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Abstract: The Underwater Internet of Things (IoUT) shows significant future potential in enabling a
smart ocean. Underwater sensor network (UWSN) is a major form of IoUT, but it faces the problem
of reliable data collection. To address these issues, this paper considers the use of the autonomous
underwater vehicles (AUV) as mobile collectors to build reliable collection systems, while the value
of information (VoI) is used as the primary measure of information quality. This paper first builds a
realistic model to characterize the behavior of sensor nodes and the AUV together with challenging
environments. Then, improved deep reinforcement learning (DRL) is used to dynamically plan the
AUV’s navigation route by jointly considering the location of nodes, the data value of nodes, and the
status of the AUV to maximize the data collection efficiency of the AUV. The results of the simulation
show the dynamic data collection scheme is superior to the traditional path planning scheme, which
only considers the node location, and greatly improves the efficiency of AUV data collection.

Keywords: underwater internet of things; deep reinforcement learning; AUV; data collection; value
of information

1. Introduction

As the demand for ocean exploration and development soars, researchers have
begun to explore the possibilities of Internet of Things (IoT) technology for underwater
applications. The concept of the underwater internet of things (IoUT) was mentioned for
the first time in 2010 and identified as an extension and new category of IoT [1]. IoUT
is expected to establish the interconnection of underwater objects [2,3] and realize smart
oceans [4,5]. Due to the special characteristics of the marine environment, terrestrial IoT
technologies cannot be used in the underwater environment directly. In addition, the poor
transmission quality for underwater acoustic communication poses considerable challenges
to reliable data acquisition in IoUT over vast ocean areas. The underwater sensor network
(UWSN) has proven to be a promising example for IoUT applications.

The wired sensor networks that, due to their simple operation connected by cables, are
still the main component of UWSN and are often used in underwater communication [6].
However, wired communications are too expensive to deploy for widespread use. Another
type is the transmission of data through wireless communication, which is also a common
method of terrestrial IoT. There is some work based on this idea for IoUT. A multi-hop
relay transmission technology for underwater data collection using buoys floating at
specific depths has been proposed as an optimized and alternative scheme. Although
this method realizes long-distance underwater acoustic communication between the node
and the surface, it still has some problems, such as link instability, energy holes, and poor
robustness due to underwater acoustic channel characteristics [7].
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Recently, a new method has been developed to realize the data gathering by applying
mobile receivers [8]. An autonomous underwater vehicle (AUV), as a typical model,
sails to visit certain sensor nodes, establishs a stable communication link over a short
distance, and eventually offloads the collected data to a specified location [9]. The AUVs
are expected to create a bridge between the surface of the sea and the seabed for sensing
the ocean [10]. In particular, in AUV-assisted IoUT, the AUV and underwater sensor
nodes build a hierarchy and use various techniques to transmit the collected data to the
surface and perform data mining. In this case, the sensor nodes are clustered in accordance
with certain characteristics, and some of them are selected as cluster head (CH) nodes,
whose main role is to aggregate data from the common node (CN). As a dynamic node,
the AUV needs to access only these CH nodes, and not all nodes, to collect data, saving
time and energy overhead of traversal. But there are still two key problems to consider:
first, the energy management of the sensor nodes is crucial in this model because the energy
stored by the nodes is severely limited, and the batteries cannot be easily charged due to the
marine environment [11,12]. Given the selected CHs take on more tasks, they will consume
more energy than other nodes; therefore, efficient energy management measures for CH are
necessary to alleviate the energy hole problem. Second, the choice of the AUV cruise path will
directly affect the performance and efficiency of the system. The common method uses path
length as the primary metric for solving such problems. In fact, the cruise planning method
based on path length is based on prior knowledge, that is, the distance among sensor nodes
in the network needs to be measured in advance. At the same time, the value of the data
in the underwater sensor nodes is constantly decaying. Therefore, in the problem of AUV
path planning, it is also crucial to consider the value of data on sensor nodes and the state of
the AUV.

