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Abstract: Water quality monitoring in coastal areas and estuaries poses significant challenges due
to the intricate interplay of hydrodynamic, chemical, and biological processes, regardless of the
chosen monitoring methods. In this study, we analyzed the applicability of different monitoring
sources using in situ data, uncrewed-aerial-vehicle (UAV)-mounted hyperspectral sensing, and
Sentinel-2-based multispectral imagery. In the first part of the study, we evaluated the applicability
of existing empirical algorithms for water quality (WQ) parameter retrieval using hyperspectral,
simulated multispectral, and satellite multispectral datasets and in situ measurements. In particular,
we focused on three optically active WQ parameters: chlorophyll a (Chl, a), turbidity (TUR), and
colored dissolved organic matter (CDOM) in oligotrophic coastal waters. We observed that most
existing algorithms performed poorly when applied to different reflectance datasets, similar to
previous findings in small and optically complex water bodies. Hence, we proposed a novel set
of locally based empirical algorithms tailored for determining water quality parameters, which
constituted the second part of our study. The newly developed regression-based algorithms utilized
all possible combinations of spectral bands derived from UAV-generated hyperspectral data and
exhibited coefficients of determination exceeding 0.9 for the three considered WQ parameters. The
presented two-part approach was demonstrated in the semi-enclosed area of Kaštela Bay and the
Jadro River estuary in the Central Eastern Adriatic Sea. This study introduces a promising and
efficient screening method for UAV-based water quality monitoring in coastal areas worldwide. Such
an approach may support decision-making processes related to coastal management and ultimately
contribute to the conservation of coastal water ecosystems.

Keywords: UAV hyperspectral data; Sentinel-2 multispectral data; water quality monitoring;
chlorophyll a; turbidity; CDOM; coastal area

1. Introduction

Coastal environments, as transitional ecosystems between land and sea, are com-
plex areas that ensure sufficient resources for different living organisms. Moreover, their
relevance is reflected in enabling social and economic benefits to humans [1]. However,
the continuous expansion of urban settlements increases the pressure on these vulnerable
systems [2], primarily by inputting anthropogenic pollutants into coastal waters. Various
contaminants (pharmaceuticals, consumer and industrial products, microbiological pol-
lutants) enter coastal waters through sewage and runoff from agricultural lands. Those
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discharges potentially cause excessive nitrogen and phosphorus concentrations. Such nu-
trient intrusion could eventually lead to eutrophication, which depends on several factors
(water residence time, tidal exchange, stratification) as reported by Pinckney et al. [3].
Consequently, that can disturb the ecosystem’s natural balance and result in the growth of
harmful algae, increased turbidity, and oxygen depletion [4,5]. In addition to algal blooms,
the discharge of untreated domestic wastewater introduces fecal matter into rivers and
estuaries, which promotes the growth of various bacterial and viral pathogens [6]. Thus,
the regular monitoring of coastal areas is crucial to ensure the marine ecosystem’s quality
and sustainability.

Historically, water body monitoring programs have heavily relied on labor-intensive
and time-consuming in situ measurements [7]. Nevertheless, over the past two decades,
the integration of remote sensing data has enhanced these monitoring systems by overcom-
ing limitations in spatial and temporal resolution [8]. While traditional in situ methods
provide detailed, localized information about water quality parameters, the advent of UAV-
based remote sensing has introduced a complementary approach. This approach allows for
broader spatial coverage and captures dynamic variations in water quality (WQ) over larger
areas [9]. A review by [10], which covers various implementations of remote sensing in
WQ assessment, identifies airborne sensors as particularly suitable for monitoring smaller
water bodies, such as rivers and estuaries.

The most commonly developed remote sensing (RS) algorithms for WQ assessment
include different band combinations of the visible (VIS) and infrared (IR) electromagnetic
spectrum, depending on the area and WQ parameters being studied. Historically, algo-
rithms were developed for ocean application, and they needed to be adjusted when used
in coastal areas due to the different optical properties. Thus, the algorithms developed for
the coastal waters are usually site-specific and regionally dependent.

Some studies used hyperspectral (HS) sensors, such as portable spectrometers
(e.g., [11–13]) or boat-mounted sensors [14], and recently, even sensors fixed at the point of
interest above the river surface [15]. The usage of uncrewed aerial vehicles (UAVs) with
HS sensors, providing hundreds of narrow contiguous bands, has emerged as an impor-
tant complement for monitoring micro-areas like bays and estuaries. The UAV-mounted
HS sensors provide data with higher spatial, temporal, and spectral resolution than data
obtained from satellites or point spectrometers [16] and can be used with low cost, high
safety, and flexibility in flight planning [17]. With the ability to timely detect different
small-scale features, the UAV technology compensates for most shortcomings of traditional
RS technology, and their usage in WQ assessment has been growing at an accelerating
pace [9,18–23].

