
Citation: Ouyang, Z.-L.; Zou, Z.-J.;

Zou, L. Nonparametric Modeling and

Control of Ship Steering Motion

Based on Local Gaussian Process

Regression. J. Mar. Sci. Eng. 2023, 11,

2161. https://doi.org/10.3390/

jmse11112161

Academic Editor: Rafael Morales

Received: 15 October 2023

Revised: 7 November 2023

Accepted: 9 November 2023

Published: 13 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Article

Nonparametric Modeling and Control of Ship Steering Motion
Based on Local Gaussian Process Regression
Zi-Lu Ouyang 1, Zao-Jian Zou 1,2,* and Lu Zou 1,2

1 School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University,
Shanghai 200240, China; ouyang_sjtu@sjtu.edu.cn (Z.-L.O.); luzou@sjtu.edu.cn (L.Z.)

2 State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
* Correspondence: zjzou@sjtu.edu.cn

Abstract: This paper aims to study the nonparametric modeling and control of ship steering motion.
Firstly, the black box response model is derived based on the Nomoto model. Then, the establishment
of a nonparametric response model and prediction of ship steering motion are realized by applying the
local Gaussian process regression (LGPR) algorithm. To assess the performance of LGPR, two cases
are studied, including a Mariner class vessel by using simulation data and a KVLCC2 tanker model
by using experimental data. The results reveal that the response model identified by LGPR presents
good prediction accuracy and low computational burden. Finally, the identified response model is
used as the basis for developing the ship heading controller, and the results demonstrate that the
proposed controller is able to achieve good dynamic performance.

Keywords: ship steering response model; nonparametric modeling; system identification; local
gaussian process regression; ship heading control

1. Introduction

In the study of ship maneuverability, an accurate mathematical model of ship maneu-
vering motion plays a significant role. On the one hand, the ship dynamic model is the
basis of developing simulators for the prediction of ship maneuvering behaviors. On the
other hand, the design and validation of motion control methods always need a reliable
ship dynamic model.

The classic mathematical models of ship maneuvering motion include the whole-ship
model [1], the modular model [2] and the response model [3]. Among them, the whole-ship
model and the modular model are nonlinear models, which can accurately predict large
amplitude ship maneuvering motion. However, acquiring the unknown coefficients of the
nonlinear models is always laborious and costly. On the other hand, the response model is
usually used to design a controller of ship steering motion with small amplitude. It can be
derived from the linearized whole-ship model, and its parameters (the maneuverability
indices) consist of some linear hydrodynamic derivatives in the whole-ship model. With
the response model, the three degrees of freedom (3-DoF) model of ship maneuvering
motion on the horizontal plane is simplified to the mathematical relationship between the
yaw rate and the rudder angle which has the advantages of a simple structure and the
ability to capture the response characteristics of ship steering motion to the control input
and has been extensively used to predict ship steering motion as well as to design ship
autopilots [4–8].

As artificial intelligence technology develops, the unknown maneuverability indices in
the response model can be identified by system identification methods in combination with
machine learning algorithms in an easy to operate way. Since the mathematical expression
of the response model is explicit, the parameter identification of the maneuverability indices
is essentially a linear regression problem. Zhu et al. [9] proposed an improved least-squares
support vector regression (LSSVR) method, which was optimized by using an artificial bee
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colony algorithm for the purposes of identifying the parameters of the response model.
Xie et al. [10] developed a least-squares algorithm based on the multi-innovation extended
Kalman filtering method to improve the identification accuracy. Wang et al. [11] applied
the nonlinear Gaussian filter (NGF) algorithm to identify the parameters of the response
model in real time. Zhang et al. [12] employed the target-oriented crow search algorithm for
identifying the response model, and the effectiveness of the identified model was validated
on the ship heading control.

