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Abstract: The maritime industry faces the critical challenge of achieving net-zero greenhouse gas
emissions by 2050, as mandated by the International Maritime Organization. This study introduces
a novel speed optimization model, designed specifically for bulk carriers operating between two
ports. Unlike conventional models that often assume static weather conditions, the proposed model
incorporated variable weather conditions at different times of arrivals, as quantified by the Beaufort
number (BN) and weather direction, for each leg of the voyage. Fuel consumption was estimated
by applying regression to historical voyage data. This study employed a genetic algorithm (GA)
to optimize vessel speed and thereby minimize fuel consumption. The model was tested by using
different fuel consumption response curves relative to different BNs and weather directions. The
results indicated that the proposed method could effectively reduce fuel consumption compared
with the historical sailing mode by around 3%. The optimal speed recommendation indicated that
the vessel should operate at a higher speed in circumstances associated with relatively low fuel
consumption, such as lower BN and following sea conditions. Nonetheless, if it is possible to attain
relatively low fuel consumption by adjusting the speed, the GA assesses the viability of this course of
action. The study suggests that the predictive accuracy could be further enhanced by incorporating
more granular, validated voyage data in future research.

Keywords: maritime transportation; speed optimization; bulk carrier; Beaufort number; genetic
algorithm; fuel consumption minimization

1. Introduction

At the eightieth session of the Marine Environment Protection Committee, the Interna-
tional Maritime Organization (IMO) adopted a revised strategy to reduce greenhouse gas
(GHG) emissions from international shipping. The IMO set a target to reach net-zero GHG
emissions from international shipping close to 2050 [1]. To reach this target, the maritime
industry can either adopt zero-carbon fuels, such as hydrogen and ammonia, or improve
operational efficiency. Various strategies can improve ship operations, which range from
route optimization and fleet deployment to adjustments in sailing speed.

Conventionally, speed optimization tasks involve sailing between multiple ports
with time windows at each port serving as boundary conditions [2–5]. However, bulk
carriers often operate between only two ports and usually sail under either laden or ballast
conditions. Applying time-window-based speed optimization to a two-port itinerary
often results in simply determining the longest sailing time permissible. Fluctuating
weather conditions are another source of complexity. Traditional speed optimization
procedures often assume constant weather conditions for different arrival times at each
waypoint [6–9]. This assumption can be problematic, because weather conditions may
vary greatly at the same waypoint depending on the time of arrival. A trade-off exists
between pursuing favorable weather and avoiding the energy-inefficient “sprint-and-loiter”
mode [10]. Nevertheless, if weather forecasts indicate that adverse conditions can be
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avoided by adjusting speeds at certain legs of the journey, reconfiguring the entire speed
arrangement may be beneficial.

Studies on speed optimization papers have used a variety of variables, objectives,
algorithms, and boundary conditions. For example, Fagerholt et al. [2] focused on multi-
port itineraries with fixed routes, considering time windows at each port as the boundary
conditions. Li et al. [7] focused on reducing fuel consumption and operational costs for two-
port itineraries, although they assumed that weather conditions remain constant regardless
of the time of arrival at each waypoint. Yang et al. [8] used genetic algorithms to optimize
the speed of two-port oil tanker itineraries. Zhuge et al. [9] integrated considerations for
ship path, speed, and deployment, incorporating emission control area rules into their
research. Gao and Hu [3] developed a model for optimizing speed and fleet deployment in
container ships, aiming to minimize total fuel consumption. Other studies have applied
various algorithms such as the multi-objective particle swarm optimization (MOPSO)
algorithm by Lu et al. [4] for speed optimization and the non-dominated-sorting genetic
algorithm II (NSGA-II) by Shih et al. [5] for speed and fuel ratio optimization in LNG
dual-fuel container ships. Wang et al. [6] also used NSGA-II for the bulk carrier main
engine speed optimization problem. A comparison of these studies is presented in Table 1.

