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Abstract: The growth in containerized shipping has led to the expansion of seaports, resulting in
the emergence of multiple terminals. While multi-terminal systems increase port capacity, they also
pose significant challenges to container transportation, particularly in inter-terminal movements.
Consequently, the transportation delay of containers in inter-terminal operations demands crucial
attention, as it can adversely affect the efficiency and service levels of seaports. To minimize the total
transportation delays of the inter-terminal truck routing problem (ITTRP), we introduce simulated
annealing with normalized acceptance rate (SANE). SANE improves the exploration capability of
simulated annealing (SA) by dynamic rescaling of the transportation delay objective to modify the
acceptance probability. To validate the quality of solutions provided by SANE, we have developed a
mathematical model that provides a set of linear formulations for ITTRP constraints, avoiding the
known set-partitioning alternative. Experimental results showed that for small-scale ITTRP instances,
SANE achieved a solution close to the optimal. In larger instances with 100–120 orders, SANE
found feasible suboptimal solutions within 15–21 seconds, which is unattainable using the exact
solver. Further comparison with baselines indicates that SANE provides considerable improvements
compared to both SA and Tabu search in terms of the objective value.

Keywords: inter-terminal transport; inter-terminal truck routing; simulated annealing; tabu search;
mixed integer programming

1. Introduction

The growth of the global economy has constantly led to higher demand for container-
ized shipping. With the recovery from the COVID-19 pandemic, international maritime
trade soared by an estimated 3.2%, with a total of 11 billion tons of shipments in 2021 [1].
To keep up with the increase in demand, large ports are being expanded and constructed
with multiple terminals [2]. Thus, decision making related to efficient container transport
in a multi-terminal system has become an increasingly important research topic.

Typically, container terminals within seaports must routinely serve vessels, barges,
and other hinterland transportation modes daily. There are two main processes by which
container terminals operate: loading and unloading of the containers. Upon discharge from
the vessel, the container is expected to be delivered directly to the customer. However, in
most cases, a container is transported to the stacking area, transferred between terminals
and logistics facilities, or transferred to different modes of transportation to meet all logistics
requirements [3]. This container movement is known as inter-terminal transport (ITT) [2,4].
ITT serves as a crucial operational problem for seaports as it compensates for infrastructure
differences between terminals. If not handled correctly, ITT might lead to a significant delay,
which in consequence, influences the competitiveness and sustainability of the seaport [5].
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Previous studies related to ITT were typically concerned with the efficient pick-up and
delivery of containers between separated areas within the seaports [2,3,6–10]. While the
mathematical model of the specific ITT problem of interest is typically presented, in most
cases the problem is solved either heuristically or approximately by using metaheuristics
due to the computational complexity of the problem [8–10]. The proposed metaheuristic
algorithms in this case may include modification, adjustment, or both to the known meta-
heuristic method for each of the specific ITT problems [3,6,8–11]. A study of the loading
and unloading of trains at the landside of container terminals was performed along with
the performance analysis of different neighbor functions of SA [9]. Heilig et al. [4] proposed
a hybrid simulated annealing (SA) solution to inter-terminal truck routing problems using
heuristics as an initialization algorithm [6]. Their study was followed by the adjusted use of
SA for the multi-objective optimization case [7]. The SA algorithm presented by Oudani [10]
emphasizes an adjustment to the algorithm to always generate feasible solutions in an
incomplete network of intermodal transportation. To the best of our knowledge, the impact
regarding the modification of acceptance probability of SA in the context of an ITT-related
field has not been explored. This study, therefore, attempts to explore the gap with the
proposed method.

In this study, we consider a model of inter-terminal truck routing problem (ITTRP) in-
spired by Heilig et al. [4]. However, in contrast to their study, which uses a set partitioning
formulation, we consider a mixed integer programming (MIP) model that linearizes the for-
mulated constraints to have a straightforward solving implementation through commercial
solvers. To efficiently solve the model, we propose a metaheuristic method that modifies the
acceptance probability of SA. The contributions of this study can be summarized as follows:
(1) We developed simulated annealing with normalized acceptance rate (SANE), which
improves the exploration capability of SA through dynamic rescaling of the transportation
delay objective to modify the acceptance probability. (2) To evaluate the quality of the
solution provided by SANE, we developed a mathematical model that formally linearizes
some of the constraints in Heilig et al. [4] without the need for set-partitioning. (3) We
further demonstrate from the experimental results that SANE yields a better performance
than the original SA and Tabu Search (TS).