Regardless of the type of water body, phytoplankton is one of the most important
parameters for water quality (WQ) assessment, encompassing attributes such as bloom
frequency, composition, and abundance. However, the practical challenges of assessing
all these attributes have led to the common use of chlorophyll a (Chl, a) as a reliable proxy.
For instance, a recent study conducted by [24] explored the feasibility of using a five-band
multispectral sensor mounted on a UAV to estimate Chl, a concentrations. Additionally,
turbidity (TUR) and colored dissolved organic matter (CDOM) are employed to describe
other WQ properties, such as the distribution of total suspended solids (indicative of
water clarity) [25], and to detect the presence of surface runoff and point source pollu-
tion [26,27]. They also help assess water color [28]. Given their optical properties, Chl, a,
TUR, and CDOM are commonly estimated using remote sensing technology, and these
parameters will be utilized in the present study.

In this study, we investigate how to combine RS tools with UAV HS sensors and
in situ data to develop new algorithms and produce maps for selected WQ parameters.
The combination of these monitoring data sources has been approached from different
aspects within the last two decades [29–33], and although there has been technological
advancement, the solution still seems elusive. Hence, the problem formulation in this study
builds on those foundations by further investigating how one can utilize UAV HS sensors,
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in situ monitoring, and satellite multispectral (SAT MS) imagery to obtain maps of WQ
parameters. A similar setup, but with a boat-mounted HS point sensor instead of a UAV,
was implemented on the river Elbe in Germany [14]. In this case, we focused on a small
coastal water body (estuary), characterized by complex optical properties and rather a
dynamic ecosystem behavior, which sets high requirements for monitoring procedures
under different EU regulations [34–36].

The main goal of this study was to assess the effectiveness of existing algorithms
and subsequently develop customized empirical algorithms that cater to the distinctive
oligotrophic characteristics of our case study. Our particular focus was on utilizing the
capabilities of UAV hyperspectral bands to accurately derive water quality parameters.
To achieve this, we analyzed information from three distinct spectral data sources: hy-
perspectral data, simulated multispectral data, and satellite multispectral data. Through
this evaluation process, we determined that hyperspectral data exhibited superior per-
formance compared to other sources, thereby facilitating the development of site-specific
regression-based algorithms for our study area.

2. Materials and Methods

The problem formulation in this study consists of a multiscale monitoring setup,
followed by relevant data processing and algorithm analysis. Due to the different scales of
data acquisition, we have obtained (1) a dataset from in situ measurements of Chl a, TUR,
and CDOM, (2) the UAV HS dataset, and (3) SAT MS data from Sentinel-2. For comparison
purposes, we generated an additional (4) multispectral dataset from UAV HS data named
UAV MS, explained in Section 2.3. Within algorithm analysis, we tested the most relevant
algorithms from the literature using the above-mentioned datasets. Finally, the high-
resolution HS data in this case study enabled the search for more appropriate site-specific
algorithms with acceptable accuracy. The implemented methodology is illustrated in the
flowchart (Figure 1) and will be further described in the following sections.

Figure 1. Flowchart of implemented approach.
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2.1. Study Area

Kaštela Bay is a semi-enclosed basin on the eastern Adriatic coast near Split, the second
largest city in Croatia (Figure 2). Most Croatian coastal areas, including Kaštela Bay, rely
heavily on beach-based tourism for economic growth and development [37]. The climate
in this area is of Mediterranean type with hot and dry summers [38]. The average annual
air temperature for Kaštela is 13.7°C, while the long-term average annual precipitation is
1029 mm [39]. The average evaporation rate in the Adriatic is 2.8 · 10−8 m/s, as reported
by [40]. Hot summers contribute to higher evaporation rates in this region compared to the
northern Adriatic.

With a maximum depth of 56 m and an average depth of 23 m, the bay is described
as shallow and has a total surface of 61 km2. Agricultural areas are located on the bay’s
northern coast, while municipal and industrial wastewater is discharged into the eastern
part of the bay. Although there have been positive results in recent years, Kaštela Bay has
been well known as one of the most polluted areas in the eastern Adriatic coast due to
the urban expansion lacking adequate wastewater collection and treatment [41]. Several
studies were conducted in the bay, observing the negative effect of uncontrolled wastewater
discharge and nutrient loadings [42–44].

The eastern part of the bay is dominated by the estuary of the karst river Jadro with
an average annual discharge of 9.5 m3/s. The river Jadro has a 4.2 km long watercourse
that flows through the small town of Solin near Split before it flows into the Kaštela Bay.
The entire city of Split and the nearby region are supplied with water from the Jadro spring.
As the Jadro River is the main freshwater inflow and nutrient supplier for Kaštela Bay [42],
we chose this area for our testing site (Figure 2).

Figure 2. Case study location.

2.2. Data Collection

The monitoring setup applied in this study consisted of in situ measurements of WQ
parameters, which were accompanied by simultaneous UAV HS operations retrieving
reflectance data on a pixel-size scale (2 × 2 cm), and satellite reflectance data from Sentinel-
2 overpass in the nearest time frame to the measurement campaign on a 10–20 m spatial
scale. During June and November 2021 and March and April 2022, four measurement
campaigns were conducted in the Jadro River estuary. All field cruises were conducted
under clear weather conditions between 10:00 and 13:00 and during four seasons to cover
annual temporal variations of WQ parameters. Average river flow during the week of the
campaigns was 4.1 m3/s and 4.3 m3/s for June and November 2021, followed by 7.6 m3/s
and 6.1 m3/s for March and April 2022. Wind speed was below the limit defined by the
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UAV in all four campaigns, i.e., less than 7 m/s, and no precipitation was present (details
available in Supplementary Materials, Table S1).