Although the parametric identification of the response model has achieved satisfac-
tory results, the inherent problems of parametric identification, i.e., parameter drift and
sensitivity to the noise in the training dataset caused by the measurement uncertainties and
environmental interferences, are always hard to deal with. To solve these problems, non-
parametric modeling methods have been used to model ship maneuvering motion. Among
them, artificial neural network (ANN) methods have shown satisfactory performance due
to their strong approximation capability [13–15]. However, the training of ANNs usually
requires a large amount of sample data. Recently, kernel-based methods represented by
Gaussian process regression (GPR) [16–18], support vector machines (SVM) [19], and lo-
cally weighted learning (LWL) [20,21] have also been successfully applied. With the aid of
kernel-based methods, the training dataset can be mapped onto a high-dimensional Hilbert
feature space, where the regression performance can be improved effectively compared
with those in low-dimensional space. However, the calculation of the kernel matrix is
time-consuming due to its large dimensions.

Although considerable progress has been achieved in the nonparametric modeling of
3-DoF ship maneuvering motion, until now there have been few studies of the nonpara-
metric modeling of ship steering motion. In this study, a novel algorithm proposed in the
previous study [22], local Gaussian process regression (LGPR), is applied to the modeling
and prediction of ship steering motion. From the research results presented in [22], it is
noted that LGPR does not need a large amount of data to establish the nonparametric
model, while is more efficient and has acceptable prediction accuracy compared with classic
GPR. Moreover, on the basis of the identified response model, an identification-based ship
heading controller is developed in this paper.

The rest of this paper is structured as follows: Section 2 provides the derivation of the
black box response model used in LGPR; Section 3 describes the mathematical derivation
of the LGPR algorithm; in Section 4, the nonparametric response models of a Mariner
class vessel and a KVLCC2 tanker model are established by LGPR; and in Section 5, the
identified nonparametric response model is utilized to develop an identification-based ship
heading controller, and the simulation test is performed for the purpose of evaluating the
performance of the developed controller. Section 6 presents conclusions and prospects.

2. Response Model of Ship Steering Motion

The ship response model was derived by Nomoto [3] from the aspect of control
engineering. It regards ship steering motion as the response to the input of the rudder
angle. The second-order Nomoto model is mathematically expressed as follows:

T1T2
..
r + (T1 + T2)

.
r + r = Kδ(T3

.
δ + δ) (1)

where r is the yaw rate, δ is the rudder angle, T1, T2 and T3 are the time coefficients of the
model, and Kδ is the gain coefficient.

Based on Equation (1), the transfer function between the rudder angle and the ship
yaw motion can be derived by Laplace transform:

G(s) =
Kδ(T3s + 1)

(T1s + 1)(T2s + 1)
(2)
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Considering that the ship maneuvering motion is of low-frequency, Equation (2) can
be simplified by neglecting the second-order variables as follows:

Y(s) =
Kδ

1 + Ts
(3)

Based on Equation (3), the first-order Nomoto model can be obtained by applying
inverse Laplace transform:

T
.
r + r = Kδδ (4)

where T = T1 + T2 − T3.
As can be seen from Equations (1) and (4), both the second-order and the first-order

Nomoto models depict the relationship between r and δ. The mathematical expression of
the black box model is given as Equation (5) on the basis of Equations (1) and (4):

.
r = g(r, δ) (5)

where g is the nonlinear function which needs to be identified by the machine learning
algorithm.

Figure 1 shows the flowchart of the modeling and prediction of ship steering motion
on the basis of the identified nonparametric response model, where rdot represents

.
r; r(k),

rdot(k) and δ(k) represent the motion variables and control variable of the k-th sample in the
training dataset; r(t) and δ(t) represent the inputted motion variable and control variable;
and rdot(t) represents the yaw acceleration in the predicted ship steering motion at time t.
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Figure 1. Flowchart of the modeling and prediction of ship steering motion based on the identified
nonparametric response model.

As indicated in Figure 1, the nonparametric response model is identified based on
the black box model given as Equation (5) and the training dataset, and the ship steering
motion is predicted by using the identified response model.
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3. Local Gaussian Process Regression Algorithm
3.1. Classic Gaussian Process Regression

As a nonparametric modeling method based on Bayesian theory, Gaussian process
regression (GPR) can be mathematically derived on the basis of the definition of a Gaussian
process (GP). A GP can be depicted by its mean and variance:

f (x) ∼ GP(µ(x), k(x, x′)) (6)

where f (x) is a GP, µ(x) is the mean function, k(x, x′) is the covariance function, and their
mathematical expressions are as below:

µ(x) = E[ f (x)] (7)

k(x, x′) = E
[
( f (x)− µ(x))( f (x′)− µ(x′))

