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Abstract: Cultural artifacts found underwater are located in complex environments with poor imag-
ing conditions. In addition, the artifacts themselves present challenges for automated object detection
owing to variations in their shape and texture caused by breakage, stacking, and burial. To solve
these problems, this paper proposes an underwater cultural object detection algorithm based on the
deformable deep aggregation network model for autonomous underwater vehicle (AUV) exploration.
To fully extract the object feature information of underwater objects in complex environments, this
paper designs a multi-scale deep aggregation network with deformable convolutional layers. In
addition, the approach also incorporates a BAM module for feature optimization, which enhances
the potential feature information of the object while weakening the background interference. Finally,
the object prediction is achieved through feature fusion at different scales. The proposed algorithm
has been extensively validated and analyzed on the collected underwater artifact datasets, and the
precision, recall, and mAP of the algorithm have reached 93.1%, 91.4%, and 92.8%, respectively. In
addition, our method has been practically deployed on an AUV. In the field testing over a shipwreck
site, the artifact detection frame rate reached up to 18 fps, which satisfies the real-time object detection
requirement.

Keywords: autonomous underwater vehicle; cultural artifact object detection; deformable convolu-
tion; multi-scale deep aggregation; attention mechanism

1. Introduction

During the long history of navigation, maritime losses have occurred from time
to time, and a large number of shipwrecks and the objects and cargoes they contain
have accumulated on the seabed [1]. Reasons for these losses are varied and include the
limitations of navigation technology, the influence of extreme weather, human errors, and
wars. These seabed artifacts contain rich historical, cultural, and technological information,
which is of great help to the in-depth exploration of human civilization.

Detection of underwater artifacts is essential for underwater archaeological research
and heritage management. It is important to understand the location of underwater
archaeological sites and their conditions and contents. This is important to facilitate research
and effective heritage management. Underwater heritage management is particularly
important given threats such as illegal salvage or looting and the increasing expansion of
offshore and seabed industries. Large-scale cataloging of shipwreck archaeological sites has
typically been done by manually identifying sites from seafloor mapping data generated
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from marine geophysical data such as MBES (Multibeam Echo Sounders) or SSS (Side-Scan
Sonar) [2,3], although there have been some recent attempts to increase automation [4,5].
Given the increasing numbers of seafloor surveys implemented for scientific purposes,
it can be argued that there is a need for increasing automation in underwater cultural
artifact detection.

The increasing use of autonomous underwater vehicles (AUVs) for seafloor exploration
offers great potential for realizing this goal. In seafloor exploration operations, AUVs
have the advantages of a wide operating range, high detection efficiency, and flexible
operation [6]. AUVs usually carry side-scan sonars and underwater cameras [7]. The
side-scan sonar can be used for rapid searching of a wide range of underwater sites over
large areas. The underwater camera can obtain optical images of artifacts containing
rich information such as object shape, color, texture, etc., which is suitable for close-
range fine detection [8]. In the process of underwater detection operation, if the AUV
can autonomously recognize the object in the captured video image, it can re-plan the
navigation path according to the location of the discovered object and carry out more
detections around the object of interest, so as to facilitate the subsequent analysis and
judgment of the seafloor artifacts [9].

Over the past two decades, researchers have made significant strides in the application
of machine vision technology for underwater site detection [10,11]. Jaklic et al. [12] modeled
ancient Roman shipwreck cargo sites using 3D point cloud technology. The mapping of un-
derwater sites has been achieved through three-dimensional image processing techniques
by Menna et al. [13]. Character et al. [14] employed a deep-learning algorithm model for
sonar-based shipwreck image detection. However, there is a noticeable scarcity of object
detection algorithms designed for optical images of underwater artifacts in the current
literature, particularly in conjunction with AUVs. Therefore, the study of vision-based
object detection methods for underwater artifacts holds great significance.