Therefore, this paper designs an AUV-assisted dynamic data collection scheme that
uses value of information (VoI) as a key indicator to measure information quality and
considers the location of nodes and the state of the AUV to dynamically plan the AUV’s
navigation route. At the same time, in order to increase the speed of convergence and
performance of the algorithm, deep reinforcement learning (DRL) technology is adopted.
The main contributions of this work are summarized as follows:

• An AUV-assisted IoUT autonomous underwater data collection system is designed.
Specifically, it builds a realizable real-world scenario for describing the behavior of
AUV and sensor nodes, furthermore challenging environments.

• For the AUV path planning problem, DRL technology is used to dynamically adjust
the AUV’s cruise path without prior knowledge of the environment model. Second,
it combines multiple dimensions such as the location of nodes, the value of data in
nodes, and the AUV status to plan a more reasonable data collection path for AUV.

The remainder of this paper is structured as follows. Section 2 reviews some classic
work in this field. Section 3 describes the system model in detail and formulates the
problem. Section 4 introduces the AUV path planning scheme based on DRL in detail. In
Section 5, the proposed algorithm is verified by simulation. The conclusion is given in
Section 6.

2. Related Work

In recent years, an increasing amount of research has focused on underwater data
collection of UWSNs and rational path planning of AUVs. Current research can be divided
into two categories. The first is when the trajectory of the AUV is fixed. In [13–15],
the trajectory of the AUV is assumed to be elliptical. In [13], fixed gate nodes (GNs) gather
data from member nodes (MNs) and transmit the data to the mobile AUV to enhance
the performance of the network in terms of data delivery rate and energy consumption.
Nevertheless, the rapid energy consumption of GNs results in a shortened network lifetime.
In [14], on the basis of the received signal strength index (RSSI) value, a new clustering
protocol is designed, and MNs are assigned to GNs by establishing the shortest path tree
(SPT). In addition, the function of the gateway varies according to the residual energy to
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balance the energy consumption. The scheme in [15] has improved the scheme in [14]: a
dynamic data collection time based GN selection scheme is proposed, and a MILP model
was established to limit MN allocation. Magnetic induction communication that can
significantly reduce the energy consumption of AUV data collection is proposed in [16],
and a distributed algorithm is designed to select the sink node set in data collection.
However, because the motion trajectory of the AUV is fixed, the nodes that use the AUV for
data collection remain unchanged, which increases their burden and shortens the network
life. In addition, from a practical point of view, the dynamic advantages of AUV are not
fully exploited.

AUV path planning is to be another hot issue for the UWSN. In general, most studies
optimized for distance. In [17], the authors deployed the AUV and sensor nodes at different
underwater depths, clustered the nodes using the K-means algorithm, and then used the
improved ant colony algorithm R-ACO to optimize the sailing distance and angle changes
of AUV in the presence of obstacles. In [18], the sensors were divided into upper and lower
layers according to the particularities of the marine environment. The upper layer sensor
moved with the current and forwarded the data forward by means of multi-hop, while the
lower layer sensor remained static and used an AUV for data acquisition. The AUV’s cruise
path is modeled as a TSP problem, which is planned by using the Dijkstra algorithm. In [19],
authors used the greedy algorithm to plan the motion trajectory of the AUV after clustering
sensor nodes and then selected ordinary nodes near the AUV’s trajectory as secondary
nodes, balancing the cluster head workload with a small increase in the AUV cruise path.
In [20], the authors used the maximum clustering problem to cluster nodes, then a new
media access control (MAC) protocol was proposed to coordinate the data communication
between the AUV, cluster heads, and nodes in the cluster, and they formulated the path
of the AUV as a TSP problem that was solved by AEEDCO algorithm. The work in [21]
proposed an information value model that uses a mixture of multi-hop and AUV-assisted
methods for data transmission. The multi-hop mode is used to transmit data with rapidly
declining information value, and the navigation path of the AUV is planned by a genetic
algorithm. In [22], sensor nodes were clustered based on the K-means algorithm, then
the three-dimensional motion model of AUV was considered and the greedy algorithm
was used to obtain the path with the shortest cruise time of the AUV. In [23], the authors
optimized the energy consumption of data clustering in clusters based on the topology
optimization scheme of minimum weighted rigid graphs and then planned the AUV cruise
path based on dynamic values to make it dynamically access each cluster head node to
maximize VoI.