Accurate ship performance prediction is a crucial aspect of these optimization prob-
lems. Fuel consumption models have been derived using different methodologies, in-
cluding hydrodynamics analysis [11–13], semi-empirical methods [14–16], and statistical
analysis [17–22] based on historical data. With advancements in machine learning, nu-
merous studies have applied neural networks to predict ship performance. Kwon [14]
developed a semi-empirical formula that accounts for the added resistance of different
Beaufort number (BN). Karagiannidis et al. [20] utilized artificial intelligence models to
predict fuel consumption, emphasizing the importance of high-frequency, high-quality, and
sufficient historical raw data for accurate predictions. For the hydrodynamics analysis and
semi-empirical method, the ship speed under the environmental effects can be predicted,
but the fuel oil consumption should be obtained by considering the engine’s particular,
such as specific fuel consumption rate of the engines. On the other hand, statistical analysis
can directly build the connection between the ship speed and the fuel consumption, and
the environmental effects are considered by the classification of the raw data.

This study addresses two notable gaps in the literature. First, traditional speed
optimization studies have generally assumed that weather conditions remain constant
for different arrival times at each waypoint. Second, the concept of pure time windows,
which is often used in speed optimization for multi-port itineraries, has proven challenging
to apply in two-port bulk carrier itineraries. This study contributed to considering the
different weather condition for each arrival time at the same waypoint, and a corresponding
mathematical model was established.

In this study, we applied the proposed method on the two-port itineraries between
Taiwan and Australia, involving a 93,000 deadweight tonnage (DWT) and a 200,000 DWT
bulk carrier not subject to specific area regulations. Our findings demonstrated that the
proposed method effectively reduced fuel consumption by considering different weather
conditions at different arrival times. Because both fuel costs and carbon emissions are
directly proportional to fuel consumption in single-fuel ships, we selected fuel consumption
as the primary metric for evaluation. Additionally, we investigated the effects of different
fuel consumption curves corresponding to different weather conditions and the effects of
different total sailing times.
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Table 1. Summary of speed optimization studies.

Papers Year Optimization
Objectives

Optimization
Variables Algorithms Ship Type Considering

Two-Port Itinerary

Variable Weather
Condition for Different

Arrival Time

Fagerholt et al. [2] 2010 Minimizing fuel
consumption Speed IPOPT from COIN-OR Not specified No No

Li et al. [7] 2020 Minimizing the fuel
consumption and costs Speed

constrained optimization by
linear approximation

(COBYLA)
Container ship Yes No

Yang et al. [8] 2020 Minimizing fuel
consumption Speed GA Oil tanker Yes No

Zhuge et al. [9] 2021 Minimizing cost
Joint ship path,

speed, and
deployment

Dynamic
programming-based method Not specified Yes No

Gao and Hu [3] 2021 Minimizing cost Speed and fleet
deployment

Linear outer-approximation
algorithm and an improved

piecewise linear
approximation algorithm

Container ship No No

Wang et al. [6] 2021 Minimizing fuel
consumption Main engine speed NSGA-II Bulk carrier Yes No

Lu et al. [4] 2023 Minimizing cost and
carbon emissions Speed MOPSO Container ship No No

Shih et al. [5] 2023 Minimizing cost and
carbon emissions Fuel ratio and speed NSGA-II Container ship No No

Present study Minimizing fuel
consumption Speed GA Bulk carrier Yes Yes
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2. Problem Description and Model Establishment
2.1. Problem Description

The focus of this investigation is on speed optimization for a bulk carrier operating on
a two-port itinerary. Several waypoints were separated by the historical noon report. The
waypoints usually did not have an arrival time requirement. The itinerary was assumed to
have been operated many times by the target ship, and the periodic environment effects of
the specific route, such as current and monsoons, could then be considered in the regression
analysis. Through the weather forecast database, the hourly forecast for the same location
could be obtained. The BN and weather direction of the waypoint at the arrival time
represented the weather condition of the leg. In other words, the time resolution of weather
forecast was one hour, but the location resolution was the daily noon position in this
study. These parameters were tunable as long as the higher resolution of ship performance
historical data was available. To focus on the developed weather matrix, no regional rules
were discussed in the present study.