Vision-based object detection algorithms can be categorized into two groups: tradi-
tional object detection and deep learning-based object detection [15]. In traditional object
detection algorithms, the first step involves selecting a region of interest through a sliding
window approach [16]. Subsequently, various feature extraction techniques, such as Scale-
Invariant Feature Transform (SIFT) [17] and Histogram of Oriented Gradients (HOG) [18],
are applied to extract features from the selected region. Finally, these extracted features are
used for object recognition through trained classifiers like Support Vector Machine (SVM).
Cutter et al. [19] employed Haar-like features and multiple cascaded classifiers to detect fish
objects, while Rizzini et al. [20] identified underwater objects based on the uniformity of
underwater image color and sharpness information from contours. Qiu et al. [21] proposed
an algorithm based on surface feature ripples for detecting underwater moving objects
in photopolarimetric imaging mode, which has become a notable example of traditional
algorithms in underwater object detection. However, traditional detection methods require
the design of various feature extraction models and rely on machine learning techniques
for classification. This limits their applicability in real underwater scenarios. Moreover,
manually designed feature extraction models primarily capture low and mid-level image
features, making it challenging to extract representative semantic information.

With the dramatic improvement of graphic computing hardware such as powerful
GPUs and the rapid development of deep neural network models in recent years, object
detection algorithms based on deep learning have achieved promising detection perfor-
mance. Many researchers have applied these methods to underwater object detection
scenarios. Chen et al. [22] introduced a novel sample-weighted super network (SWIPENET)
to address the blurring problem in underwater images amidst significant noise interference.
Lei et al. [23] incorporated the Swin Transformer into the backbone network of YOLOv5,
enhancing feature extraction for underwater objects and enabling the network to detect
objects in low-quality underwater images. Yan et al. [24] integrated the CBAM attention
mechanism into a one-stage object detection model to enable the network to focus more
on object feature information, thereby improving detection accuracy. However, the afore-
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mentioned methods still suffer challenges in fully utilizing the characteristics of objects in
complex underwater environments. They struggle with detection accuracy when dealing
with occlusion and overlapping issues among underwater objects at different scales, as
well as problems like leakage and false detection. Song et al. [25] proposed a two-stage
underwater object detection algorithm with Boosting R-CNN, which enhances occluded
object detection by modeling uncertainty and mining challenging samples. Zeng et al. [26]
introduced a Faster R-CNN-AON network based on generative adversarial networks, ef-
fectively improving overall detection performance while preventing overfitting. Despite
these advancements, it is worth noting that the above-mentioned studies often come with a
drawback, i.e., they involve a large number of algorithm parameters, which may not meet
the real-time requirements for AUVs.

Currently, object detection applied to underwater cultural artifacts still faces the
following challenges:

(1) Poor quality of underwater images. Due to the differences in water absorption of
light of different wavelengths and the scattering of underwater light, underwater images
suffer from color deviation and low visibility [27]. In addition, the imaging quality of
underwater images is low due to the insufficient underwater illumination conditions of
AUVs and limited CMOS imaging levels [28].

(2) Object identification failures in complex underwater environments. Underwater
artifacts have different morphologies and tend to accumulate, which makes them easily
missed or incorrectly detected [29]. In addition, due to the age of underwater artifacts,
the artifacts are often covered with sediments, encrusted by marine organisms, or broken,
which leads to difficulties in extracting discriminative features of the artifacts in the process
of visual inspection. It causes serious interference in the detection of artifacts.

(3) Difficulty in samples of underwater artifacts. Unlike atmospheric optical images, it
is difficult to obtain enough samples with relevant features in the preliminary research of
object detection algorithms due to the influence of the complex underwater environment
and the limitation of imaging equipment [30].

In order to solve the above problems, we propose an object detection algorithm
specifically designed for archaeological artifacts located underwater based on a deformable
deep aggregation network model. The main contributions are summarized as follows:

(1) We design a feature extraction network specifically for underwater artifact de-
tection, which enhances the network to extract features from artifact objects in complex
scenarios through a deep aggregation structure with deformable convolutional layers and
more jump connections.

(2) We introduce the bottleneck attention module (BAM) attention mechanism to
enhance the features of underwater artifacts and weaken the background redundant infor-
mation through feature optimization, which improves the model’s anti-interference ability
and spares the redundant parameters and computational complexity.