In order to rationally plan the data collection path of an AUV, fully exploit the dynamic
features of AUVs, and improve the efficiency of AUV data collection, this paper proposes a
heuristic algorithm based on DRL that jointly considers the location of nodes, the value of
node data, and the state of the AUV.

3. System Model
3.1. Network Architecture

We consider a UWSN where N central nodes and several sensor nodes are deployed to
provide monitoring of the underwater environment. The AUV sails around the central node to
collect data and eventually offloads the collected data onto the surface station node (buoy or
mothership). In this process, the AUV trajectory around the central node is the AUV’s cruise
path. At the same time, the surface station node can transmit the data via marine wireless
communication or satellite communication to the ground data center for further analysis and
processing. We consider that the system is operated in a non-emergency situation, and the
information collection process is repeated periodically. The network is mainly composed of
three kinds of different types of nodes, as seen in Figure 1.
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Figure 1. Three-dimensional network model.

1. Sensor Node: The function of the sensor node is to perform underwater surveillance
tasks and send the monitored data to the central node to which it belongs. It is
assumed that the sensor node is static in underwater environments, and sensor nodes
are also constrained by limited battery resources because they are difficult to replace
or charge. According to some time synchronization techniques [24] and positioning
schemes [25], it is assumed that the sensor nodes are clock synchronized and the
position of each sensor is known.

2. Central Node: The central node as the data collection center in the cluster transmits the
aggregated data to the AUV, so the central node has a high traffic load. If the central
node continues to use underwater acoustic communication to transmit information,
due to its high power consumption (the consumption of power for underwater
acoustic communication is usually at the watt level [26]), the central node will soon
die due to the exhaustion of its own limited battery energy, resulting in the entire
network being paralyzed. In addition, because underwater acoustic communication
has a limited data rate (tens of Kbps), the AUV needs to stay at the central node for a
long time to wait for the data to be transmitted. The data collection scheme based on
AUV can greatly reduce the data transmission distance of the central node. Therefore,
in order to save the energy of the central node, improve the data transmission rate,
and reduce the stagnation time of the AUV at the central node, optical communication
with low latency, low power consumption, and high data rate (Gbps) [27] is chosen as
the communication mode between the central node and the AUV.

3. AUV: The role of the AUV is to obtain data from the central node by using high-speed
optical communication and offload the collected data to the surface station. With the
sinking of the AUV, long-distance data transmission is replaced by short-range
communication, which not only reduces the energy consumption of underwater sensor
nodes, but also makes it possible to apply underwater short-range and high-data-rate
channels to transmit large amounts of data.

3.2. The Underwater Sensor Node Model

Assuming the surveillance area is divided into N clusters, each cluster contains a
central node and several sensor nodes, and the sensor nodes are not evenly distributed in
each cluster. The central node is labeled as n, n ∈ Ω = {1, · · · , N}, where Ω is the central
node collection; at the same time, the sensor node is called a child of the central node in
its cluster. Without losing generality, assume that the cluster to which the central node
n belongs contains In sensor nodes. Each sensor node monitors the surroundings and sends
the gathered data to the corresponding central node by means of direct communication
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(single-hop). Assuming that clusters are far apart, the intra-cluster communication will
not be interfered with by other clusters. At the same time, the data transmission of the
sensors in the cluster adopts multiple access control protocols based on CDMA to reduce
the interference of the information transmission for other sensor nodes when the sensors
send data to the central node.

Most of the existing work simplifies the process of sending data to the central node
from the sensor node. The simple representation is that the AUV travels one round, and the
central node receives a fixed amount of data. However, this is not consistent with the actual
data transmission situation. In this paper, the data transmission process of the sensor node
is controlled by the time scheduling policy. The sensor node periodically sends the data
sensed during the time interval to the central node at a fixed time interval ∆ . The data
collection rate of the child node i of the central node n is expressed by Gn−i in Kbit per unit
time. Considering that each sensor has different data collection capabilities and monitors
different events in different areas, it is assumed that the data collection rate of each sensor
node is not the same. The amount of data collected by sensor node i in the interval ∆ is
∆Gn−i, and then the collected data are sent to the corresponding central node n.

For ease of reading, the symbols used in this article and their meanings are listed in
Glossary section.