The remainder of this paper is structured as follows: Section 2 explores previous
works related to ITT, ITTRP, and previous modifications to SA. Section 3 discusses the
formulation of the ITTRP and the working mechanism of the SANE. Section 4 presents the
experimental results and a comparison with the baselines, as well as a further discussion.
Finally, Section 5 presents the conclusions of this study and directions for future work.

2. Literature Review
2.1. Routing Problems and Inter-Terminal Transportation

Many of the routing problems, including the routing of ITT, can be seen as an extension
of the vehicle routing problem (VRP), which has been extensively studied in the context of
logistics [12–17]. In some cases, the given routing problem may be directly assigned into
a well-defined problem. Šedivý et al. [12] demonstrated the application of a commercial
solver optimization module to solve a beer distribution problem that can be directly
translated into the traveling salesman problem (TSP). They solved the case with up to
200 instances by an evolutionary algorithm built into the commercial solver. Similarly,
Dedović et al. [17] utilized the GNU linear programming toolkit to address the distribution
of vehicle routing of consumer goods, providing an enhancement of performance compared
to the previously used route from the study case. A study by Stopka [13] investigated
the use of constructive OR methods, such as Clarke–Wright, Mayer, and nearest neighbor
algorithm to model distribution routes in city logistics that can be formulated into a
capacitated VRP. Further use of the exact method and heuristics for VRP cases has also been
observed in [15] to solve the XpressBees logistic problem, where Branch and Bound, Dijkstra,
Dynamic Programming, and Clarke–Wright were used to solve the routing problem of a
fleet of vehicles.
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Reflecting on the studies related to VRP, Weerasinghe et al. [11] mentioned the exten-
sive use of OR methods including MIP, heuristics, and metaheuristics in container terminal
operations and ITT-related research. An important study of ITT by Tierney et al. [2] intro-
duced a mathematical formulation of multimodal ITT in the form of a time–space graph to
model the ports of Hamburg and Rotterdam. This study used a two-step solution that first
solved the relaxation of the ITT problem before reaching a final feasible solution. Following
this study, a similar formulation of ITT problem was addressed by Hu et al. [8] by extending
the approach using TS. TS could rapidly find the solution in large-scale transport demand,
whereas the exact solver failed to obtain the result in a reasonable amount of time. Jin and
Kim [18] proposed a mathematical model by approaching ITT from a collaborative perspec-
tive to minimize the total cost by sharing the delivery orders throughout different trucking
companies, thereby improving overall profit. Cao et al. [19] investigated the impact of
inland container depots (ICD) and their influence on the efficiency of ports. The discussed
study provided insights for making strategic decisions in regard to the use of ICD.

Decisions involving ITT encompass multimodal transportation such as barges, rails,
and trucks. However, because of the flexibility and common use of trucks for inland
transportation, it is important to model truck-specific routing problems in inter-terminal
operations [3,6,20]. Heilig et al. [4] introduced the ITTRP to model a container pick-up
delivery problem of trucks by considering truck service time and constant delay per-
container penalty into the optimization objective while putting an emphasis on reducing
empty truck trips (ETT). The study solves the problem using constructive heuristics and SA
to find a satisfactory solution within a short amount of time. A multi-objective perspective
of ITTRP was also further studied by Heilig et al. [7], by including the minimization of
truck emission as an addition to the total cost minimization. Further study by Adi et al. [3]
proposed a learning-based approach by applying deep reinforcement learning to ITTRP.
Moreover, this study extends the model to cooperative multi-agent deep reinforcement
learning [20] where each truck represents a single agent. Closely related to ITTRP is the
recent study by Baals et al. [14] in minimizing earliness–tardiness costs in supplier networks
for a just-in-time truck routing problem (TRP-JIT). TRP-JIT shares similarity to ITTRP by
considering the use of a hard time window for pick-ups and a soft time window for delivery.
Distinctive to ITTRP, the model proposed in TRP-JIT only involved a single depot, whereas
in ITTRP, each truck can start at any given container terminal location within the seaport.