]
(8)

For a predictive sample Z, in order to predict f∗ = f (Z) over the training dataset
D = {xi, yi}n

i=1, GPR first establishes a prior function and then transforms the prior
function into a posterior distribution on the basis of Bayesian theory. The vector y, which is
composed of yi(i = 1, 2, . . . , n), has a joint Gaussian distribution with f∗:[

y
f∗

]
∼ N(0,

[
K(X, X) + σ2

n In K(Z, X)T

K(Z, X) K(Z, Z)

]
) (9)

where X = [x1, x2, . . . , xn]
T, K is the covariance matrix, whose elements can be calculated

as Kij = kc(xi, xj), and kc is the covariance function. In is a unit matrix of n-dimensions.
σ2

n is the variance of the noise contained in the target value y. Based on Equation (9), the
distribution of f∗ can be expressed as

p( f∗|D, Z) = N(µ̂, Ŝ) (10)

µ̂ = K(Z, X)Ay (11)

Ŝ = K(Z, Z)− K(Z, X)AK(Z, X)T (12)

where µ̂ is the mean of f∗, Ŝ is the variance of f∗, and A refers to the equation A =

[K(X, X) + σ2
nIn]

−1. Equations (10)–(12) are the key regression equations of GPR, and the
detailed mathematical derivation can be found in [23].

3.2. Local Gaussian Process Regression

A novel algorithm proposed in the previous study [22], local Gaussian process regres-
sion (LGPR) is used to identify the response model and predict the ship steering motion
with high computational efficiency. According to the results in the previous study [22],
LGPR is more efficient than other methods and the prediction accuracy is acceptable.

In LGPR, according to similarity criterion among the samples, the whole training
dataset is segmented into k clusters automatically by the clustering analysis algorithm. The
n samples in X = [x1, x2, . . . , xn]

T can be divided into k clusters X1, X2, . . . , X f , . . . , Xk:

L(X1) + L(X2) + . . . + L(X f ) + . . . + L(Xk) = n (13)

where L(Xi)(i = 1, 2, . . . , k) is the length of cluster Xi. A single cluster contains samples
which are similar to each other to the greatest extent, while samples in different clusters
are different from each other to the greatest extent. In LGPR, the prediction result of the

predictive sample Z is obtained for the cluster X f =
[
x f 1, x f 2, . . . , x f h

]T
(h < n) of which

the center is closest to Z, rather than for the whole training dataset X = [x1, x2, . . . , xn]
T,
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considering that the prediction result of Z is mainly determined by the samples which have
high similarities with Z in the GPR method [24]. Then, the key regression equations become

µ̂ = K(Z, X f )By f (14)

Ŝ = K(Z, Z)− K(Z, X f )BK(Z, X f )
T (15)

where B = [K(X f , X f ) + σ2
n Ih]

−1, and y f =
[
y f 1, y f 2, . . . , y f h

]T
(h < n) is the target value

vector of X f =
[
x f 1, x f 2, . . . , x f h

]T
. According to Equations (14) and (15), the computational

complexity of calculating the predictive mean and variance of f∗ are O(h) and O(h2),
respectively.

In this study, the squared exponential (SE) function kSE is used, whose mathematical
expression is given as

kSE = exp[− 1
2σ2 (xi − Z)T(xi − Z)] (16)

where σ2 is the length scale of the SE covariance function. In this study, in order to guarantee
the generalization ability of the identified model, a genetic algorithm (GA) is employed
to optimize the hyperparameters in the GPR for the whole training dataset. The detailed
implementation process of the hyperparameters’ optimization by a GA can be found in [18].
The flowchart of LGPR is shown in Figure 2.
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Figure 2. Flowchart of LGPR.
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4. Nonparametric Modeling and Validation
4.1. Mariner Class Vessel with Simulation Data

Firstly, the Mariner class vessel is taken as the research object and the effectiveness
of LGPR is evaluated by using the simulation data. The simulation tests are performed in
MATLAB R2020a. The main parameters of the ship are given in [25].