In summary, the study was based on the following assumptions:

• The main engine is the sole consumer of fuel on the ship.
• BN and weather direction are the environmental factors affecting the fuel consump-

tion curves.
• BN and weather direction remain constant for a 1 h duration within a leg of the journey.
• BN and weather direction of a leg are only determined by the arrival time of the leg.
• Ship speed is maintained consistently throughout each leg.
• The loading condition is either laden or ballast.
• The allowable arrival time remains constant across all waypoints.
• The ship only uses a single type of fuel.

2.2. Fuel Consumption Model
2.2.1. First Approach

Fuel consumption can be modeled by a lot of means. All means aim to build the
relationship between speed and fuel consumption. The speed–power and power–fuel
consumption relationship from the sea trial result may be combined and used to determine
the speed–fuel consumption relationship. Notably, the nonlinear power–fuel consumption
relationship is hard to express in a single formula, and may be discussed by separating it
into several linear segments o, as shown in Figure 1a and Equation (1). The real ship SFOC
data are shown in Figure 1b. In Equation (2), the speed–power relationship is modeled by
two parameters a′s and c′s considering different BNs. Equation (3) showed that the speed–
fuel consumption relationship can be derived by multiple the BHP-SFOC and speed-BHP
functions. Therefore, the fuel consumption FC(V, s, o) can be expressed into Equation (4).

SFOC(BHP, o) = b1,oBHP + b0,o ∀o ∈ O (1)

BHP(V, s) = a′s·Vc′s ∀s ∈ S (2)

FC(V, s, o) = SFOC[BHP(V, s), o]·BHP(V, s)∀o ∈ O, ∀s ∈ S (3)

FC(V, s, o) =


b1,1 b0,1
b1,2 b0,2

...
...

b1,O b0,O


[
( a′1·Vc′1)2 (a′2·Vc′2)2 · · · (a′S·V

c′S)2

a′1·Vc′1 a′2·Vc′2 · · · a′S·V
c′S

]
∀o ∈ O, ∀s ∈ S (4)
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Figure 1. (a) Linear segments o separating the BHP-SFOC curves. (b) The real SFOC data of a ship.

2.2.2. Second Approach

However, the real ship operation may be very different from the new ship condition.
Therefore, in the present research, the later historical real ship data were used to approach
the realistic condition. The recent hull and machine condition (e.g., fouling condition of
the hull) could then be considered in the latest voyage data. Regression analysis was
employed to model the relationship between fuel consumption and ship speed based on
historical noon report data. These data were categorized according to different BNs, weather
directions, loading conditions, and legs. To constrain the scope of the regression analysis,
BN and weather direction were selected as the weather variables under consideration.
Generally, a higher Beaufort number indicated greater fuel consumption conditions, as
shown in Figure 2. The laden condition had a higher fuel consumption curve than the ballast
condition, as shown in Figure 3. The weather condition was directly correlated with fuel
consumption. The proposed black-box model established the relationship between speed
and fuel consumption under different conditions. Additionally, the black-box regression
analysis naturally contained the consideration of intermediate parameters such as SFOC,
engine loads, and RPM. Furthermore, the current research considered a two-port itinerary,
with the loading condition remaining the same for each leg.
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The weather direction was derived from relative wind direction and categorized into
three directions, that is, head sea, beam sea, and following sea [23,24]. The definition of each
weather condition is shown in Figure 4. The regression results of different weather direc-
tions are shown in Figure 5. Generally, the fuel consumption of the following sea condition
is lower than that of the beam sea and head sea condition, while the fuel consumption of
the head sea condition is higher than that of beam sea.
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2.3. Optimization Algorithm

The task of speed optimization for a ship using a single type of fuel is a single-
objective optimization problem. In this study, the traditional GA from the pymoo package,
developed by Blank and Deb [25], was used to address this problem using Python. Given
the potential for daily variations in weather forecasts for each leg of the journey, accuracy
is maximized when the optimization procedure is executed at regular intervals [26–28].
GA is widely used in a variety of fields [29–33]. The traditional GA consists of six steps:
initial population, evaluation, survival, selection, crossover, and mutation. GA comprises
two crucial parameters: population size and number of generations, and they directly
affect the computational time. Population size is how many sets of solutions are evaluated
in one iteration, and number of generations is the maximum iteration. Without enough
population size and generations, the optimal solutions may not converge. The flowchart of
the proposed method is shown in Figure 6.