While the studies by Heilig et al. [4] and Adi et al. [20] both proposed algorithms for
solving the ITTRP, the constraints of the problem were described not with a mathematical
formulation, but rather with a set of requirements of feasibility restrictions. Given such
an informal description of the constraints, the IP problem was briefly formulated as a set-
partitioning formulation and can be solved by column generation [4]. However, because
the column size corresponding to the feasible routes may be extremely large, it is difficult
to solve the formulation with an exact solution. Consequently, the specific procedure for
the column generation for solving the exact solution has not yet been determined by Heilig
et al. [4]; hence, requiring an additional procedure to be implemented.

2.2. Simulated Annealing and Modifications

Owing to its simplicity and effectiveness, the SA is widely used to find approximate
solutions for many container logistics and transportation problems. Heilig et al. [4] used a
hybrid SA to solve ITTRP using a constructive heuristic as the initialization method to SA.
Oudani [10] proposed simulated annealing to solve the intermodal transportation problem
on incomplete networks that is sufficiently efficient for real-life applications. In a more
recent study [9], an SA was developed to minimize the total delay of trains for loading and
unloading operations.

Despite the success of SA in the field, certain modifications to its internal procedures
can significantly improve its performance. Suarez et al. [21] proposed an improvement to
SA by using a modified sigmoid function to reformulate the acceptance probability of a
given candidate solution. The improved method strictly outperformed the original SA in
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several baseline functions, such as Ackley, Dixon Price, and Rosenbrock. Similar to the
previous study, a modified SA was found in a study of the supplier selection and order
quantity allocation problem with nonlinear freight rates by Gonzalez-Ayala et al. [22]. In
comparison to Suarez et al. [21], only sigmoid function was used to calculate the acceptance
probability. Alnowibet et al. [23] developed a guided hybrid gradient-based SA to solve
constrained global optimization problems. This method outperformed four other state-
metaheuristic baselines. However, unlike our study, this application requires a continuous
differentiable space to obtain the gradient components. In this study, we modified the SA
by modifying the acceptance probability to handle a large negative delta energy function at
the initial stage of optimization.

3. Problem Formulation and Methodology
3.1. Inter-Terminal Truck Routing Problem Formulation

For clarity, the complete mathematical notations in this section are described in
Tables 1–3. The ITTRP comprises a set of container terminal locations, a set of trucks,
and a set of orders. The task of each order i ∈ O is to assign a truck to deliver a container
from the pick-up location to the delivery location within a specified time window. Each
order i ∈ O is associated with a tuple of source/pick-up and delivery locations (si, di). To
fulfill an order, an assigned truck must travel from its current location to the source location
to pick-up a container, and finally deliver the container to its destination. The travel time of
a given truck to fulfill order j ∈ O given the previous order i ∈ O is given by Equation (1):

Dij = dist
(
di, sj

)
+ dist

(
sj, dj

)
(1)

where dist(a, b) is a distance function that returns the travel time from pick-up location
a ∈ L to destination location b ∈ L. Hence, dist

(
di, sj

)
is the empty truck trip time from

the destination of order i to the pick-up location of order j, and dist
(
sj, dj

)
is the time

taken from the pick-up location to the delivery location of order j. Furthermore, each
truck k ∈ T can start at any location with an initial position ipk ∈ L. Hence, we have
a set of initial positions of trucks, IP. We can therefore define a time distance matrix
D =

(
Dij
)
∀ i, j ∈ IP ∩ O, where we calculate Dij using Equation (1), if j /∈ IP. In

the case where i is an initial position, i.e., i ∈ IP, we assign order i as a dummy order,
di ∈ IP is the starting location of the truck, and si is undefined. If j ∈ IP, we set Dij = 0,
given that the truck does not need to return to its initial position. Moreover, the time
window of order i [ai, bi] is represented similarly to [18], specifically in terms of ai. In this
case, while a container is available at the source location at a specific time, ai is the time
adjusted from the time of the container arrival by adding a travel time from the source to
the destination location. Hence ai is the earliest possible time of delivery, instead of the
time of container arrival.