(3) We build a database of underwater archaeological artifacts. By collecting a large
number of underwater object images, the underwater cultural artifacts (UCAs) dataset
is established. The accuracy and real-time performance of the underwater objects object
detection algorithm are verified.

The rest of the paper is organized as follows: Section 2 briefly describes our underwater
vision inspection system. Section 3 describes the materials and proposed methodology
in detail. Section 4 presents the experimental details and system analysis. Section 5
summarizes the entire paper as well as future research directions.

2. AUV Visual Detection System

We have constructed an efficient underwater visual inspection system for AUVs,
the main goal of which is to collect data related to underwater artifacts and verify the
effectiveness of our proposed algorithms in real-world environments. As shown in Figure 1,
in our preliminary work, we employed a robot equipped with an underwater camera to
capture images at the shipwreck site and create a custom dataset for our algorithmic study.
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In the subsequent phase, we integrated the algorithmic model proposed in this paper
into an edge computing platform and deployed it on an autonomous underwater vehicle.
During real-world testing, the system utilizes the images captured by the underwater
camera, processes them using our detection algorithm for autonomous object recognition
and analysis, and ultimately produces the detection results.
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Therefore, the focus of this study was to develop an artifact object detection algorithm
for AUVs for shipwreck sites and to test the performance of the algorithm in real underwater
environments.

3. Materials and Methods

Our underwater cultural artifacts object detection network (UCA-Net) combines a
deformable convolution module and an attention mechanism to improve the performance
of artifact object detection in complex underwater environments. As shown in Figure 2,
UCA-Net consists of three parts: a feature extraction network, a feature optimization
network, and a feature fusion network. First, the feature extraction network adopts a deep
aggregation structure that incorporates deformable convolutional layers and multi-hop
connections. The deformable convolutional layer enables the network to better adapt to
the complex spatial features of the broken artifacts, and the multi-hop connection helps to
capture the multi-scale semantic information of the artifact objects. Secondly, the feature
optimization network enhances the key features of underwater artifacts by introducing the
BAM attention mechanism, augmenting them in both the spatial and channel dimensions
while attenuating invalid background information. Finally, the feature fusion network
fuses features from different scales to further enhance the algorithm’s representation of the
object. With the above design, the UCA-Net algorithm proposed in this paper effectively
improves the accuracy and robustness of underwater artifact object detection.
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3.1. Feature Extraction Network

The process of object detection for underwater archaeological artifacts is made difficult
by the diversity of object types, shapes, and textures. In traditional deep learning models,
the convolution operation has a fixed structure which limits the network receptive field,
and the network can only capture local information during feature extraction.

However, due to the issues of breakage and burial of underwater artifacts, they
present irregular features. In this case, the traditional convolutional operation makes it
difficult to fully extract the features of underwater artifacts, leading to detection failure. To
enhance the detection ability of convolutional neural networks for underwater artifacts,
the long-range spatial relationships can be better captured by expanding the receptive field
of the network and constructing an implicit spatial model [31]. In complex underwater
environments, traditional standard convolution can only perform fixed-size sampling. In
contrast, deformable convolution can better learn the features of an object by introducing a
learnable offset in the convolution operation, which enables it to dynamically adjust the
sampling position and better adapt to the shape of objects such as broken burials [32]. As
shown in Figure 3, the deformable convolution module adds a two-dimensional offset
to each sample in the convolution kernel based on the traditional standard convolution
{∆pn|n = 1, . . . , N }, N = |R|, mathematically defined in Equation (1).

Y(p0) = ∑
pn∈R

w(pn)·X(p0 + pn + ∆pn) (1)

where X is the input feature map; R is the 3× 3 convolution kernel; pn is the nth point
in the convolution kernel; w(pn) is the weight corresponding to the pn point; p0 is the p0
point on the input–output feature map; ∆pn is the two-dimensional offset of the deformable
convolutional sampling point; and Y is the output feature map.