2.2.1. In Situ Measurements

In situ measurements of WQ parameters were conducted using a boat (Nautika 600K,
by Remia-plast Ltd., Zagreb, Croatia ) with calibrated submersible C3 fluorometer (Turner
Design), which is equipped with optical sensors for Chl a, TUR, and CDOM. Implemented
sampling interval was one second. As described by [45], the Chl a measurements were
obtained using a blue mercury lamp, with peak emission at 460 nm and fluorescence
collection at 680 nm. The turbidity sensor includes an IR lamp, with peak emission at
850 nm, and the collection of scattered light at 90°, while CDOM was measured using a
UV LED (central wavelength: 365 nm), with peak emission at 350 nm and fluorescence
collection at 450 nm.

2.2.2. UAV Operations

We employed a customized and robust UAV Aermatica BLY-O octocopter platform
equipped with DJI Ronin-MX gimbal system to carry the hyperspectral imaging sensor.
Nano-Hyperspec® by Headwall Photonics is a push-broom sensor acquiring images line by
line along the flight direction, with each line captured at a specific time corresponding to
the UAV’s current position and attitude. Each line comprises 640 spatial pixels containing
data acquired in 273 spectral bands. The sensor collects data in the VIS and NIR spectrum
from 400 to 1000 nm, with a spectral resolution of 2.2 nm and a full-width half maximum
(FWHM) of about 6 nm. Before image acquisition, the two flight polygons were set: one
above the seawater and the second above the reference reflectance tarp. Due to the local
flying zone restrictions, the flight altitude was 50 m during all cruises, with a total polygon
length of 500 m and a width of 40 m.

2.2.3. Satellite Imagery

A high-performing Sentinel-2 satellite was chosen due to the product’s free access
through the European Space Agency (ESA) data hub and a short revisit time of 5–10 days.
Sentinel-2 mission consists of two satellites (Sentinel-2A and Sentinel-2B), both containing
multispectral instrument (MSI) that can sample a total of 13 spectral bands (B1–B12, and B8a)
with different spatial resolutions and central wavelengths [46]. In this study, we used
Sentinel Level-2A atmospherically corrected surface reflectance data processed with the
Sen2Cor processor [47].

2.3. Data Processing

Multiple processing stages are performed on the collected raw reflectance data to
obtain the three different reflectance datasets (UAV HS, UAV MS, and SAT MS), which,
together with in situ measurements, are used for algorithm analysis in Section 2.4.

2.3.1. In Situ Data

Multi-parameter probe (C3 fluorometer), as described in Section 2.2.1, recorded nu-
merical data for Chl a (µg/L), TUR (NTU) and CDOM (ppb) along the water column up to
the depth of assessed visibility. A total of 32 sampling locations were considered for the
present analysis due to their overlap with the UAV overflight (a more detailed presentation
can be found in Supplementary Material, Figure S1).

2.3.2. Hyperspectral Data

The HS imaging sensor (Nano-Hyperspec®) records data in unitless digital numbers
(DN), which are then processed using Headwall’s SpectralView application (within soft-
ware package Hyperspec® III 3.1.3) to obtain the reflectance dataset. After obtaining the
reflectance values, we selected target areas of a 2 m diameter circle (defined by the on-boat
GPS accuracy level) overlapping the in situ points and extracted HS data for each location
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using Global Mapper 22.0 [48]. All further analysis and visualizations were performed in
Matlab [49]. We removed the overexposed pixels from all selected pixels and applied the
Savitzky–Golay filter with a range of 15 bands and the 3rd-order polynomial to smooth
the spectral reflectance [50]. Additionally, sensitivity analysis was conducted by testing
the chosen existing algorithms on raw reflectances (without implementing the denoise
procedure), with Savitzky–Golay filter, and with simple scatter correction (standard normal
variate) [50], which can be found in Supplementary Materials (Tables S2–S4). The de-
scribed preprocessing procedure was applied for each of the 32 points obtained during the
monitoring period, as presented in Section 3.1.

2.3.3. Multispectral Data

MS data from Sentinel was acquired as S2-MSI granules for June and November of 2021,
and for March and April 2022 from the Copernicus Open Access Hub [51] corresponding
to the time frame of measurement campaigns. Then, we formed the satellite MS dataset by
extracting the reflectance date from the granules matching the locations of sampling points.
Since the MS instrument (MSI) mounted on Sentinel satellites has distinctively different
properties than the HS sensor we used in our measurement campaigns, the SNV-processed
reflectance for both satellite and UAV data are compared in Supplementary Materials
(Figure S2).

SNV-processed data enable one to mitigate the impact of measuring sensors and
environmental conditions relevant to optical measurements. Apparent differences in the
density of spectral data are furthermore visible in Figure 3, where we depicted Sentinel
bands relevant to the domain measurable by the HS camera, namely from B2 up to B8 and
B8a, respectively. Thin blue bars represent the water response spectra from this study but
also indicate the spectral density of the HS dataset.

Figure 3. Representation for three reflectance datasets used in this study which illustrates the varying
spectral density between multispectral (MS) and hyperspectral (HS) bands.