Finally, we redesign some of the constraints in Heilig et al. [4] into a set of linear
constraints that can be easily solved using an MIP solver. We further examine the model
under a different objective function that minimizes the total transport delay under a
piecewise linear function, where for each delayed order, a penalty is given by p(ti − bi),
leading to the objective function of (2). Hence, the mathematical model is given by

minimize p∑i∈O yi(ti − bi) (2)

Subject to,
tj − Dip, jxip, j ≥ 0, ∀ip ∈ IP, ∀j ∈ O (3)

ti ≥ ai, ∀ i ∈ O (4)

ti − tj +
(

M + Dij
)
xij ≤ M, i 6= j, ∀i, j ∈ O (5)
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∑i ∈ IP ∩ O xij = 1, ∀j ∈ IP ∩O (6)

∑j ∈ IP ∩ O xij = 1, ∀i ∈ IP ∩O (7)

∑i,j ∈ IP xij = 0 (8)

ti − bi − yi M ≤ 0, ∀ i ∈ O (9)

bi − ti − (1− yi)M ≤ 0, ∀ i ∈ O (10)

xij ∈ {0, 1}, ∀i, j ∈ IP ∩O (11)

ti ≥ 0, ∀i ∈ O (12)

yi ∈ {0, 1}, ∀i ∈ O (13)

where decision variables in Equations (11)–(13) are described in Table 3. Constraint (3)
ensures that the delivery time tj is at least as short as the time of the first delivery if the
transport order is performed from the initial position. Constraint (4) enforces each delivery
time of order i ∈ O to be at least as small as the earliest possible delivery time window
ai. If order j is performed immediately after order i, then tj ≥ ti must follow. Hence,
constraint (5) is given, with M assigned a large positive number. Each order can only be
performed once by a single truck; hence, constraints (6) and (7) are satisfied. A truck from
the initial position i ∈ IP could not go back to another initial position j ∈ IP, as expressed
in Equation (8). Finally, the constraints (9) and (10) are given to force yi = 1 if a transport
order is delayed as in ti ≥ bi and yi = 0 otherwise, thereby contributing to the objective
function (2).

Table 1. Notation for sets.

Sets

L A set of all container terminal locations
T A set of all trucks
O A set of all orders

IP A set of truck initial positions described by IP =
⋂

k∈T ipk, where ipk ∈ L is the initial
position of truck k ∈ T

Table 2. Notation for parameters.

Parameters

(i, j) Index of an order or index of IP ∩ O. To avoid ambiguity, we always state whether
i, j ∈ O or i, j ∈ IP ∩ O when such index is used.

k Index of a truck, k ∈ T
ip Index of initial position, ip ∈ IP
si Source/pick-up location of order i ∈ O, where si ∈ L
di Destination location of order i ∈ O, where di ∈ L
ai The earliest possible time of delivery of order i ∈ O
bi The time of delivery deadline

p A penalty per-unit of time given for each late order, see the objective function (2) for
more detail

Dij Travel time of delivering order j ∈ O right after performing order i ∈ O
M Big M notation to describe a large positive real number
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Table 3. Notation for decision variables.

Decision Variables

xij
Binary decision variable that returns 1 if order j ∈ IP ∩O is performed immediately
after order i ∈ IP ∩O and return 0 otherwise

ti Continuous decision variable to represent the time of delivery of order i ∈ O
yi Binary decision variable that returns 1 if order i ∈ O is late and returns 0 otherwise

3.2. Simulated Annealing with Normalized Acceptance Rate (SANE)

SA typically starts with a high exploration rate in the early stages of optimization and
then performs more exploitation toward the end of the iteration. To construct a candidate
solution s′, we perform a random switch between the two index elements of solution s.
With f (·) as the objective function (2) on a given solution input and given that f (s′) ≥ f (s),
the acceptance probability given a temperature c is typically calculated as in Equation (14)
in the case of the original SA [24]. However, specific to our ITTRP formulation, the value of
f (s)− f from (s′) (14) is often observed to have an extremely large negative value at the
beginning of the iteration. Hence, the acceptance probability P (14) is small, even at the
early stage of optimization, leading to an early high exploitation rate.