The deep layer aggregation (DLA) network has been widely used as a compact and
efficient feature extraction backbone in computer vision tasks such as object detection
and semantic segmentation [33]. A DLA network merges the layered feature maps in an
iterative manner, which achieves a more accurate representation of the object features while
keeping fewer parameters. To adapt to the diverse object sizes and shape of archaeological
artifacts found in underwater environments, we designed the DLA network structure
accordingly so that it could output feature maps with four feature layers of different scales.
On this basis, we introduced deformable convolution to replace the traditional convolution
operation to enhance the feature extraction capability of the network for irregular objects.



J. Mar. Sci. Eng. 2023, 11, 2228 6 of 17

We named the proposed feature extraction network as a multi-scale deep layer aggregation
with a deformable convolution network (MDLA-DCN). The network shows impressive per-
formances in complex underwater environments and significantly enhances the extraction
of features for underwater artifact objects with complex morphology.
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Figure 3. Deformable convolution.

The MDLA-DCN network structure is shown in Figure 4, with four parallel sub-
networks with different resolutions. Each sub-network consists of a series of deformable
convolutional modules. The same sub-network feature map resolution does not change
with the depth of the network, while the feature map resolution of the parallel sub-network
decreases sequentially by 1/2. The number of channels increases by a factor of 2. Informa-
tion exchange across the parallel sub-networks is implemented within the MDLA-DCN
network via upsampling so that each sub-network receives the information from the other
parallel sub-networks repetitively. Multi-hop connections in the network aggregate features
of different resolutions to yield enhanced underwater artifact features, which are more
accurate in terms of spatial and semantic information. In this paper, the 4-, 8-, 16-, and
32-fold downsampled feature maps generated by the parallel sub-networks are used as
outputs in order to fully utilize the multi-scale feature information.
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3.2. Feature Optimization Network

The feature extraction network generates four different resolutions of feature maps,
which contain valid features of the object and also a large number of invalid background
features, and there are differences in these four feature maps and their contributions to
the final detection results. Therefore, to suppress the invalid features and enhance the
object features, as well as to enable the network to autonomously learn the correlation and
importance between feature maps of different resolutions, we introduced BAM attention
for feature optimization. Different from the separate channel attention [34] and spatial
attention [35], BAM attention enhances features in both the spatial and channel dimensions
through different branches, the structure of which is shown in Figure 5.
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Channel attention branching enables the network to focus on the channel features
of interest by modeling the correlation between channels. Firstly, the input feature F ∈
RC×H×W undergoes global average pooling to encode the global information of each
channel and generate a one-dimensional channel vector; then, the one-dimensional channel
vectors are processed by using the multilayer perceptron (MLP) to estimate the inter-channel
attention. Finally, the output feature scale is adjusted by using the batch normalization
(BN) layer to obtain the channel attention mapping MC(F) ∈ RC. The specific description
is shown in Equation (2).

MC(F) = BN{MLP[AvgPool(F)]} = BN{W1[W0(AvgPool(F)) + b0] + b1} (2)

where W0 ∈ R C
r ×c, b0 ∈ R C

r , W1 ∈ RC× C
r , b1 ∈ RC, BN denotes the batch normalization.

Spatial attention branching can effectively capture the spatial location information
of features and make the network more concerned about the location information of the
object. Firstly, the input F ∈ RC×H×W is compressed by 1 × 1 convolution to compress the
channel dimension; then, two 3 × 3 null convolutions are used to aggregate the context
information with a larger receptive field. Finally, the 1 × 1 convolution is used to map
the dimension of the feature map to R1×H×W , and a batch normalization layer is used for
the scale adjustment to obtain the spatial attention mapping MS(F) ∈ RH×W . The specific
description is shown in Equation (3).

MS(F) = BN
{

f 1×1
3

{
f 3×3
2

{
f 3×3
1

[
f 1×1
0 (F)

]}}}
(3)

where f denotes a convolution operation, the superscripts denote the convolution kernel
sizes, and the subscript denotes the order of the convolution operation.

The complete computation of the BAM refinement input feature F ∈ RC×H×W is
shown in Equation (4).