Given the accessibility of satellite MS data, most existing and widely used algorithms
are developed based on such data. In this analysis of algorithms, we assess the suitability of
HS and MS data obtained from UAV and satellites. To facilitate a meaningful comparison,
we generated a simulated MS dataset (UAV MS), as illustrated in Figure 3. This UAV MS
dataset was created by spectrally resampling HS data using Sentinel-2 response functions
recently updated by ESA [52]. It is worth noting that this approach of generating a simu-
lated MS dataset has been employed in prior research, specifically for Natura 2000 areas
identification, as demonstrated by [53].
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2.4. Algorithm Analysis

Following the approach depicted in Figure 1, in this section, we tested several existing
algorithms and searched for new potentially improved regression models.

2.4.1. Existing Algorithms

We tested the performance of 18 selected algorithms developed for coastal areas to
estimate the three WQ parameters (Chl a, TUR, and CDOM) in the Jadro River estuary in
Croatia using HS data from the UAV (Table 1).

Table 1. The list of existing algorithms tested for chlorophyll a (Chl a), turbidity (TUR), and colored
dissolved organic matter (CDOM).

Chl a

Algorithm Relation Corresponding
Sentinel-2 bands Range

[
mg/m3] Reference

θ1
Chl a (35.75 · R708/R665 − 19.3)1.124 B5, B4 2.27–81.7 [54]

θ2
Chl a R443/R555 B1, B3 0.03–2.75 [55]

θ3
Chl a R490/R555 B2, B3 0.003–7.06 [56]

θ4
Chl a 48.4579 · R̃681/R̃660 − 48.1727 B4, B4 0.24–7.02 [13]

θ5
Chl a −26.4373 · R̃498/R̃518 + 29.0687 B2, B2 0.24–7.02 [13]

θ6
Chl a RB5 − RB4/RB5 + RB4 B4, B5 0.9–28.17 [57]

θ7
Chl a 146.5 · R̃687/R̃672 − 141.9) B4, B4 0.8–19.8 [30]

θ8
Chl a RB5/RB4 B5, B4 / [58]

θ9
Chl a (1/RB4 − 1/RB5) · RB8a B4, B5, B8a / [58]

TUR

Algorithm Relation Corresponding
Sentinel-2 bands Range [NTU/FTU] Reference

θ1
TUR 228.1 · R̃645/

(
1 − R̃645/0.1641

)
B4 1.8–988 [59]

θ2
TUR 3078.9 · R̃859/

(
1 − R̃859/0.2112

)
B8a 1.8–988 [59]

θ3
TUR −61.251 · R660/R790 + 174.629 B4,B7 0.21–3.46 [60]

θ4
TUR 6834.7 · R̃821/R̃763 − 6632.3 B8,B7 0–1678 [30]

CDOM

Algorithm Relation Corresponding
Sentinel-2 bands Range

[
m−1] Reference

θ1
CDOM 0.00129 + 0.6543 · (R670/R490) B4,B2 / [61]

θ2
CDOM ln([(R490/R551 − 0.4247)/2.453]/(−13.586)) B2,B3 / [62]

θ3
CDOM 0.2987 · (RB2/RB4)

−1.369 B2,B4 0–0.8 [63]
θ4

CDOM 5.13 · (R565/R660)
−2.76 B3,B4 0.68–11.13 [64]

θ5
CDOM 0.133366/(R443/R510)

2.025 B1,B2 0.07–1.1 [65]

Selected algorithms in Table 1 are denoted with θ, where the superscript indicates the
algorithm number and the subscript identifies the WQ parameter. The performance of all
algorithms was tested on UAV HS and UAV MS datasets, denoted with tilda and overbar
on θ, respectively. Similarly, we indicated reflectances obtained from the HS sensor by R̃,
while the corresponding simulated MS dataset was denoted by R. Reflectances obtained by
the Sentinel-2, i.e., SAT MS dataset are presented by R.

We considered the following: the similarity between the ranges of WQ parameters
in the original and in our study, their applicability to the data from UAV HS and Sentinel
MS, or their good performance in different study areas based on a literature review. Al-
though the algorithms considered in this analysis were developed for different satellites
(MERIS, MODIS, SeaWifs, Landsat) applied in various coastal and inland waters, their
performance has already been tested with the Sentinel-2 dataset [30,58,66]. In the literature
reviewed, these algorithms were previously used for ranges of WQ parameters closest to
ours but still with a wider range, e.g., chlorophyll from 1 to 5 µg/L in Sado Estuary [66]
and turbidity between 2 and 6 NTU in Lake Shinji [30]. In addition, we included some
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algorithms that are not applicable to the MS dataset due to their higher spectral resolution
and compatibility with our site (namely θ4

Chl a, θ5
Chl a, and θ7

Chl a). In this study, we focused
on simple algorithms from the blue to the NIR region to cover the relevant spectral range
(single-band, band ratio, and three-band algorithms).

2.4.2. Proposing New Empirical Algorithms

For the purpose of proposing new empirical algorithms, which are presented in
Section 3.3, we tested several regression-based functions against the ratio of two HS bands
introducing the independent variable ρ = R̃Mband/R̃Nband. Reflectance band ratios are
widely used in the WQ algorithms retrieval since they often eliminate background noise
and rough water surface interference [67]. Since our datasets are spread over the four
seasons, these applied retrieval regression functions bear the characteristics of empirical
and site-specific algorithms.