The datasets are generated by carrying out simulations of maneuvers with a non-
linear whole-ship model, where the hydrodynamic derivatives are taken from Chislett
and Tejsen [25]. The training datasets are collected from simulated 5◦/5◦, 10◦/10◦ and
35◦/5◦ zigzag maneuvers at a sampling time interval of 0.5 s, and the sample size of each
maneuver is 400. The parameters in LGPR are configured as follows: 0.9 for the crossover
possibility, 0.1 for the mutation possibility, 30 for the evolutional generation, and 3 for the
number of clusters k. Meanwhile, a classic GPR without clustering analysis process and
a neural network (NN) based on a back-propagation algorithm are also used to model
and predict the ship steering motion for comparison purposes. NNs are a widely used
nonparametric modeling method due to its universal approximation ability. In this study,
the NN consists of three layers: an input layer, a hidden layer with 10 hidden nodes, and
an output layer. The Levenberg–Marquardt algorithm is used as the optimization method
for tuning the weights and the bias values in the NN, the mean-square error is utilized
as the loss function, the hyperbolic tangent function is adopted as the activation function
for the input layer and the hidden layer, and the linear transfer function is adopted as the
activation function for the output layer. The maximum training iterations and the learning
rate are set as 1000 and 0.1, respectively.

In LGPR, the k-means clustering analysis algorithm is applied to divide the training
dataset automatically [26], and the min–max normalization is carried out on the training
dataset before performing the clustering analysis. In respect of the clustering analysis, the
results are presented in Figure 3 and Table 1. The yellow dotted line in Figure 3 represents
the borders of the clusters.
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Table 1. Dimensions of clusters (Mariner).

Cluster A Cluster B Cluster C Sum

Dimension 725 166 309 1200

The hyperparameters tuned and optimized by GA are presented in Table 2, where σr
and σd are the length scales of the covariance function of the input variables, i.e., yaw rate
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and rudder angle, respectively; σf is the change magnitude of the output of the covariance
function; and σn is the standard deviation of the noise contained in the target value y.

Table 2. Hyperparameters tuned and optimized by GA (Mariner).

Hyperparameter σr σd σf σn

Value 0.410 0.339 0.0225 0.0023

The generalization ability of the identified response model is validated by predicting
the maneuvers which are excluded in the identification procedure, including 10◦/5◦ and
15◦/15◦ zigzag maneuvers, and random maneuvers. For the predicted maneuvers, the
results are presented in Figures 4–6, where ‘RHM’ denotes the results simulated by the
hydrodynamic model (here the whole-ship model) for ease of exposition. Figure 7 presents
the results of the comparison among GPR, LGPR and the NN in respect of the time
consumed for prediction, while the results of the comparison in respect of the root-mean-
square error (RMSE) values of the yaw rate are given in Table 3, where Rr (deg/s) is
calculated as

Rr =

√
1
n

n

∑
i=1

(ri −
_
r i)

2
(17)

where ri is the RHM value and
_
r i is the value predicted by the identified response model.
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Table 3. Comparison among GPR, LGPR and the NN of RMSE value of yaw rate (Mariner).

10◦/5◦ Zigzag Maneuver 15◦/15◦ Zigzag Maneuver Random Maneuver

GPR LGPR NN GPR LGPR NN GPR LGPR NN

Rr 3.35 × 10−2 3.57 × 10−2 3.87 × 10−2 9.43 × 10−2 9.81 × 10−2 9.64 × 10−2 4.90 × 10−2 5.00 × 10−2 5.65 × 10−2

Figure 4a shows that in the predicted 10◦/5◦ zigzag maneuver, the predicted yaw
rates by GPR, LGPR and the NN are smaller than the RHM in the early stage. After 100 s,
the predicted yaw rates by the three methods begin to fit well with the RHM. It can be
seen from Figure 4b that the accumulative prediction errors of the heading angle by the
three methods are rather large, and those of the NN are the most noticeable. Figure 5 shows
that in the prediction of 15◦/15◦ zigzag maneuver, the results of the yaw rate predicted by
the three methods are smaller than the RHM during 0–50 s, while after 50 s the prediction
results for the yaw rate are larger than the RHM, leading to the accumulative prediction
errors for the heading angle. The heading angles predicted by the three methods are larger
than the RHM later in the prediction, and those predicted by LGPR and the NN exhibit
more noticeable deviations.