P = exp
(

f (s)− f (s′)
c

)
(14)

This study proposes a simple yet effective modification to calculate the acceptance
probability by normalizing with respect to max{ f (s), f (s′)}. Instead of directly mea-
suring the difference between the two objective values, we consider the relative differ-
ence ( f (s)− f (s′))/max{ f (s), f (s′)}. Given that exploration of SA is performed when
f (s′) > f (s), max{ f (s), f (s′)} simplifies to f (s′) and we therefore calculate β′ as in
Equation (15). This increases the exploration rate and, hence, the variance of the objec-
tive value at the starting stage of optimization. We further extend the acceptance prob-
ability modification by adding a “dampening” term I(−β′≤α) with the parameter α as in
Equation (16). In this case, α provides the intensity of the hard dampening. The intention
of dampening is to deterministically prevent the acceptance of the candidate s′, where
f (s′)� f (s). Consequently, we use the alternative acceptance probability P′ (17) instead
of P.

β′ =
f (s)− f (s′)

c× f (s′)
(15)

I(−β′≤α) =

{
1, i f −β′ ≤ αc

0, otherwise
(16)

P′ = I(−β′≤α)exp
(

β′
)

(17)

The complete SANE algorithm for ITTRP transport delay minimization is described
in Algorithm 1. The initialization step discussed in Section 3.3 is used to ensure solution
feasibility. The procedure then enters the main loop, which terminates when a certain
stopping criterion is satisfied. In the main loop, a candidate solution is selected according
to a neighbor function. A candidate solution is then evaluated to obtain f ′. If f ′ ≥ f , then
there is a probability of P′ to accept the candidate. In the last line of the main loop, we
update and track a certain stopping criterion that would eventually lead to convergence.



J. Mar. Sci. Eng. 2023, 11, 2103 7 of 12

Algorithm 1 SANE for ITTRP Transport Delay Minimization

Initialize:
1: Truck indices γ = {0, 1, . . . |T| − 1}
2: Transport order indices δ = {|T|, |T|+ 1, . . . , |T|+ |O| − 1}
3: Parameter: temperature c, dampening parameter α, decay rate θ

4: Generate initial solution s0 = 0∩ {any permutationofγ ∩ δ/0} (see Section 3.3)
5: Let s← s0
6: Evaluate f ← f (s)
7: While stopping criterion is not met:
8: pick a candidate s′ by random swap: s′ ← randomswap(s)

9: evaluate f ′ ← f (s′)
10: if f ′ ≥ f :
11: calculate β′ with Equation (15)
12: if −β′ ≤ α:
13: assign s′ ← s with probability P′ (17)
14: else:
15: keep solution s unchanged
16: decay the temperature c ← θ x c
17: update stopping criterion

3.3. Solution Representation

To represent any arbitrary feasible ITTRP solution for metaheuristics, we first de-
scribe a set of truck indices γ = {0, 1, . . . |T| − 1} and a set of transport order indices
δ = {|T|, |T|+ 1, . . . , |T|+ |O| − 1}. A solution to an ITTRP can be represented as any
permutation of γ ∩ δ/0. For a given solution sequence s, truck k is assigned to all transport
order indices placed after truck k until the next truck l. Concretely, an example of the
solution representation with three trucks and six transport orders is illustrated in Figure 1.
In this case, truck 0 is assigned to transport orders 4, 7, and 6 sequentially; similarly, trucks
1 and 2 are assigned the same orders. Furthermore, for every transport order assignment j,
the time of delivery tj is assigned, as shown in Equation (18).

tj = max
{

aj, xijtij + ti
}

(18)
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4. Experiments and Discussion
4.1. Experimental Settings

The experiments were conducted based on the environment and location of Busan
Port. This study considers five main container terminal locations of Pusan New Port: PNIT,
PNC, HJNC, HPNT, and BNCT. The average time required to travel between terminals
was taken from [25]; hence, by randomly adding the set truck initial positions, the time
distance matrix D can be constructed as described in Section 3, with Equation (1). To
obtain the transport order data, we used a data generation procedure similar to that used
previously [3,20]. A set of pick-up and delivery location pairs was obtained by sampling the
container from a container throughput rate distribution adapted from [25]. An example of
the throughput rate distribution table is given by Table 4. For a set of orders with the same
pair of pick-up and delivery locations, the same time window is given by sampling the
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earliest delivery time uniformly at random from 24 h intervals and then randomly selecting
the window size within 1–3 h. Therefore, we constructed datasets with six categories and
varying parameters for the number of trucks and orders, as shown in Table 5. Each category
consisted of ten instances.

Table 4. Example of the container throughput rate distribution.