The screening procedure for optimal band ratio consisted of all possible combinations
of 273 bands available in the UAV HS dataset filtered through four regression models
following logarithmic, rational, power, and exponential functions. Details on choosing the
best-performing regression model are presented in Section 3.3.

2.4.3. Accuracy Assessment

To evaluate the comparison between the existing algorithms and the newly proposed
ones with in situ data, we have carried out the statistical evaluation based on the coefficient
of determination (R2), the root mean square error (RMSE), absolute percentage difference
(APD), and relative percentage difference (RPD). Tables with statistical evaluation for all
tested algorithms are available in Supplementary Materials (Tables S5–S7). The performance
analysis was obtained using MATLAB curve fitting toolbox with least absolute residuals
(LAR) method [49,68], where robust nonlinear fit was implemented as derived by [69].

3. Results And Discussion
3.1. In Situ and Hyperspectral Data

Field observations indicate a seasonal pattern of WQ parameters. Chl a shows the
highest median values during the autumn period (Figure 4), as also previously observed in
Kaštela Bay [70]. The lowest CDOM and TUR median concentrations were observed during
the dry period in June, while the highest variations were observed in March, during the
rainy season, and the largest flow of the Jadro River (Supplementary Materials Table S1).

Figure 4. Seasonally grouped box–whisker plots depicting measured chlorophyll a (Chl a), turbidity
(TUR), and colored dissolved organic matter (CDOM) at the Jadro River estuary.

Spatial and temporal variability of Chl a, TUR, and CDOM during four sampling cam-
paigns are presented in Figure 5. Different shapes follow a different period of the year, while
the intensity of the color is proportional to the quantity of the corresponding parameter.
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Figure 5. Temporal and spatial variations of chlorophyll a (Chl a), turbidity (TUR), and colored
dissolved organic matter (CDOM) obtained in field campaigns.

We utilized reflectances that had been processed using the Savitzky–Golay filter, as shown
in corresponding spectral profiles (Figure 6), and are used in the algorithm analysis.
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Figure 6. Hyperspectral reflectances at measurement points, each season distinguished by a unique
color palette and line style.

Figure 6 shows the measured reflectance spectra in a wavelength range from 400 nm
to 1000 nm, with a shape characteristic of coastal waters [13,71]. The observed valley in the
spectra, up to 500 nm, is mainly due to the absorption of CDOM and Chl a. In particular,
a valley near the 420–440 nm is primarily caused by the Chl a absorption of blue light.
A distinct reflection peak was observed near 550 nm in all spectral profiles, mainly due
to phytoplankton’s spectral behavior [72,73]. In addition, the absorption peaks at about
670 nm and the reflection peaks near 690 nm, regarded as fluorescence peaks of Chl a, are
not so pronounced, which could be due to lower TUR and Chl a values [13,74].

3.2. Performance of Existing Algorithms

All selected algorithms from Table 1 were tested on the UAV HS and UAV MS datasets.
Each algorithm is evaluated at the sampling location using corresponding reflectances from
the UAS HS and UAV MS datasets and compared with the in situ measured concentration.
A simple linear regression is used to examine match-ups, between the algorithm-derived
concentration and measured concentrations for considered WQ parameters, assessed by
statistical indicators. Finally, algorithms with the best fit on the UAV HS and UAV MS
datasets were additionally applied to the SAT MS dataset, and full comparisons are given
in Figures 7–9.

3.2.1. Chlorophyll a

A variety of algorithms have been developed to estimate Chl a using remote sensing
techniques [54,57,75–80]. In this study, the evaluation of nine different algorithms for
Chl a determination was tested on both UAV HS data and UAV MS data, except for a
few algorithms that were originally developed for hyperspectral data (namely θ4

Chl a, θ5
Chl a

and θ7
Chl a). Selected algorithms cover the entire spectral range from the blue to the NIR

channel. The statistical evaluation for tested algorithms regarding Chl a is provided in the
Supplementary Materials (Table S4).

The lowest R2 was found for the band-ratio algorithm containing reflectances from
blue bands (R2 = 0.05 for θ̃5

Chl a). In contrast, the highest value was found for the algorithm
that included a red-to-red reflectance ratio (R2 = 0.59 for θ̃7

Chl a) and was determined using
the hyperspectral dataset. The second best algorithm also used the hyperspectral dataset
(R2 = 0.58 for θ̃4

Chl a) and at the same time was closest to our location. These results confirm
that the suitability of both spectral and spatial resolution, as well as site characteristics,
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plays an important role in evaluating the performance of the algorithm, especially in
coastal regions.

As expected, the R2 of the other algorithms using red, red edge, and NIR bands
showed similar moderate correlations on both the UAV HS and UAV MS datasets. These
observations support the findings that blue–green band-ratio algorithms are more suitable
for ocean waters [81–83], while in the coastal area, the complexity of spectral properties
increase, and optical characteristics are not predominantly determined by phytoplankton
biomass as in oceans. In this case, other water constituents, such as CDOM and suspended
solids, play an essential role in determining the spectral shape of seawater, highlighting the
unsuitability of algorithms developed for ocean waters [84,85]. Most algorithms for Chl a
determination in coastal areas focus on the red and NIR channels [54,77,86,87], indicating
the best optimal applicability, which happened to be the case in our study as well.