3.3. AUV Model

When the AUV reaches a central node, an optical communication link is immediately
established with the central node, the data in the central node are sent to the AUV through
the optical link, and the AUV sails around the central node to repeat the data collection
process. After completing data collection, the AUV makes its way back to the surface
station to place the collected information at the surface station. The AUV as a dynamic
relay node, the energy consumption, and the delay of AUV data collection are the main
performance indexes of the whole sensor network.

The energy consumption of an AUV includes the energy consumed by moving along
the central node, by establishing an optical communication link with the central node
when reaching the central node, and the energy consumed by receiving data from the
central node. It is assumed that when the AUV travels at speed fAUV→n to the central node
n, the energy is consumed at the speed ψn

f per unit distance, and the energy consumed
for data sending and receiving is ψs and ψr per unit time, respectively. Then, the energy
consumption of data collection in round t of the AUV can be calculated as:

Et
AUV = Et

tra + ψr ∑
n∈Ct

(
∏ t

n→AUV
vn

) + ψs ∑
n∈Ct

(
∏ AUV→n

vAUV
), (1)

where Et
tra = ∑

n∈Ct
ψn

f LAUV→n + ψ0
f LAUV→0 is the navigation energy expenditure in round

t of the AUV. The expressions ∏ AUV→n and ∏ t
n→AUV , respectively, represent the total

amount of data sent by AUV to central node n and the total amount of data sent by central
node n to the AUV in round t. The data sent by the AUV to the central node are mainly
concentrated in the communication link establishment stage, so the amount of data is the
same for different cruise rounds and different central nodes. The data sent by the central
node n to the AUV include the data of the communication link establishment stage and the
data of the gathered underwater sensor nodes. The expressions vn and vAUV , respectively,
represent the data transmission rate of central node n and the AUV; Ct ⊆ Ω represents the
central node set visited by the AUV in round t.

Data collection delay refers to the sum of the AUV’s flight delay and communication
delay in a round of data acquisition. The time consumption of AUV in round t can be
calculated as:

Dt = Dt
tra + ∑

n∈Ct

(
∏ t

n→AUV
vn

+
∏ AUV→n

vAUV
), (2)
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where Dt
tra = ∑

n∈Ct

LAUV→n
fAUV→n

+ LAUV→0
fAUV→0

represents the navigation time consumption of the

AUV in round t. Because the central nodes and order of each round of AUV traversal are
different, the energy and time consumed by each round of travel are also different.

In addition, Tn
last and Tn

se-last are chosen to represent the time when the AUV accessed
the central node n twice before and twice after; the amount of data collected by central
node n during this period is:

Gt
n = ∆F(Tn

last − ∆F(Tn
se-last))

In

∑
i=1

Gn−i, (3)

where F(X) =
⌊

X
∆

⌋
, b•c indicates round down. The value of the data gathered by the AUV

during the navigation of round t is:

Gt = ∑
n∈Ct

Gt
nΓ(Tn

last, Tn
se-last), (4)

where Γ(Tn
last, Tn

se-last) is the data value decay function that is linearly dependent on time.

3.4. Problem Formulation

The aim of this paper is to maximize the data collection efficiency of the AUV by
planning the cruise path of each AUV round while minimizing the energy consumption
and time delay of the AUV.

Minimize the AUV’s time delay: According to Formula (2), AUV’s data collection
delay is determined by the navigation delay of the AUV and the communication delay of
the AUV, and the adoption of high data rate optical communication for data transmission
will greatly reduce the data transmission delay. At the same time, as has been pointed out
in [22], minimizing the navigation delay of the AUV is minimizing its time delay. Hence,
there is:

Min(DAUV) = Min(
T

∑
t=1

Dt)⇔ Min(
T

∑
t=1

Dt
tra) (5)

Minimize the AUV’s energy consumption: The use of low-power optical communication
can save the energy consumption of communication, so according to Formula (1), there is:

Min(EAUV) = Min(
T

∑
t=1

Et
AUV)⇔ Min(

T

∑
t=1

Et
tra) (6)

Therefore, the objective function of this paper is maximize the efficiency, which can be
expressed as:

P1 : max
n∈Ω

T
∑

t=1
Gt

T
∑

t=1
(cenergyEt

tra + ctimeDt
tra)

, (7)

where cenergy and ctime are both constant. They are the weight coefficients of energy
consumption and time consumption, respectively, used to weigh the importance of energy
consumption and time consumption.