From/To PNIT PNC HJNC HPNT BNCT

PNIT 0.0% 6.6% 0.9% 3.3% 9.2%
PNC 9.3% 0.0% 9.1% 0.6% 8.2%

HJNC 4.3% 10.0% 0.0% 2.1% 7.8%
HPNT 1.7% 8.1% 2.6% 0.0% 5.2%
BNCT 6.3% 0.6% 2.0% 1.9% 0.0%

Table 5. Generated Busan Port transport order dataset.

Dataset Number of Trucks Number of Orders

ITT010-2 2 10
ITT015-3 3 15
ITT030-6 6 30
ITT060-9 9 60

ITT100-12 12 100
ITT120-15 15 120

We used the TS and original SA as baselines to further evaluate the SANE performance.
We set a Tabu tenure of 10 as the required TS parameter, which corresponds to the number
of iterations for which a Tabu solution is maintained as a Tabu. If the objective value did
not change for the last 300 iterations, it was declared converged. Subsequently, aspiration
was performed. In other words, if a Tabu solution yields the best solution thus far, it is
still chosen as the newly updated solution. For the SA and SANE parameter settings,
exponential decay was chosen as the temperature-cooling strategy. The initial temperature
was one with a decay rate of 0.001. The dampening parameter α for SANE was set into
0.2. We declare that the algorithms converge if the objective value remains the same over
the last 3000 iterations. A much larger convergence patience was given compared to that
of TS because the iteration of SA is faster than that of TS, given that it only evaluates one
neighbor at a time.

In the following experiments, the initial solutions were generated from a random
permutation with the same seed rather than using a heuristic algorithm as an initial solution.
However, it is possible to replace the initialization method with constructive heuristics,
similar to the hybrid-SA approach from Heilig et al. [4]. Such hybridization would be
applicable not only to SA, but also to all the metaheuristics presented here, including our
proposed method. However, in this study, we aimed to determine the effect of modifying
the acceptance probability of the SA without any hybrid interventions.

4.2. Performance Comparison to Baselines

We solved the instances generated under the datasets shown in Table 5 to obtain the
performance of SANE and the baselines, as seen in Table 6. Each value of the averaged
total delay was obtained by averaging the objective value (2) over each of the 10 instances
generated for each dataset category. Similarly, the averaged solving time is obtained by
averaging the CPU time to solve each instance for each category.

The MIP was solved by using CPLEX to provide the optimal solution for dataset
categories of smaller instances, which includes three categories (ITT010-2, ITT015-3, ITT030-
6). For a problem with 10–15 orders, the solver was able to provide the optimal solution
quickly, even compared to baselines and the proposed method. However, we observed an
escalation of average solving time from 0.42 s to 58.84 s once the number of orders reached
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30. We further attempted to test the MIP to solve larger instances when the number of orders
is larger or equal to 60. However, even for a single problem instance where the number of
orders is 60, the solver fails to return a solution within the span of 2 days. Hence, no MIP
result is provided for ITT060-9, ITT100-12, and ITT120-15 due to the time infeasibility.

Table 6. Performance comparison of SANE and baseline methods.

Dataset
Averaged Total Delay Cost (Unit Price) Averaged Solving Time (s)

MIP TS SA SANE MIP TS SA SANE

ITT010-2 200.8 209.2 270.4 200.8 0.05 0.33 0.38 0.80
ITT015-3 233.2 296.4 271.6 239.6 0.42 1.25 0.56 1.14
ITT030-6 681.6 842.4 726.0 717.6 58.84 11.997 1.36 2.57
ITT060-9 - 679.2 589.2 444.8 - 109.82 3.57 5.87

ITT100-12 - 2350.4 2224.4 1944.8 - 717.60 12.83 15.15
ITT120-15 - 3431.6 3273.2 2674.4 - 817.52 18.97 20.69

The best-performing results in each dataset category are highlighted in bold.

It was observed that SANE was able to outperform TS and SA in terms of minimizing
the total transportation delay cost. With a dataset category of smaller instances where the
optimal value can be observed from MIP solutions, we were able to obtain solutions that
are either optimal or close to the optimal. Specifically, we reached the optimal solutions for
all 10 generated cases of ITT010-2, thereby yielding the same average objective value as the
MIP solver. In the case of ITT015-3 and ITT030-6, SANE was able to obtain a considerably
small margin compared to the optimal solutions. While the optimal total transportation
delay cost of the remaining ITT060-9, ITT100-12, and ITT120-15 could not be confirmed by
MIP, we were able to obtain smaller averaged objectives compared to the baselines.