F′ = F + F⊗ σ[MC(F) + MS(F)] (4)

where ⊗ denotes element-wise multiplication, σ is a sigmoid activation function, MC(F)
and MS(F) are the channel attention mapping and spatial attention mapping, respectively,
which are resized to RC×H×W before being added together.
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In general, networks usually overlay the attention mechanism serially, i.e., adding the
attention mechanism after most of the convolutional layers. Due to the special characteris-
tics of the feature extraction network structure, the BAM attention mechanism module is
only added in parallel to the final output part of the parallel sub-network, which enhances
the output features of the sub-network in the spatial and channel dimensions, effectively
filters the invalid background features and strengthens the effective object features, and im-
proves the quality of the output features of the sub-network significantly without increasing
the parameters of the network too much.

3.3. Feature Fusion Network

After processing with the feature optimization network, feature maps at different scales
were obtained, which were used to effectively represent the key features of underwater
artifact objects. To realize multi-level feature extraction and fusion for underwater artifacts,
we designed a fusion network for combining deep and shallow features.

The feature fusion process is shown in Figure 6. First, channel dimensionality reduc-
tion is performed on each source feature map using 3 × 3 convolution to keep the number
of channels consistent while reducing the amount of computation within the network. Af-
terwards, the low-resolution features are up-sampled using the inverse convolutional layer
to keep their resolution consistent with the high-resolution feature maps. Commonly used
up-sampling methods include the inverse convolution layer [36] and the bilinear difference
method. Since the inverse convolution can provide the network with parameters that can be
learned and improve the performance of the network, we chose the inverse convolution for
up-sampling. Finally, four adjusted feature maps are fused with the Concatenation fusion
operation for final prediction. Through the multi-scale feature fusion, the loss of small-scale
object features can be effectively reduced and the problem of underestimated utilization of
shallow features in spatial locations in the deep network can be solved, thus ensuring the
robustness and reliability of object features of underwater artifacts at different scales.
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4. Experiments

In order to verify the performance of the algorithm proposed in this paper, a database
of underwater archaeological artifacts was built and used for training and testing the detec-
tion model. In addition, the algorithm was compared with other state-of-the-art detection
algorithms to verify the detection performance in complex underwater environments.

4.1. Underwater Object Dataset

The images of underwater artifacts were captured from two different underwater
archaeological sites. Both sites are located in the sea off Guangdong Province, China,
where the water depth ranges from 23 to 30 m. One site is a Southern Song Dynasty (12th
century A.D.) shipwreck and the other is a Ming Dynasty (16th century A.D.) shipwreck.
Both sites have large cargoes of porcelain artifacts which are scattered over the seabed.
All photographs in this dataset were taken with an underwater camera carried by an
AUV. Given the complexity of the underwater environment, the dataset covers a wide
range of scenarios, including low light, object stacking, object burial, and object breakage.
The underwater cultural artifacts (UCAs) dataset was constructed after manual screening,
de-duplication, and quality assessment. The dataset consists of 10,714 images and fully
covers five types of objects, namely porcelain plates, bowls, jars, incense burners, and tiles,
which are commonly found in Chinese maritime trade shipwrecks from the 11th to the
17th centuries A.D. We divided the UCA dataset into training, validation, and test sets
according to the ratio of 6:2:2. Examples of representative images are shown in Figure 7.
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4.2. Experimental Setups
4.2.1. Experimental Environment and Training Parameters

The hardware environment of our experimental platform was a high-performance
server, which was configured as follows: Intel Xeon processor (Intel, Santa Clara, CA, USA)
with a main frequency of 2.1 GHz; 64 GB of RAM; and four Nvidia Tesla V100 graphics
cards (Nvidia, Beijing, China) with 32 GB of video memory. The software environment was
the operating system of Ubuntu18.04, Python 3.7, and CUDA11.0.

The training parameters were as follows: the gradient descent optimizer used to
update the parameters of the convolutional kernel was Adam; the optimizer Momentum
was 0.937; the learning rate update mode during training was STEP; the maximum learning
rate was 0.001; the training batch size was 16; the weight decay coefficient was 0.0005; and
the training iteration period Epoch was 300.