4. AUV Dynamic Data Collection Based on DRL

The joint AUV path planning method based on DRL will be carefully demonstrated in
this section, and the detailed improvement scheme of DRL will be given.

4.1. Reinforcement Learning

Reinforcement learning is a classic machine learning method. In reinforcement
learning, the agent in state s interacts with the environment to get an estimate of its
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selected action a, which is a record of the reward value to guide the agent’s choice of future
actions, and once the agent performs the action a, it will get the reward value r and move on
to the next state s′. In the new state s′, the agent chooses actions a′ either randomly or based
on past learning experiences, and then receives a new reward value from the environment.
This process is called reinforcement learning. As the cycle progresses, the agent learns
from the action–reward experience to optimize its action selection strategy to adapt to the
changing environment.

Double Deep Q Network (DDQN) [28] is a reinforcement learning method based on
deep neural networks and is an extension of Deep Q Network (DQN) [29] used to solve the
overestimation problem caused by the latter using the same network to evaluate and select
actions. At the same time, the neural network is used to replace the Q table that stores
the state-action Q value in the Q learning algorithm, so that reinforcement learning can be
applied to more complex problems.

The two neural networks of DDQN, the current network and the target network, have
the same structure, and the network parameters are θ, θ−, respectively. The current network
is used to compute the estimated Q value Q(s, a; θ) and select the optimal action:

a′ = arg max
a∈A

Q(s′, a; θ), (8)

and obtain target Q through the target network:

Qtar = R + γQ(s′, a′; θ−); (9)

therefore, the mean square error loss function (MSE) can be expressed as:

L(θ) = E[(Qtar −Q(s, a; θ))2]; (10)

it is used to train the current network. Therefore, in DDQN, the updated equation of the
action-value function is:

Q(s, a; θ) = R + γQ(s′, arg max
a′∈A

Q(s′, a′; θ); θ−) (11)

In the training process of DDQN, experience data (s, a, r, s′) are first stored in the
experience playback pool, and then a certain amount of data are randomly extracted from
it to build a loss function and update the network parameters θ based on the gradient
descent strategy to make the loss function minimum and reduce the correlation between
data. Figure 2 shows the overall structure of DDQN.

Figure 2. The overall structure of DDQN.

4.2. The Proposed Strategy Based on DDQN

Representing the surface station node as a node numbered 0, the path planning
problem for the AUV is similar to TSP, where the AUV’s journey always starts and ends at
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node 0 and contains a non-repeating sequence of central nodes. The cruise path of the AUV
will directly affect the performance and efficiency of the system, and the AUV path should
be carefully planned to maximize the efficiency of data collection of the AUV. The current
practice is to take the path length as the main index to solve such problems, but for the
actual AUV auxiliary data collection system, the node data information and the AUV state
information will also have a great impact on the AUV path selection. Because the system
is considered to operate in non-emergency situations, the AUV does not have to traverse
all the central nodes on each cruise, in order to improve the data collection efficiency of
the AUV.

The flight of an AUV can be characterized as a discrete-time Markov decision process
(MDP) because the state of the AUV at slot t + 1 is only related to the state at slot t. In order
to get a good flight strategy, the AUV should not only consider the feedback of the next time
slot, but also consider the long-term benefits when acting. Therefore, this paper intends
to use DRL to plan the trajectory of the AUV by considering factors such as node location
information, data information in nodes, and AUV status. After collecting the data in the
current central node, the AUV first observes the current state st, performs an action at
according to a specific strategy π, and then receives an immediate reward rt. Reinforcement
learning methods aim to make the agent find the optimal strategy π∗ to maximize the
expected discount cumulative reward. The expected discount reward is also known as the
Q function:

Q(st, at) = E[
∞

∑
λ=0

γλrt+λ|st, at], (12)

where γ ∈ [0, 1] is the attenuation factor reflecting the impact of future rewards. The larger
the γ, the more the system focuses on future rewards. For problem P1, we propose the
following reinforcement learning model:

• State: After the AUV has collected data from a central node, we define its observed
state as:

st = [Gt
n], (13)

where Gt
n presents the amount of data stored on all central nodes after the AUV collects

data on the current central node.
• Action: After the AUV has collected data on the current central node, it will perform

an action based on the state st, which is the next node to traverse:

at ∈ A and at /∈ At, (14)

where A = {0, 1, · · · , N} is the set of water surface station nodes and all central nodes;
At represents the nodes that have been traversed in the round t.
In the existing work based on reinforcement learning, the method of giving negative
punishment is usually used to prevent the agent from selecting invalid actions (such
as the central node that has been traversed in each round in this paper). However,
Ref. [30] proves that when the set of invalid actions is expanded, the ineffective action
punishment method will not work, whereas the ineffective action masking method
will complete the task well. With the continuous progress of the AUV cruise, the set of
invalid actions (the nodes that have been traversed) keeps increasing, so this paper
improves the strategy ε-greedy. The improved action selection strategy is shown in
Algorithm 1, and Formula (8) of the current network to estimate Q value and select
the optimal action is improved as follows:

a′ = arg max
a∈A

(Q(s′, a; θ) + mask(s′)), (15)

where mask(s′) represents a masking vector of invalid action in state s′.
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• Reward: The reward function evaluates the action at of the AUV’s choice in the state
st. For problem P1, the objective is to achieve efficient data collection, so the reward
function can be defined as:

Rt
j =

{
Gt

(cenergyEt
tra+ctimeDt

tra)
, j ∈ {1, 2, · · · , N}

Ω2, j = 0
, (16)

where Ω2 represents the reward for the AUV from the current node to the surface
station node.

Algorithm 1 Improved Action Selection Strategy

Input: Current State st, AUV state At.
Output: Next action a.

1: Select the action with probability ε:
2: a = random choice f orm A
3: while at ∈ At do
4: a = random choice f orm A
5: end while
6: Select the best action with probability 1− ε:
7: a = arg max

a∈A
(Q(s, a; θ) + mask(s))

8: return a

The training process is summarized in Algorithm 2. It is important to note that the
data of training the DNN network are obtained from the interaction of the AUV with the
environment. The DDQN process consists of three main parts: the initialization part (line 1),
the learning part (lines 11–18), and the update part (lines 19–28). The first part of the
algorithm initializes the experience playback pool and two DNN networks to implement
the experience playback and enhance the stability of the algorithm, respectively.

After initialization, the AUV begins to cruise around the central node. After collecting
the data of the current central node, the AUV will observe the current state st, that is,
the amount of data stored in all the current central nodes, and then select an action according
to Algorithm 1. By adopting improved strategy ε-greedy to select actions, the AUV can
achieve a balance between exploration and development. At the beginning, set ε to a larger
value to allow the AUV to explore the environment, and then gradually decrease as the
algorithm converges. After performing the action at, the AUV can receive a reward rt
and move on to the next state st+1. These experience data are packaged together with a
symbol is_end indicating whether the current state is a terminated state and stored in a
tuple (st, at, rt, st+1, is_end) in a storage unit called the experience playback pool, which
is used as a set of training data to train the network. As the AUV repeats data collection
tasks, the number of tuples in the experience playback pool will continue to increase,
and once the capacity of the experience playback pool is exceeded, new tuples will replace
the previous tuples.

Finally, the DNN network is trained using a small batch tuple sampled from the
experience playback pool. Specifically, st and at in each tuple will be fed to the current
network and used to calculate the evaluated Q value. The target Q value (9) is calculated
using rt and st+1. The evaluated Q values and the target Q values will be used to calculate
the loss function (10) and update the neuron weight parameters θ of the current network by
implementing a gradient descent strategy on the loss function. At the same time, for every
F network training time slot, the θ are copied from the current network to update the
neuron weight parameters θ− of the target network, that is, the parameter update of the
target network lags behind the current network F steps, in order to reduce the correlation
of Q functions at different times.
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Algorithm 2 The AUV Dynamic Data Collection Based on DDQN

1: Initialize: Initial state S0, DDQN Network parameters θ, θ− at el.
2: for episode = 1, 2... do
3: Set the next state to the initial state
4: Initializes the current AUV position as the water station
5: Initializes the network training run count = 0
6: for t = 1, 2... do
7: if t mod L == 0 and t! = 0 then
8: update ε
9: end if