In terms of computational time, SA and SANE always converged faster than TS,
particularly as the number of orders and trucks increased. This is because the Tabu
structure size increases with |s|(|s|−1) as the length of the solution increases. Hence, the
algorithm requires the evaluation of many candidate solutions in a single iteration. With SA
and SANE, a neighbor is selected randomly and only once for a given number of iterations,
which greatly reduces the number of objective value evaluations per iteration.

4.3. Exploration Behavior and Property of SANE

To contrast the behavior of SA and SANE, comparisons of both algorithms during the
search for a suboptimal solution are given in Figure 2. In the SA case, it was observed that
the beginning of the search barely indicates any fluctuations in the transportation delay.
Such observations are obtained due to the extreme numerical difference in transportation
delay of a candidate solution s′, which typically occurs during an early stage of the search
as observed in Figure 2. Exploration is considered whenever f (s) < f (s′). Hence a large
negative value of the delta energy f (s)− f (s′) pushes the probability of exploration P (14)
close to zero, resulting in the algorithm performing an exploitation intensive search.

SANE improved the condition by normalizing the delta energy into a relative differ-
ence ( f (s)− f (s′))/max{ f (s), f (s′)} to calculate β′ (15). Given Equation (19), it is therefore
possible to obtain the lower bound and upper bound value of the acceptance probability P′

as Equation (20). Hence, it is easy to guarantee a nonzero acceptance probability regardless
the magnitude of the delta energy f (s) − f (s′) by setting the temperature parameter c
accordingly (e.g., setting temperature c = 1 would give P′ a lower bound of 0.367). The
decaying temperature c is therefore a crucial aspect of SANE as it is a procedure to slowly
decrease the lower bound of P′ toward zero.

−1 ≤ f (s)− f (s′)
f (s′)

< 0 (19)
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I(−β′≤α)exp
(
−1

c

)
≤ P′ < 1 (20)
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4.4. Algorithm Implications

Considering the property described by Equation (20), the effectiveness of SANE is
obtained if the exploration strategy of SA fails due to acceptance probability vanishing at
the early phase of search/optimization. Given that the performance may depend on the
characteristics of the objective function, the potential for application is suggested toward
cases with the similar or related objective functions. This includes other related ITT cases
related to delay minimization [2,8] or scheduling problems that minimize tardiness-related
costs [26].

5. Conclusions

Large ports are being expanded and constructed into multiple terminals to keep pace
with the growth in demand. Hence, decision making related to efficient container transport
in a multiterminal system is an important topic of research. ITT serves as an important
operational issue for ports, as it compensates for the differences in infrastructure between
terminals. An efficient ITT solution should minimize transportation delays. This study is
concerned with minimizing the container transportation delay of an ITT system with trucks
as the mode of transportation. We propose an alternative MIP model to the ITTRP that can
optimally solve small-case problems. Consequently, the SANE approach was introduced to
solve large-scale problems within a reasonable amount of time. Our method outperformed
SA and TS in terms of transportation delay minimization.

We found that the dynamic rescaling of the objective function performed in SANE
leads to a well-defined lower bound of acceptance probability. While the SA acceptance
probability may diminish early in an exploitation-intensive search, SANE can guarantee
a nonzero acceptance probability during the early stage of search. Consequently, we find
that SANE provides an improvement of the objective function over the baselines while still
maintaining a relatively small computing time, hence improving the practicality of solving
real ITTRP cases with large instances.

Despite the possibilities given by the method, some areas of improvement can be
explored. This study only considers the swapping operation to define the neighborhood
of a solution. However, an investigation toward formulating a neighbor solution that
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considers the characteristics of ITTRP is important as they could potentially improve
performance stability and time to solve the solution [9,27].

The proposed MIP can solve only limited to small instances of orders up to 30 as
obtained in Table 6. While this hinders the direct applicability of the MIP, several data
driven studies related to deep reinforcement learning show the promising direction toward
exploiting MIP for approximation methods [28,29]. Exploring these topics in the context of
ITTRP, as well as the comparison to SANE, are subjects of future research.
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