Chl a in Kaštela Bay was previously analyzed by the RS technology by testing existing
algorithms and deriving new ones [13,88]. Both studies revealed better results by applying
new algorithms indicating pronounced site-specific behavior of such enclosed water bodies,
as reported by several other studies [71,89,90].

Kisevic [13] derived two algorithms for Chl a retrieval; one with bands from the
blue spectral range (θ5

Chl a) and the other with bands from the red part of spectra (θ4
Chl a).

Although the differences were found to be minor, the blue band-ratio algorithm revealed
lower statistical errors and was chosen as a more suitable one. During testing of those
algorithms, on the UAV HS dataset, we noticed that the correlation of the blue band-ratio
algorithm was weak (R2 = 0.05 for θ̃5

Chl a), while the second algorithm showed moderate
correlation (R2 = 0.58 for θ̃4

Chl a). The observed difference in results between these two
studies might be due to the more extensive dataset used in our study, which is consistent
with the concluding remarks in [13].

For all tested algorithms, the UAV HS data exhibits higher R2 for reflectances from
the red and NIR spectral range than from the blue and green spectral regions. In general,
all tested algorithms showed a higher correlation using the UAV HS than the UAV MS
dataset, which implies how higher spatial and spectral resolution from the UAV HS system
enriched obtained information rendering better regression.

The best-fit algorithm applicable to all three datasets (UAV HS, UAV MS, and SAT MS)
was θ8

Chl a, and it is presented in Figure 7. The poor correlation (R2 = 0.08) was observed
when applied to satellite data, while moderate correlations were obtained using the UAV
MS (R2 = 0.45) and UAV HS (R2 = 0.48) datasets. This indicates the potential importance
of using UAV hyperspectral sensors in small coastal zones due to the higher spectral
resolution and, consequently, more information provided.

3.2.2. Turbidity

The general recommendation about retrieving TUR in coastal areas is that the red
and NIR regions are closely related to TUR levels [27,91–94]. Different models for TUR
determination are proposed using a single-band or band-ratio algorithm [89,92,95]. This
study tested four selected algorithms with different band combinations (single band,
NIR/red, and NIR/red edge band ratios). Although all tested algorithms exhibit a rather
weak R2, the numerically highest correlation was observed using the NIR/red edge band
ratio for algorithm θ̃4

TUR as presented in Figure 8. The algorithm performance details for
the TUR parameter are provided in the Supplementary Materials (Table S5).

Previous studies concluded that the reflectances in the red part of the spectrum
correlate well with low and medium turbidity values. At the same time, NIR bands were
used to identify high turbidity waters [59,96]. Although poorly correlated, our results
showed bias toward the red edge and NIR bands, similar to some other studies [27,97].
For instance, comparable in situ TUR values (<4 NTU) were observed in Sent et al. [66],
delivering the highest correlation to the NIR band. Furthermore, the obtained results
support the findings about the NIR region being equally sensitive and less influenced by
bottom reflectance than the red region in shallow waters [91,94].
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Figure 7. Comparison of the θ8
Chl a algorithm performance derived using (a) UAV HS, (b) UAV MS,

and (c) SAT MS datasets to in situ chlorophyll a (Chl a) measurements.

Even within the very low correlations, the tested algorithms showed relatively better
performance when derived from the hyperspectral dataset. For all practical purposes, all
these algorithms showed poor correlations for our case study, rendering their prediction
capabilities questionable. However, these results indicate again the necessity for locally
derived algorithms, which we further investigate in Section 3.3.
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Figure 8. Comparison of the θ̃4
TUR algorithm performance derived using (a) UAV HS, (b) UAV MS,

and (c) SAT MS datasets to in situ turbidity (TUR) measurements.

3.2.3. Colored Dissolved Organic Matter

Since the CDOM is optically visible and can be monitored by remote sensing, the re-
trieval models have been proposed for CDOM determination in the ocean and coastal
environments [33,98]. Furthermore, several band-ratio algorithms have been proposed for
CDOM absorption, and in this study, five algorithms were tested on our datasets. Similarly
to the TUR algorithm testing, the selected algorithms for CDOM also showed poor correla-
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tion. According to the statistical evaluation (details available in Supplementary Materials,
Table S6), the numerically best algorithm was θ̃2

CDOM, which uses the reflectances from
the blue and green bands, a combination of bands commonly used for CDOM retrieval in
coastal areas.

Similarly to the previously observed results, all algorithms derived from the UAV
HS dataset performed better than those derived from the UAV MS dataset. The θ̃2

CDOM
algorithm delivered the highest statistical indicators for the UAV HS dataset (R2 = 0.12) with
rather weak performance for the UAV MS (R2 = 0.06) and satellite MS datasets (R2 = 0.03),
as presented in Figure 9.

Figure 9. Comparison of the θ̃2
CDOM algorithm performance derived using (a) UAV HS, (b) UAV MS,

and (c) SAT MS datasets to in situ colored dissolved organic matter (CDOM) measurements.
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3.3. Proposed New Regression-Based Algorithms

The above analysis of selected algorithms has shown that their application has poten-
tial limitations in oligotrophic waters, which are characterized by a very narrow range of
values for all of the considered WQ parameters. However, to take advantage of the use
of UAV-based hyperspectral sensors, we tested and developed new site-specific models
tailored to the oligotrophic coastal water body at hand. The necessity of using the UAV HS
dataset as an intermediary between ground truthing and satellite data in such a complex
and dynamic ecosystem is also addressed by some studies [9,96,99] and is supported by
our study as well.