J. Mar. Sci. Eng. 2023, 11, 2228 10 of 17

4.2.2. Model Evaluation Metrics

We used four main metrics to test the performance of the model. Precision (P) denotes
the proportion of positive classes that the model considers to be positive and is computed as in
Equation (5). Recall (R) denotes the proportion of positive classes classified by the model to the
total number of positive classes and is computed as in Equation (6). F1 is the harmonic mean
of precision and recall. It is used as a proxy for the model’s performance and is calculated as
in Equation (7). Average precision (AP) is the area under the curve composed of precision
and recall, taking different thresholds for each class; the larger the value, the better the
recognition accuracy of the class, calculated as in Equation (8). The mean average precision
(mAP) denotes the average AP of all the classes; the larger the value, the better the accuracy
of the model in recognizing the object, calculated as in Equation (9).

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1 =
2× Precision× Recall

Precision + Recall
(7)

AP =
∫ 1

0
P(R)dR (8)

mAP =
1
N ∑N

n=1 APn (9)

where TP denotes the number of positive samples correctly predicted by the mode; FP
denotes the number of positive samples predicted by the model that are actually negative
samples. FN denotes the number of positive samples predicted by the model to be negative.
N denotes the number of all categories, and APn denotes the average precision of the
nth category.

4.3. Ablation Studies

To demonstrate each individual module’s contribution to overall effectiveness, per-
formance tests were conducted by successively adding or modifying the modules. Fur-
thermore, four generalized metrics, precision, recall, F1, and mAP, were introduced to
quantitatively evaluate the performance of the algorithms. The initial test used the original
DLA network, which was then replaced with the MDLA network and then successively
enhanced by addition of, firstly, the DCN, and secondly, the BAM module. Results for each
of the model variants are shown in Table 1.

Table 1. Ablation experiments.

Method Precision (%) Recall (%) F1 (%) Map (%)

DLA [33] 88.4 87.3 87.6 88.8
MDLA 89.6 89.2 89.4 90.5

MDLA + DCN 90.9 90.1 90.9 91.4
MDLA + DCN + BAM 93.1 91.4 92.2 92.8

Note: Bolded text shows the optimal results for each column. MDLA is a feature extraction network using
standard convolution.

From the experimental results in Table 1, it can be seen that compared with the original
DLA network, the multiscale deep aggregation network (MDLA) designed in this paper
improves the mAP by 1.7% and the precision by 1.2%, which effectively enhances the
detection ability of different scale objects. The use of DCN deformable convolution instead
of ordinary convolution effectively enhances the feature extraction ability of the MDLA
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network for irregular objects, and mAP is further improved by 0.9%. As DCN expands the
receptive field of the detection network, it makes the network enhance the aggregation to
capture more comprehensive feature information of the object. With the introduction of the
BAM attention module, F1 and mAP are increased by 1.3% and 1.4%, respectively, because
the attention module enhances the potential information of the object and attenuates the
influence of redundant information, which further improves the individual indexes and
causes the algorithm to have higher detection accuracy. The experiment proves that the
addition of the deformable convolution and attention module is reasonable in the task of
underwater artifact detection in complex environments, which can effectively improve the
adaptability and accuracy of the algorithm.

4.4. Comparison with Mainstream Methods

To verify the effectiveness of the underwater object detection algorithm proposed in
this paper, we conducted comparisons with mainstream object detection algorithms such
as Faster-RCNN [37], SSD [38], YOLOv5-l [39], and YOLOv7 [40]. All comparisons were
carried out using the aforementioned UCA dataset.

To ensure the comparability, we refer to the published code of each comparison
algorithm and use the original parameter settings. All comparison algorithms were trained
on the same training process for a total of 300 epochs, and the models were analyzed
qualitatively and quantitatively to evaluate the performance of each algorithm.

We qualitatively analyzed the performance of the algorithms through the detection
effects of different models, and the detection effects of Faster-RCNN, SSD, YOLOv5-l,
YOLOv7, and the algorithms proposed in this paper are shown in Figure 7. From the
diagram, it can be seen that the SSD algorithm has the worst detection performance, due
to the fact that its ability to represent shallow features is not strong enough, which results
in more misdetections and omissions. The Faster-RCNN algorithm and the YOLOv5
algorithm have comparable detection effects, while the YOLOv7 algorithm has better
effects, but these methods still have omissions when the object appears to be buried or
stacked. Compared with the above methods, the algorithm proposed in this paper achieves
better detection results, thanks to the optimization of the feature extraction network and
the introduction of the BAM attention mechanism, which enables effective extraction of the
feature information of the object in complex environments and improves the algorithm’s
overall robustness.