The response model is usually applied to develop the controller of ship steering motion.
Generally, the rudder angle during the motion control operation is not as regular as that in
the standard zigzag maneuvers, but rather random. Therefore, it is necessary to assess the
prediction accuracy of the identified response model for the simulation of random rudder
angle, as shown in Figure 6a. In this study, the predictions of the random maneuver for
short time (0–5 s), medium time (0–100 s) and long time (0–600 s) are performed, and the
results are shown in Figure 6b–d.

As can be seen from Figure 6b, in the prediction of the short time random maneuver,
the heading angles predicted by GPR and the NN show acceptable accuracy, while those
predicted by LGPR exhibit rather distinct deviations during 3–5 s. Figure 6c shows that
in the prediction of the medium time random maneuver, the results of the three methods
fit well with the RHM in the first 30 s. After 30 s the prediction results begin to show
errors. The performances of the three methods are similar and GPR gives slightly better
results after 70 s. One can find from Figure 6d that in the prediction of the long time
random maneuver, the prediction results of GPR and LGPR are in accord with the RHM
overall, while those of the NN exhibit quite large deviations. These results indicate that the
performances of the three methods are similar in the predictions of short time and medium
time random maneuvers, while in the long time prediction the performance of the NN is
not satisfactory, indicating that the nonparametric response model identified by GPR has
better generalization ability.
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As shown in Table 3, the values of Rr of the NN are larger than those of GPR and
LGPR in the predictions of 10◦/5◦ zigzag and random maneuvers, while in the predic-
tion of 15◦/15◦ zigzag maneuver, the Rr values of the three methods are close. Figure 7
demonstrates that LGPR is the least time-consuming of the three methods. These results
reveal that LGPR is efficient, while the loss of prediction accuracy is not distinct. The
improvement in computational efficiency and the guarantee of prediction accuracy can be
attributed to the introduction of the clustering analysis method. The prediction result of
the predictive sample is obtained on the cluster for which the center is closest to that of the
predictive sample, rather than on the whole training dataset, thereby the computational
burden is significantly reduced.

4.2. KVLCC2 Tanker Model with Experimental Data

To further verify the robustness of LGPR, the nonparametric modeling of the ship
response model is conducted by using the experimental data of the KVLCC2 tanker model.
The detailed information about this ship and the experimental data are given in SIMMAN
2008 Workshop [27].

The training datasets are collected from the 10◦/5◦, 10◦/10◦, 30◦/5◦ and 35◦/5◦ zigzag
maneuvers at a sampling time interval of 0.05 s, and the whole training datasets include
1288 samples. The parameters set in LGPR are the same as those set in the previous
subsection. In respect of the clustering analysis, the results are presented in Figure 8 and
Table 4. The yellow dotted line in Figure 8 represents the borders of the clusters. The
hyperparameters tuned and optimized by GA are presented in Table 5.
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Table 4. Dimensions of clusters (KVLCC2).

Cluster A Cluster B Cluster C Sum

Dimension 617 308 363 1288

Table 5. Hyperparameters tuned and optimized by GA (KVLCC2).

Hyperparameter σr σd σf σn

Value 1.508 0.433 0.393 0.0568

Similar to the previous subsection, the maneuvers which are excluded in the identifi-
cation procedure are predicted by the identified models, including 20◦/10◦ (S), 20◦/10◦ (P)
and 20◦/5◦ zigzag maneuvers, where ‘(S)’ and ‘(P)’ stand for the zigzag maneuvers started
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with the rudder turning to the starboard and port sides, respectively. GPR and the NN are
used for comparison purposes and the structure of the NN is the same as that used in the
previous subsection. The results of the predicted maneuvers are shown in Figures 9–11; the
results of the comparison among GPR, LGPR and the NN in respect of time consumed for
prediction are presented in Figure 12; and the results of the comparison of RMSE values of
yaw rate are given in Table 6.
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Table 6. Comparison among GPR, LGPR and the NN of RMSE value of yaw rate (KVLCC2).

