.00314
8 110 20 40 10 355 206,000 0.74 1.816 0.0024

24 80 20 40 10 355 206,000 1.14 0.605 0.00522
14 80 20 40 10 355 206,000 1.061 1.038 0.00326
11 80 20 40 10 355 206,000 1.028 1.321 0.00270
8 80 20 40 10 355 206,000 0.993 1.816 0.00207

74,243 4770 2400 650 0.136 0.0323

20 280 11 120 20 355 206,000 0.284 1.349 0.00450
24 280 11 120 20 355 206,000 0.298 1.12 0.00604
16 280 11 120 20 355 206,000 0.268 1.69 0.00316
10 280 11 120 20 355 206,000 0.25 2.7 0.002
20 320 11 60 15 355 206,000 0.305 1.349 0.00432
24 320 11 60 15 355 206,000 0.319 1.12 0.00613
16 320 11 60 15 355 206,000 0.29 1.69 0.00314
10 320 11 60 15 355 206,000 0.267 2.7 0.00195
20 210 11 60 15 355 206,000 0.475 1.349 0.00425
24 210 11 60 15 355 206,000 0.499 1.12 0.00550
16 210 11 60 15 355 206,000 0.448 1.69 0.00294
10 210 11 60 15 355 206,000 0.404 2.7 0.00156
20 120 11 40 10 355 206,000 1.01 1.349 0.00354
24 120 11 40 10 355 206,000 1.064 1.12 0.00456
16 120 11 40 10 355 206,000 0.958 1.69 0.00255
10 120 11 40 10 355 206,000 0.842 2.7 0.00104



J. Mar. Sci. Eng. 2023, 11, 2315 24 of 25

RL RT a b θL θT tp hw tw b f t f σY E λ β σU /σY

mm mm mm mm - - mm mm mm mm mm MPa MPa - - -

13,104 7198 3044 675 0.0938 0.232

20 320 12 120 20 355 206,000 0.32 1.401 0.00417
16 320 12 120 20 355 206,000 0.308 1.751 0.00337
12 320 12 120 20 355 206,000 0.296 2.335 0.00230
22 320 12 120 20 355 206,000 0.326 1.274 0.00470
20 280 12 120 20 355 206,000 0.363 1.401 0.00407
16 280 12 120 20 355 206,000 0.349 1.751 0.00327
12 280 12 120 20 355 206,000 0.335 2.335 0.00224
22 280 12 120 20 355 206,000 0.37 1.274 0.00457
20 220 16 60 16 355 206,000 0.567 1.401 0.00366
16 220 16 60 16 355 206,000 0.537 1.751 0.00271
12 220 16 60 16 355 206,000 0.503 2.335 0.00168
22 220 16 60 16 355 206,000 0.581 1.274 0.00447
20 180 16 40 12 355 206,000 0.764 1.401 0.00335
16 180 16 40 12 355 206,000 0.724 1.751 0.00253
12 180 16 40 12 355 206,000 0.679 2.335 0.00167
22 180 16 40 12 355 206,000 0.782 1.274 0.00373

11,500 59,500 2375 350 0.00588 0.207

24 360 20 90 20 355 206,000 0.218 0.605 0.0124
12 360 20 90 20 355 206,000 0.218 1.21 0.0112
10 360 20 90 20 355 206,000 0.22 1.453 0.0105
6 360 20 90 20 355 206,000 0.227 2.422 0.0101

24 200 20 80 10 355 206,000 0.424 0.605 0.00584
12 200 20 80 10 355 206,000 0.402 1.21 0.00472
10 200 20 80 10 355 206,000 0.4 1.453 0.00433
6 200 20 80 10 355 206,000 0.403 2.422 0.00373

24 140 20 80 10 355 206,000 0.599 0.605 0.00369
12 140 20 80 10 355 206,000 0.557 1.21 0.00297
10 140 20 80 10 355 206,000 0.551 1.453 0.00280
6 140 20 80 10 355 206,000 0.548 2.422 0.00222

24 100 20 80 10 355 206,000 0.818 0.605 0.00273
12 100 20 80 10 355 206,000 0.756 1.21 0.00191
10 100 20 80 10 355 206,000 0.744 1.453 0.00180
6 100 20 80 10 355 206,000 0.73 2.422 0.00144

26,500 37,500 3200 800 0.0213 0.121

24 420 10 120 16 355 206,000 0.296 1.38 0.00305
20 420 10 120 16 355 206,000 0.283 1.66 0.00278
18 420 10 120 16 355 206,000 0.277 1.84 0.00263
14 420 10 120 16 355 206,000 0.263 2.37 0.00222
24 320 10 120 16 355 206,000 0.391 1.38 0.00249
20 320 10 120 16 355 206,000 0.373 1.66 0.00230
18 320 10 120 16 355 206,000 0.363 1.84 0.00217
14 320 10 120 16 355 206,000 0.344 2.37 0.00186
24 280 10 80 12 355 206,000 0.529 1.38 0.00192
20 280 10 80 12 355 206,000 0.501 1.66 0.00180
18 280 10 80 12 355 206,000 0.486 1.84 0.00174
14 280 10 80 12 355 206,000 0.455 2.37 0.00145
24 190 10 80 6 355 206,000 0.933 1.38 0.00146
20 190 10 80 6 355 206,000 0.883 1.66 0.00135
18 190 10 80 6 355 206,000 0.855 1.84 0.00126
14 190 10 80 6 355 206,000 0.793 2.37 0.00114

41,600 27,200 3200 800 0.0294 0.0769

24 420 10 120 16 355 20,600 0.296 1.38 0.00303
20 420 10 120 16 355 20,600 0.283 1.66 0.00270
18 420 10 120 16 355 20,600 0.277 1.84 0.00248
14 420 10 120 16 355 20,600 0.263 2.37 0.00221
24 320 10 120 16 355 206,000 0.391 1.38 0.00244
20 320 10 120 16 355 206,000 0.373 1.66 0.00229
18 320 10 120 16 355 206,000 0.363 1.84 0.00205
14 320 10 120 16 355 206,000 0.344 2.37 0.00175
24 280 10 80 12 355 206,000 0.529 1.38 0.00203
20 280 10 80 12 355 206,000 0.501 1.66 0.00174
18 280 10 80 12 355 206,000 0.486 1.84 0.00167
14 280 10 80 12 355 206,000 0.455 2.37 0.00136
24 190 10 80 6 355 206,000 0.933 1.38 0.00144
20 190 10 80 6 355 206,000 0.883 1.66 0.00130
18 190 10 80 6 355 206,000 0.855 1.84 0.00121
14 190 10 80 6 355 206,000 0.793 2.37 0.00112
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