In this section, we propose four empirical (regression-based) models which are built
upon the statistical relationships between the UAV HS dataset and the measured concentra-
tion of WQ parameters considered. The empirical models tested are logarithmic, rational,
power, and exponential regression-based models denoted as Ψ̃i

x , where x stands for the
WQ parameter and i denotes logarithmic, rational, power, and exponential regression
models with i = 1, ..., 4, respectively.

Ψ̃1
x = a + b ln(ρ) (1)

Ψ̃2
x = (aρ + b)/(ρ + c) (2)

Ψ̃3
x = aρb + c (3)

Ψ̃4
x = aexp bρ (4)

where a, b, and c are fitting parameters for each considered algorithm and ρ = R̃Mband/R̃Nband
is a band-ratio independent variable to be screened through all possible combinations of
273 bands available in the UAV HS dataset. Visual presentations of R2 performance for
various models and band combinations, as well as the implemented robust nonlinear fitting
setup, can be found in the Supplementary Materials (Figures S3–S5 and Figures S6–S8,
respectively).

3.3.1. Chlorophyll a

All tested regression models for Chl a retrieval show a very high correlation when
using the R̃673/R̃664 band ratio (Table S8 in Supplementary Materials). Numerically, the
best-fit algorithm was the exponential regression model Ψ̃4

Chl a (although the logarithm
regression model showed almost the same performance). This algorithm used bands
from the red part of the spectra and showed a high correlation with in situ Chl a values
(R2 = 0.958) (Figure 10).

The performance of different regression models (details can be found in the Supple-
mentary Materials) is relatively similar and uses the same hyperspectral wavelength bands,
which is somewhat expected for homogenous in situ data with low variability.

An adequately performing algorithm for Kaštela Bay by Kisevic [13] was also found
in the red area, using a portable spectrophotometer, and the obtained bands are close to the
ones we discovered. Conversely, most satellite-based algorithms used band ratio red/red
edge, among other reasons, for the lack of distinctive spectral resolution.
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Figure 10. Best performing local algorithm for chlorophyll a (Chl a) retrieval.

3.3.2. Turbidity

The highest correlation between the reflectance band ratio and in situ TUR concentra-
tions was found using the red edge part of spectra R̃730/R̃777 with logarithmic regression
model Ψ̃1

TUR. The statistical summary for all tested algorithms is available in the Sup-
plementary Materials (Table S9). In Figure 11, the model performance is presented and
a high correlation (R2 = 0.92) is in line with findings by [66,89,96], who also noticed the
importance of using the red edge part in TUR retrieval.

Figure 11. Best performing local algorithm for turbidity (TUR) retrieval.
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3.3.3. Colored Dissolved Organic Matter

The best-fit algorithm for CDOM retrieval was the exponential model using the band
ratio from the violet part of the spectra. In Figure 12, the regression model Ψ̃4

CDOM is
displayed with a high correlation R2 = 0.92. The performance of all tested algorithms is
available in the Supplementary Materials (Table S10). Most of the algorithms for CDOM
retrieval used blue/red or green/red band ratios, although CDOM absorption decreases
exponentially with increasing wavelength [31,64]. The reason for that is the problematic at-
mospheric correction of the blue sensor [31,64] and excessive absorption by CDOM and low
natural water-leaving radiance at low wavelengths, reducing the usable signal [31,64,100].
In our case, a UAV does not need an atmospheric correction, and this could explain why
the algorithms using shorter wavelengths performed well in our study. This hypothesis
should be considered cautiously, and more studies of CDOM retrieval using UAVs or
point spectrophotometers should be conducted. Also, for the CDOM retrieval, a benefit of
incorporating UV spectral range [26,72] has been noticed, implicating the importance of
using sensors with higher spectral range and resolution compared to satellites.

Figure 12. Best-performing local algorithm for colored dissolved organic matter (CDOM) retrieval.

3.3.4. Mapping Application

Following the proposed new local-regression-based algorithm for Chl a (Figure 10),
we obtained the WQ parameter map for the area that was recorded by the UAV. For pre-
sentation purposes, in Figure 13 we present Chl a map based on the hyperspectral data
retrieved by UAV flights for all field campaigns covering four seasons. As expected, dur-
ing the late spring and summer season, the area covered by UAV HS exhibits larger Chl a
concentrations compared to the winter season. Interestingly, Chl a pattern in all seasons
shows the trend probably resulting from the exchange flow pattern within the estuary (net
seaward flow and its counterpart as a density-driven flow landward). The exchange flow
dynamics in the Jadro River case are relatively fast and create different timing between
the process of converting dissolved nutrients into the new biomass and the freshwater
residence time [101]. The work performed represents a valuable application in the field
of environmental monitoring, as it provides a high-resolution and efficient method for
mapping and assessing water quality parameters, particularly chlorophyll-a concentration,



J. Mar. Sci. Eng. 2023, 11, 2026 18 of 24

across different seasons. These results can support long-term decision-making processes
related to coastal management, ecological assessments, and the development of targeted
remediation strategies, ultimately contributing to the preservation and restoration of coastal
water ecosystems.