20◦/10◦ (S) Zigzag 20◦/10◦ (P) Zigzag 20◦/5◦ Zigzag

GPR LGPR NN GPR LGPR NN GPR LGPR NN

Rr 3.16 × 10−1 3.78 × 10−1 3.66 × 10−1 3.50 × 10−1 3.69 × 10−1 4.11 × 10−1 2.55 × 10−1 2.66 × 10−1 3.17 × 10−1

According to Figures 9a and 11a, in the predictions of 20◦/10◦ (S) and 20◦/5◦ zigzag
maneuvers, the yaw rate predicted by GPR, LGPR and the NN are smaller than the
experimental data in the early stage of prediction. As the prediction progresses, the
results of the predicted yaw rate become larger than the experimental data, leading to
the deviations in the predictions of the heading angle. Figures 9b and 11b show that the
heading angle predicted by LGPR exhibits rather large deviations in the later stage of
prediction, and the heading angle predicted by GPR shows higher accuracy than LGPR
and the NN. Figure 10b shows that in the prediction of 20◦/10◦ (P) zigzag maneuver,
the heading angle predicted by the NN exhibits distinct errors for the valley points. The
prediction deviations of the nonparametric model identified by the NN may be attributed
to the limited training samples. In general, a larger sample size is required by the NN to
identify the mapping relationship between the input and output data [28], while GPR is
able to establish a rather robust model with a small sample size [23].

From Figure 12 and Table 6, it can be seen that LGPR is able to give high computational
efficiency and acceptable prediction accuracy when compared with GPR and the NN.
Moreover, Rr of the predicted maneuvers given in Table 6 are of the order of 10−1, which are
larger than those given in Table 3. This indicates that modeling based on the experimental
data is more difficult than that based on the clean simulation data, since the experimental
data contain noise caused by environmental interferences and measurement uncertainties.

In the above study of the two cases, the results predicted by the nonparametric
response model exhibit rather distinct accumulative errors in the later stage of prediction.
On the one hand, this may be attributed to the modeling errors of the identification
algorithm. On the other hand, it may be attributed to the mathematical structure of the
black box model (Equation (5)). In this study, the yaw acceleration is determined by yaw
rate and rudder angle, which are derived from the Nomoto model. However, based on the
mathematical model of 3-DoF ship maneuvering motion, the yaw acceleration is considered
to be determined by surge speed, sway speed, yaw rate, and rudder angle [15,16,18,19,22].
Equation (5) can be regarded as a simplified black box model in comparison with that used
in the modeling of 3-DoF ship maneuvering motion. Therefore, the identification algorithm
cannot capture the complete dynamic characteristics of ship steering motion from the
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training dataset constructed based on Equation (5). Nevertheless, the prediction accuracy
of the nonparametric response model is acceptable, and the computational efficiency is
expected to be higher than that of the nonparametric model of 3-DoF ship maneuvering
motion because of neglecting the motion variables surge speed and sway speed.

5. Ship Heading Control Based on Identified Nonparametric Response Model
5.1. Identification-Based Ship Heading Controller

According to the results in the previous section, LGPR is able to give acceptable pre-
diction results of ship steering motion with low computational costs. In this section, the
identified nonparametric response model and the efficient prediction method of ship steer-
ing motion based on LGPR are applied to develop a ship heading controller. Proportion–
integration–differentiation (PID) control law is utilized as the basis for the design of the
identification-based heading controller in this study:

δ = kp∆ψ(t) + ki

∫ t

0
∆ψ(τ)dτ + kd

d∆ψ(t)
dt

(18)

∆ψ(t) = ψd(t)− ψ(t) (19)

where ∆ψ(t) is the control error; ψd(t) and ψ(t) are the desired heading angle and current
heading angle, respectively; and kp, ki and kd are the proportional, integral and differential
control parameters, respectively.

PID control is a classic and widely used method characterized by a simple mathe-
matical structure and robust performance in the field of ship motion control. However,
the tuning of the control parameters kp, ki and kd is an open problem. Traditional tuning
methods include the cut-and-trial method and the expert experience method, with which
it is always hard to obtain satisfactory solutions in view of the high nonlinearity of ship
maneuvering motion. LGPR can establish the nonparametric model and predict ship
steering motion efficiently, providing an approach for tuning the control parameters in a
model-based way. The detailed implementation process is shown in Figure 13.
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The optimization algorithm used to tune the control parameters in PID controllers is
the GA, and the fitness function F in the GA is defined as

F =
1∫ T

0 (ω1|ψ(t)− ψd(t)| + ω2δ2(t))dt
(20)

where T is the duration of the computer simulations of ship heading control tests, per-
formed by LGPR, and ω1 and ω2 are the weights. The term ω1|ψ(t)− ψd(t)| stands for the
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accumulative control error, which is used to improve the accuracy of control. The term
ω2δ2(t) is used to make the rudder angle moderate and not change too frequently, to avoid
unnecessary steering and excessive mechanical wear of the steering gear.