GA is chosen for its suitability in light of these characteristics, encompassing heuristic,
stochastic, and randomized search optimization techniques, all of which are relatively
straightforward to describe and implement. In GA, the evaluation is simply calculating the
corresponding fitness function of each individual. The selection operator chooses specific
individuals for further operation. The crossover operator combines parents to produce the
next generation. In mutation, some genes of the individuals were randomly changed on the
basis of probability to explore the searching area. Both crossover and mutation operators
contain the probability needs to be determined. By properly choosing each operator of GA,
the premature convergence may be prevented [34,35]. Thus, the global optimized solution
may be obtained.
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2.4. Mathematical Model

The sailing time for leg n can be calculated based on the arrival times at waypoints n
and n + 1, as formulated in Equation (5). Because the distance for leg n is known, the speed
of the ship over ground can be determined, as indicated in Equation (6).

trn = tn+1 − tn ∀n ∈ N (5)

Vn =
Dn

trn
∀n ∈ N (6)
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Weather conditions can be gleaned from forecast data, allowing for the derivation of a
weather matrix, presented in Table 2 and formalized in Equations (7) and (8). The columns
in this matrix correspond to different arrival times at a waypoint, and the rows represent
the waypoints themselves. Each cell in the weather matrix contains the BN and weather
direction specific to a given arrival time and waypoint.

WN×(M+1) =


w1,1 w1,2 w1,3 · · · w1,M+1
w2,1 w2,2 w2,3 · · · w2,M+1
w3,1 w3,2 w3,3 · · · w3,M+1

...
...

...
. . .

...
wN,1 wN,2 wN,3 · · · wN,M+1

 (7)

UN×(M+1) =


u1,1 u1,2 u1,3 · · · u1,M+1
u2,1 u2,2 u2,3 · · · u2,M+1
u3,1 u3,2 u3,3 · · · u3,M+1

...
...

...
. . .

...
uN,1 uN,2 uN,3 · · · uN,M+1

 (8)

Table 2. Weather matrix for different positions and arrival times.

[Beaufort Number,
Weather Direction]

Waypoint Arrival
Time tw

Waypoint Arrival
Time tw + 1

Waypoint Arrival
Time tw + 2 · · · Waypoint Arrival

Time tw + M

Waypoint-1 [w1,1, u1,1] [w1,2, u1,2] [ w1,3, u1,3] · · · [w1,M+1, u1,M+1]

Waypoint-2 [w2,1, u2,1] [w2,2, u2,2] [w2,3, u2,3] · · · [w 2,M+1, u2,M+1]

Waypoint-3 [w 3,1, u3,1] [w3,2, u3,2] [w3,3, u3,3] · · · [w3,M+1, u3,M+1]

...
...

...
...

. . .
...

Waypoint-N [wN,1, uN,1] [wN,2, uN,2] [wN,3, uN,3] · · · [wN,M+1, uN,M+1]

To ensure accurate fuel consumption curves corresponding to the appropriate BN
and weather direction, we introduce parameter δn,s and γn,p in Equations (9) and (10),
respectively.