10: Initializes the center node that has been traversed in each round
11: while True do
12: Update the current state (Make the next state as current state)
13: Based on the current state, use Algorithm 1 to select an action
14: Perform the action, get the reward, and get the next state
15: Record the number of the central node in this traversal
16: Update the current location of the AUV to the current central node
17: Record the AUV energy consumption and the amount of data collected
18: Store the experience data (st, at, rt, st+1, is_end) into the experience playback

pool
19: if The number of data in the experience playback pool exceeds a certain

threshold then
20: A set of data is extracted from the experiential playback pool to train the

network: the estimated action Q value is computed using the current network and
the obtain optimal action (15), and the target Q value is computed by using the target
network (9). The loss function (10) is constructed by using the estimated value of Q
and the value of target Q, and the current network parameters θ are updated by using
the gradient descent method for the loss function.

21: Network training times count = count + 1
22: if count mod F == 0 then
23: Update the target network parameters θ− = θ with the current

network parameter θ
24: end if
25: end if
26: if This selection action is 0, return the surface station node then
27: break
28: end if
29: end while
30: if t mod T == 0 and t! = 0 then
31: Calculate the average energy efficiency of 100 rounds (the total amount of

data collected or total energy consumption in 100 rounds)
32: Reset the recorded energy consumption and the amount of data collected of

the AUV
33: end if
34: end for
35: end for

5. Simulation Analysis

Numerical simulation results are given in this section, with the aim of verifying the
performance of the proposed method.

In the simulation, set the number of central nodes to N = 8. For DDQN, set the
dimension of the input layer to 8, which is the same as the number of central nodes.
The two hidden layers have 256 and 256 neurons, respectively, and use ReLu as an activation
function. The dimension of the output layer is equal to the size of the action set, that is,
the size of actions is 9. The AUV can choose not only the center node of the next cruise,
but also the node of the return to the surface station, so the number of actions is 1 more
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than the number of center nodes. Adam is used as an optimizer. The information value
of the central node is set as: N1 = 1, N2 = 3, N3 = 2, N4 = 0.1, N5 = 0.2, N6 = 5− 0.05t,
N7 = 0, N8 = 0, where t ∈ [0, 100] [23]. At the same time, set the update frequency L = 150
of ε, the update lag F = 400 of the target network parameters, and take the average result
of every T = 100 rounds of cruise as the output result.

First, the convergence of the proposed method is analyzed, and the correlation between
the efficiency of AUV data collection and the number of DRL iterations is shown in Figure 3.
As shown in Figure 3, with the increase of the number of iterations, the data collection
efficiency of AUV tends to be stable after about 10,000 trainings, that is, the algorithm
gradually converges.

Figure 3. Relationship between DRL training times and AUV data collection efficiency.

In order to evaluate the performance of the proposed methods, two comparison
schemes are used in this paper. In the first scheme, the cruise path of the AUV is chosen by
using the greedy method [19,22], that is, the AUV chooses the central node with the least
travel cost as the target node every time, named Greedy. The second scheme is based on
the genetic algorithm to obtain the AUV cruise path [21] and named Genetic. The proposed
method is named DDQN-based.

Unlike the general TSP problem, the AUV’s cruise path always starts and ends at the
surface station node (i.e., the node numbered 0). Therefore, when implementing the genetic
algorithm in this paper, the chromosome structure is set as an arrangement of non-repeating
numbers from 1 to N (where 1 to N are the numbers of N central nodes), but the navigation
cost of sailing from the surface station node to the first gene and returning from the last
gene to the surface station node needs to be added in the calculation of fitness function.
In addition, this paper uses the roulette wheel selection method to select the best individual,
the crossover algorithm is Partial-Mapped Crossover, the mutation algorithm is Inversion
mutation, the crossover and mutation probabilities are set to 0.9 and 0.5, respectively,
the population size is 60, and the number of generations of evolution is 100.