Based on Equation (20), the control parameters are optimized in the evolution proce-
dure by carrying out computer simulations of heading control tests by using the identified
response model and the efficient prediction method of ship steering motion, and the control
parameters whose fitness function values are highest are obtained at the end of evolution.

5.2. Simulation Test of Ship Heading Control

The Mariner class vessel is used as the control object, and the control parameters
in Equation (18) are tuned and optimized based on the nonparametric response model
established in Section 4.1. The initial heading angle is 0◦, and the desired heading angle
is set as 10◦. The parameters in the GA for tuning the control parameters are set as
follows: ω1 is 0.7, ω2 is 0.02, the crossover probability is 0.9, the mutation probability is
0.1, the population size is 30, and the number of evolution iterations is 30. The proposed
identification-based ship heading controller is denoted as the LGPR-GA-PID.

To evaluate the effectiveness of the LGPR-GA-PID, the whole-ship model of Mariner
class vessel is also used for the GA to optimize the control parameters, and the correspond-
ing controller is denoted as the whole-GA-PID. Obviously, with the control parameters
tuned by the LGPR-GA-PID closer to those tuned by the whole-GA-PID, more reliable
performance of the LGPR-GA-PID is obtained. The comparison of the results of tuning the
control parameters using the whole-ship model and the nonparametric response model
identified in Section 4.1 is given in Table 7. It is noticed that the results of tuning the
control parameters kp, ki and kd on the basis of the whole-ship model and the nonparametric
response model identified by LGPR are very similar, indicating that the identified non-
parametric response model and the proposed prediction method of ship steering motion
are reliable.

Table 7. Comparison of control parameters tuned based on whole-ship model and nonparametric
response model identified by LGPR.

Control Parameter kp ki kd

whole-GA-PID 1.5863 ≈0 36.6454

LGPR-GA-PID 1.6859 ≈0 37.3302

Figure 14 shows the comparison between the proposed identification-based heading
controller and a standard PID controller used in the Marine System Simulator (MSS) [29].
It reveals that the control performance of the LGPR-GA-PID controller is satisfactory, no
obvious overshoot is observed, and the steady-state error is within 1◦, while the overshoot
of the standard PID controller is rather distinct and the steady-state error is larger than
that of LGPR-GA-PID. Table 8 gives the comparison results of the dynamic performance
indexes. It is noted that the rise time of the LGPR-GA-PID is larger than that of the PID
controller used in the MSS, while the settling time and the overshoot of the PID controller
in the MSS are larger than those of the LGPR-GA-PID, indicating that the LGPR-GA-PID
has better dynamic performance. These results all show that the proposed ship heading
control method based on the identified nonparametric response model is reliable and can
achieve satisfactory control performance.

Table 8. Dynamic performance indexes of the LGPR-GA-PID and the PID used in the MSS [29].

Rise Time (s) Settling Time (s) Overshoot

PID 44 172 23.30%

LGPR-GA-PID 60 102 9.41%
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6. Conclusions

In this paper, the nonparametric modeling and prediction of ship steering motion is
studied. A local Gaussian process regression (LGPR) algorithm is employed to establish the
nonparametric response model and predict ship steering motion with low computational
burden and acceptable prediction accuracy. The modeling and prediction results demon-
strate the high modeling accuracy and the low computational burden of the identified
nonparametric response model.

Based on the identified nonparametric response model, an identification-based ship
heading controller is developed. The heading control simulation results indicate the satis-
factory control performance of the proposed controller compared with that of a standard
PID controller because of taking the ship steering characteristics into consideration.

In this study, the proposed controller is evaluated by carrying out simulation tests. As
the proposed method is easy to operate, an attempt will be made to apply the proposed
method to real physical experiments in a future study so as to further verify its engineering
application value.
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