In order to better verify the superiority of the algorithm proposed in this paper, the
UCA data test set is used for comparison with the above algorithm. The comparisons of
the algorithms’ performances are shown in Table 2.

Table 2. Performance comparison of different algorithms.

Method Precision (%) Recall (%) F1 (%) mAP (%)

Faster-RCNN [37] 90.2 88.5 89.3 89.4
SSD [38] 81.9 82.2 82.0 82.8

YOLOv5-l [39] 88.3 87.8 88.1 88.7
YOLOv7 [40] 90.1 88.4 89.3 89.9

Ours 93.1 91.4 92.2 92.8
Note: Bolded text shows the optimal results for each column.

Comparing the metrics of different algorithms in the table, our algorithm outperforms
the others in all metrics. Compared with the SSD, which uses predictors directly based on
multi-scale feature maps, the map of ours is improved by 10%. The results of Faster-RCNN
and YOLOv7 are close to each other, and the map of ours is higher than both of them
by 3.4% and 2.9%, respectively. Obviously, for underwater artifact objects, ours shows
better detection performance. It can be seen that through the proposed network structure,
the inherent features of underwater artifact objects are retained in the deep layer of the
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network, which enhances the network’s ability to represent the features of artifact objects
in complex environments, thus improving the detection performance.

4.5. Real World Testing
4.5.1. Experimental Platform

In order to fully evaluate the effectiveness of the visual inspection system in this paper,
we embedded the visual detection system into an AUV, and the performance was tested in
a real underwater environment.

The AUV and edge computing device used in the experiment are shown in Figure 8,
and the main parameters of the AUV are shown in Table 3.
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Table 3. Main parameters of the AUV.

Parameters Value

Maximum operating depth 1000 m
Cruising speed 2 knots

Maximum speed 5 knots
Diameter 350 mm
Length 3.6 m

Weight in air 250 kg

High-power and high-load computing platforms are difficult to install in underwater
vehicles due to space and power constraints. While considering the actual demand, the
Nvidia Jetson TX2 image edge computing device was selected as the embedded computing
platform for the AUV. The reasons are as follows: (1) the embedded platform is of small
size (50 × 87 mm) and low power consumption (7.5 W under regular load); (2) the CPU is
the ARM Cortex-A57 and the GPU is the Nvidia Pascal GPU with 256 CUDA cores, which
meets the requirements of the detection algorithm.

4.5.2. Performance Comparison Test

We integrated the visual detection algorithms into the Nvidia Jetson TX2 and deployed
it to the AUV for performance evaluation on the images collected on an underwater
archaeological site. The field experiments were conducted on a Yuan Dynasty (13th century
A.D.) shipwreck site located in the southeastern waters of Fujian Province, China, at a
submerged depth of 30 m. The shipwreck was chosen as the test object for this experiment
because it contains a range of artifact types similar to those in the UCA dataset. The length
and width of the shipwreck are 13.07 m and 3.7 m, respectively. We surveyed an area of
48 square meters, which covered the cargo hold portion of the shipwreck. The site contained
a range of artifacts, including porcelain plates, bowls, and incense burners, which were the
main objects of this test. The results are shown in Figure 9.
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To evaluate the real-time performance of the proposed object detection algorithm, we
have selected the classical lightweight detection algorithms for comparative analysis. At
the same time, two performance metrics—Frames per Second (FPS) and Model Parameters
(Params)—are introduced for quantitative evaluation. The system performance metrics
are shown in Table 4. The algorithm of this paper detected the frame rate and the number
of parameters better than the SSD [38] algorithm, the YOLOv5-l [39] algorithm, and the
YOLOv7 [40] algorithm in real tests. The reasons are analyzed as follows: (1) the algorithm
in this paper designs MDLA as the basic feature extraction network, which effectively
fuses the features of different levels by means of deep aggregation at different scales, thus
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improving the utilization efficiency of the features. MDLA guarantees detection accuracy
while decreasing the number of parameters in the model. (2) The designed attention
feature optimization module enhances the object feature information without increasing
the number of model parameters. The algorithm in this paper achieves a detection speed of
19 frames per second on an image with a resolution of 640 × 640, which basically meets the
requirements of real-time detection (see Figure 10). Because YOLOv5-s and YOLOv7-tiny
reduce the depth of the network model more, this paper’s algorithm is slightly lower than
these two in the detection frame rate, but the mAP is relatively higher, which makes up for
the disadvantage of the temporal performance.