Figure 4 shows the data collection efficiency when the distance between central nodes
increases. As the distance between nodes is increased, the efficiency of all schemes
decreases, which is shown in Figure 4. The increase of distance means that the cruise
of the AUV will take more time and energy. The amount of data gathered in the central
node will also increase with the increase of cruise time; however, the growth rate of
data value is less than the cost, so the efficiency of the AUV decreases. Among the
four schemes, the method based on reinforcement learning has the highest efficiency,
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because the scheme can dynamically adjust the cruise path of each AUV round to achieve
the maximum efficiency.

Figure 4. Data collection efficiency of the AUV with different distances between center nodes.

Figures 5 and 6, respectively, show the data collection efficiency of the AUV when the
data collection rate of sensor nodes increases and the number of sensor nodes increases.
Both the increase in the data collection rate of the sensor nodes and the increase in the
number of sensor nodes mean that the data aggregation rate in the central node increases,
and the value of the data gained by the AUV from the central node increases, so the
efficiency of the AUV increases. But methods based on reinforcement learning always have
the highest efficiency.

Figure 5. Effect of changing the data collection rate of sub-sensor nodes on data collection efficiency
of the AUV.
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Figure 6. The change of data collection efficiency of the AUV when the number of sub-sensor
nodes changes.

This paper also studies the data collection efficiency of the AUV at different data
transmission intervals ∆, as shown in Figure 7. Because the cruise path of the Genetic
and Greedy algorithms is fixed each time, and the average results of every 100 rounds
of cruise are displayed in this paper, the cruise cost and the amount of data collected by
the AUV are constant, resulting in a straight line of data collection efficiency of the two
methods. In the method proposed in this paper, the AUV cruise center node is a dynamic
process, and the center node and the traversal order of each round are dynamically changed
according to the environment, so the data collection efficiency will fluctuate under different
transmission intervals ∆. At the same time, because the AUV in the DDQN-based method
can dynamically select the central node of traversal, its data collection efficiency is much
higher than the other two methods.

Figure 7. Data collection efficiency of the AUV with different data transmission intervals.
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6. Conclusions

In this paper, the dynamic planning of an AUV cruise path is studied, and a DRL-based
AUV path planning scheme is proposed. Based on the realistic model, the AUV cruise
path is dynamically planned by considering multiple dimensions, such as node location
information, node VoI, and AUV state to maximize the efficiency of AUV data collection.
The simulation results show that the proposed scheme is superior to the traditional path
planning scheme that only considers the node location and can greatly improve the
efficiency of AUV data collection. Although this paper provides an effective data collection
scheme for underwater sensor networks, the work in this paper still has limitations and
needs further research. First of all, the AUV is actually a robot with six degrees of
freedom, its movement is complex, the AUV in motion has a huge moment of inertia,
and it needs to consume a lot of energy to change the direction of movement. Therefore,
the path planning that fully considers its six degrees of freedom needs further study.
Second, due to cost, personnel, and other limitations, this paper only conducted simulation
verification at the theoretical level, without underwater experiment verification. Real
underwater experiments are very important for the validation and improvement of models
and algorithms. Therefore, if the scheme proposed in this paper is to be applied to the actual
underwater sensor network data collection task, further off-site experiments are necessary.

Author Contributions: Conceptualization, L.J. and Y.T.; formal analysis, L.J.; methodology, L.J. and
W.S.; software, Y.T. and M.J.; validation, W.S.; writing—original draft, W.S.; writing—review and
editing, L.J. and M.J.; visualization, L.J. and Y.T.; supervision, W.S. and L.J.; project administration,
L.J. and W.S.; funding acquisition, L.J. and W.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (62371393,
62071383) and the Fundamental Research Funds for the Central Universities (23GH02027).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this paper are available by contacting the
corresponding author.

Acknowledgments: The authors would like to thank the anonymous reviewers for their careful
reading and valuable comments.

Conflicts of Interest: The authors declare no conflict of interest.

Glossary
The following abbreviations are used in this manuscript:

Symbol Implication
n The number of central nodes.
Ω The set of the central nodes.
In The number of the child nodes contained by the central node n.
∆ The data transmission interval of the sensor nodes.
Gn−i The data collection rate of child node I of central node n.
Et

AUV The energy expenditure of round t of the AUV.
Et

tra The navigation energy expenditure of round t of the AUV.
Dt The time spent on round t of the AUV.
Dt

tra The navigation time spent on round t of the AUV.
Gt The value of the data collected at round t.
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