δn,s =

{
1 , i f wn,tn = s
0 , otherwise

∀n ∈ N, ∀s ∈ S (9)

γn,p =

{
1 , i f un,tn = p
0 , otherwise

∀n ∈ N, ∀p ∈ P (10)

The constrained optimization problem under consideration can be formally expressed
using Equations (11)–(14).

x = [t1, t2, · · · , tN ] (11)

minFC = ∑
n∈N

∑
s∈S

∑
p∈P

(a n,s,p·V
cn,s,p
n )·δn,s·γn,p·tsn (12)

s.t. tw ≤ tn ≤ tw + M ∀n ∈ N (13)

tn+1 − tn > 0 (14)

In this model, the variables in Equation (11) refer to the arrival times for each leg
of the journey. The objective function in Equation (12) is designed to minimize total fuel
consumption. The constraints in Equations (13) and (14) ensure that the arrival time at each
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port falls within a specified time window and that the arrival time at a subsequent port is
later than that of the preceding port, respectively.

3. Results and Discussion
3.1. Case Study

The speed profile and positions of historical sailing mode were obtained by the noon
report, and the fuel consumption was simulated by the aforementioned regression analysis.
Two different ships and itineraries were demonstrated and showed in this section. The
principal dimensions of the target ships are listed in Table 3. By comparing the fuel
consumption of optimal speed sailing mode and historical sailing mode, the effect of the
proposed optimization process could be estimated. The route maps are shown in Figure 7.

Table 3. Principle dimensions of the target ships.

Target Ship A Target Ship B

Length overall (m) 235 300
Breath (m) 38 50
Depth (m) 20 25

Deadweight (ton) 93,000 200,000
Complete year 2011 2013

Operation route Kaohsiung, Taiwan—Gladstone, Australia Port Hedland, Australia—Kaoshiung, Taiwan
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 Target Ship A Target Ship B 
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Operation route Kaohsiung, Taiwan—Gladstone, 
Australia 

Port Hedland, Australia—
Kaoshiung, Taiwan 

 
Figure 7. Operation route of target ship A and B. 

  

Figure 7. Operation route of target ship A and B.

Binary tournament selection was used in the case studies. The SBX crossover technique
was chosen for its good performance in many problems [36]. The crossover probability was
0.5, and the mutation probability was 0.2. The population size was 300, and the maximum
number of generations was 300. The optimization problem was computed using a 3.60 GHz
8-Core Intel Core i7 with 32 GB RAM. The calculation time depended on the population
and generation size, and amounted to approximately 4.5 min in the case studies.

3.1.1. Case Study 1—93,000 DWT Bulk Carrier

A methodology in a previous study was applied to a 93,000 DWT bulk carrier. The
selected itinerary commenced in Kaohsiung of Taiwan and concluded in Gladstone of
Australia, passing through the Jomard Entrance and Vitiaz Strait, as detailed in Table 4. The
journey spanned 12 days, resulting in 12 distinct legs, with waypoints set at the historical
daily noon positions recorded. Time windows for each waypoint were defined as the
interval between the departure from the initial port and arrival at the destination, with the
total sailing time serving as a fixed boundary condition.
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Table 4. Time windows and route in the considered case study 1.

Leg No. Arrival
Port/Waypoint

Acceptable Earliest
Arrival Time

Acceptable Latest
Arrival Time

Sailing
Distance (nm)

P1-TWKHH 26 May 12:00 26 May 12:00
1 Waypoint 1 26 May 12:00 7 June 10:00 302.00
2 Waypoint 2 26 May 12:00 7 June 10:00 301.00
3 Waypoint 3 26 May 12:00 7 June 10:00 279.00
4 Waypoint 4 26 May 12:00 7 June 10:00 263.00
5 Waypoint 5 26 May 12:00 7 June 10:00 299.00
6 Waypoint 6 26 May 12:00 7 June 10:00 295.00
7 Waypoint 7 26 May 12:00 7 June 10:00 267.00
8 Waypoint 8 26 May 12:00 7 June 10:00 279.00
9 Waypoint 9 26 May 12:00 7 June 10:00 292.00
10 Waypoint 10 26 May 12:00 7 June 10:00 315.00
11 Waypoint 11 26 May 12:00 7 June 10:00 297.00
12 P2-AUGLT 7 June 10:00 7 June 10:00 313.00

The optimization results were subsequently contrasted with the original sailing speed
profile, as shown in Table 5.