Table 4. Comparisons on the inference performance between ours and state-of-the-art methods.

Method mAP (%) Params (M) Input Shape FPS

SSD [38] 82.8 24.5 640 × 640 15
YOLOv5-l [39] 88.7 46.5 640 × 640 11
YOLOv5-s [39] 86.5 14.1 640 × 640 21
YOLOv7 [40] 89.9 74.4 640 × 640 10

YOLOv7-tiny [40] 86.4 13.2 640 × 640 22
Ours 92.8 18.9 640×640 18

Note: Bolded text shows the optimal results for each column.
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Figure 10. Typical results of cultural artifacts detection: (a,d) contain a large number of objects, and
the visual detection system achieves the detection rate of 18 frames per second; (b,c) contain fewer
objects, and the visual detection system achieves the detection rate of 19 frames per second.

5. Discussion

Underwater artifacts are affected by the complex environment in which they are
located, as well as changes in their own shape and texture, and these problems hinder
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the effective detection of underwater cultural artifacts. We have designed the proposed
algorithm components to effectively improve the detection of underwater artifacts.

In this paper, we designed a deformable convolution-based multi-scale deep aggrega-
tion network for underwater cultural relics object feature extraction, which can identify and
localize objects in complex environments by fusing semantic and spatial information. The
deformable convolution expands the receptive field of the detection network to effectively
extract the broken and irregular artifact features, and the multi-scale deep aggregation
network reduces the loss of contextual information of the object features and better captures
the global information of the artifact objects. The BAM attention module is introduced for
feature optimization, which effectively cuts down the background redundant information
and makes the network focus on the object feature information. Finally, progressive feature
fusion of different network layers is realized by the multi-scale feature fusion module.

From the experimental results, the algorithm in this paper has achieved better detection
results. However, the seabed environment where the underwater artifacts are located is
complex, and the algorithm may fail to detect them in special cases, such as the appearance
of marine organisms attached to the object.

6. Conclusions

In this work, we propose an underwater cultural artifact detection algorithm based on
the deformable deep aggregation network model for AUV exploration. In order to fully
capture the feature information, we designed an MDLA-DCN feature extraction network
in which the deformable convolution is embedded to ensure the efficient utilization of the
feature information of the underwater object in complex scenes. Furthermore, we introduce
the BAM attention module for feature optimization to enhance the potential feature of
the object while attenuating the background interference information. Finally, we obtain
the different scale object predictions using multi-scale feature fusion. The algorithm has
lightweight characteristics and is suitable for deployment on edge computing devices. In
order to verify the effectiveness of the proposed algorithm, we have built a UCA dataset.
The experimental results show that the algorithm achieves 93.1%, 91.4%, 92.2%, and 92.8%
on the precision, recall, F1 value, and mAP metrics, respectively. It should be noted that
the algorithm has been deployed on the AUV to achieve a detection rate of 18 frames per
second in real scene tests, which meets the real-time detection requirements.

The algorithm proposed in this paper has high detection accuracy and computational
efficiency which can meet the task requirements of detecting artifact objects in underwater
environments. The innovative ideas of the algorithm can also be applied to other underwa-
ter object detection tasks. Although the algorithm in this paper achieves good detection
results, there are still some shortcomings. In future research, we will focus on solving the
problem of detection failure when marine organisms are attached to the object and further
improve the generalization ability of the algorithm model.
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