Figure 13. Chlorophyll-a (Chl a) map and its distribution over the UAV polygon for all field cam-
paigns. (a) Summer, (b) autumn, (c) winter, (d) spring.

4. Conclusions and Future Remarks

Remote sensing has become a crucial tool for water quality monitoring and is evolving
rapidly. This study sought to explore the efficiency of existing algorithm, commonly used
for water quality parameter retrieval from readily available satellite imagery and contrast
them with data from UAVs. Despite being less accessible, UAV-derived hyperspectral data
offer superior spectral and spatial resolution. Our findings echo previous studies conducted



J. Mar. Sci. Eng. 2023, 11, 2026 19 of 24

in coastal waters, where existing algorithms demonstrate a subpar correlation due to the
unique site-specific characteristics, underscoring the need for locally calibrated algorithms.
This shortcoming is especially noticeable in our case study given its oligotrophic nature.
While some algorithms performed poorly, the hyperspectral data generally outperformed
both simulated and satellite-obtained multispectral data.

The lackluster performance of existing models motivated us to develop new, regression-
based algorithms tailored to our study area, utilizing UAV hyperspectral data and in situ
observations. The resulting algorithms—devised from an array of 273 spectral bands avail-
able with the utilized UAV—boasted high correlation with in situ data. This reiterates the
necessity for site-specific algorithms and comparable monitoring scales. The efficacy of our
monitoring approach underlines the potential of UAV-based water quality mapping as a
swift and efficient screening tool in oligotrophic coastal waters.

Hyperspectral data bring with them the challenge of demanding data processing and
redundancy issues. However, the relentless advancement in UAV technology and sensor
versatility render this data source invaluable for complex monitoring needs, such as sudden
algal blooms or spills. In cases where simple prediction models are already established,
UAVs can be quickly deployed to update site-specific algorithms with a growing pool
of data. Despite the necessity for numerous field campaigns to account for different
water quality parameters and seasonal variations, the escalating availability of UAVs and
corresponding sensors suggests this is a viable next step in monitoring development.

Our approach offers a more accurate, locally-focused alternative to the pursuit of
universally applicable models. UAV-derived data bridge the spatial scale gap between
in situ and satellite data and signify a promising area of future focus. It is important to
acknowledge that this interplay between disparate spatial scales necessitates particular
consideration in future monitoring endeavors. Our work accentuates the scientific value
and contributions of high-resolution, locally calibrated algorithms for water quality assess-
ment while also acknowledging the challenges and outlining future advancements in this
dynamic field.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jmse11102026/s1, Figure S1: Sampling locations with the red
polyline indicating flight path.; Figure S2: Comparison of normalized reflectance data obtained
from Sentinel MSI (left panel) and UAV- mounted hyperspectral camera (right panel).; Figure S3: R2

Performance of different functions for Chl a.; Figure S4: R2 Performance of different functions for
TUR.; Figure S5: R2 Performance of different functions for CDOM.; Figure S6: Left Panel: Specific
weights (for 32 data points) derived from LAR are used to assess the R2 of the proposed Chl a model.
Each bar represents the weight of a data point used in the model. Right Panel: Model visualization
with data points indicated by circles. The size of each circle corresponds to the specific weight shown
in the left panel. One outlier is denoted by cross marker.; Figure S7: Left Panel: Specific weights
(for 32 data points) derived from LAR are used to assess the R2 of the proposed TUR model. Each
bar represents the weight of a data point used in the model. Right Panel: Model visualization with
data points indicated by circles. The size of each circle corresponds to the specific weight shown in
the left panel. Two outliers are marked with cross markers.; Figure S8: Left Panel: Specific weights
(for 32 points) derived from LAR are used to assess the R2 of the proposed CDOM model. Each bar
represents the weight of a data point used in the model. Right Panel: Model visualization with data
points indicated by circles. Circle sizes correspond to the specific weights shown in the left panel.
Two outliers are indicated by cross markers.; Table S1: Environmental conditions for field campaigns.;
Table S2: Performance of hyperspectral reflectance datasets with different levels of preprocessing for
Chl a evaluation using 32 ground truth points.; Table S3: Performance of hyperspectral reflectance
datasets with different levels of preprocessing for TUR evaluation using 32 ground truth points.;
Table S4: Performance of hyperspectral reflectance datasets with different levels of preprocessing
for CDOM evaluation using 32 ground truth points.; Table S5: Performance summary of selected
9 algorithms for the Chl a derived from UAV HS and UAV MS datasets in comparison to 32 in-situ
measurements.; Table S6: Summary of 5 tested algorithms for the TUR evaluation using 32 ground
truth points.; Table S7: Summary of 5 tested algorithms for the CDOM evaluation using 32 ground
truth points.; Table S8: Statistical summary of regression models with the best performance for

https://www.mdpi.com/article/10.3390/jmse11102026/s1
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Chl a retrieval.; Table S9: Statistical summary of regression models with the best performance for
TUR retrieval.; Table S10: Statistical summary of regression models with the best performance for
CDOM retrieval.
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