Table 5. Speed profiles before and after speed optimization for comparison in case study 1.

Original Sailing Mode Recommended Sailing Mode

Leg No.
Original

Arrival Time
(UTC +8)

Original
Speed
(Knot)

BN Weather
Direction

Recommended
Arrival Time

(UTC +8)

Recommended
Speed
(Knot)

BN Weather
Direction

26 May 12:00 - 26 May 12:00 - -
1 27 May 12:00 12.58 4 Beam sea 27 May 13:02 12.07 4 Beam sea
2 28 May 12:00 12.54 4 Following sea 28 May 12:57 12.58 4 Following sea
3 29 May 11:00 12.13 4 Following sea 29 May 11:10 12.58 4 Following sea
4 30 May 11:00 10.96 5 Beam sea 30 May 08:57 12.08 4 Beam sea
5 31 May 11:00 12.46 3 Beam sea 31 May 09:35 12.15 3 Beam sea
6 1 June 11:00 12.29 3 Beam sea 1 June 09:51 12.15 3 Beam sea
7 2 June 10:00 11.61 4 Beam sea 2 June 07:56 12.08 4 Beam sea
8 3 June 10:00 11.63 5 Beam sea 3 June 06:59 12.08 4 Beam sea
9 4 June 10:00 12.17 3 Beam sea 4 June 06:05 12.65 3 Following sea

10 5 June 10:00 13.13 3 Beam sea 5 June 06:59 12.65 3 Following sea
11 6 June 10:00 12.38 3 Beam sea 6 June 06:59 12.38 3 Following sea
12 7 June 10:00 13.04 4 Beam sea 7 June 10:00 11.59 4 Beam sea

Oil
consumption

(ton)
291.17 280.63

difference −3.6%

Data from Table 5 indicate that the proposed model succeeded in lowering oil con-
sumption. In legs 4, 8, 9, 10, and 11, the optimized arrival time corresponded with periods
of lower BN and following sea condition, thereby reducing resistance and conserving fuel.
Under the constraint of fixed voyage time, the average speeds for both the original and
optimized sailing modes remained identical. Moreover, the range between the highest and
lowest speeds in the recommended sailing mode exceeded that in the original sailing mode.

This study employed a daily time period for optimization. If higher-frequency histor-
ical voyage data become available, the use of a finer temporal resolution could produce
more realistic conditions for optimization.

3.1.2. Case Study 2—200,000 DWT Bulk Carrier

Similarly, the methodology was then applied on a 200,000 DWT bulk carrier. The
itinerary details are listed in Table 6. The selected itinerary commenced in Port Hedland of
Australia and concluded in Kaohsiung of Taiwan. The optimization results are listed in
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Table 7. The results similarly indicated that the proposed method can effectively avoid the
encountered harsh weather condition in legs 1, 4, and 5 and reduce total fuel consumption.

Table 6. Time windows and route in the considered case study 2.

Leg No. Arrival Position Acceptable Earliest
Arrival Time

Acceptable Latest
Arrival Time

Sailing
Distance (nm)

P1-AUPHE 29 October 12:00 29 October 12:00
1 Waypoint 1 29 October 12:00 7 November 12:00 286
2 Waypoint 2 29 October 12:00 7 November 12:00 295
3 Waypoint 3 29 October 12:00 7 November 12:00 296
4 Waypoint 4 29 October 12:00 7 November 12:00 281
5 Waypoint 5 29 October 12:00 7 November 12:00 298
6 Waypoint 6 29 October 12:00 7 November 12:00 264
7 Waypoint 7 29 October 12:00 7 November 12:00 277
8 Waypoint 8 29 October 12:00 7 November 12:00 276
9 P2-TWKHH 7 November 12:00 7 November 12:00 248

Table 7. Speed profiles before and after speed optimization for comparison in case study 2.

Original Sailing Mode Recommended Sailing Mode

Leg No.
Original

Arrival Time
(UTC +8)

Original
Speed
(Knot)

BN Weather
Direction

Recommended
Arrival Time

(UTC +8)

Recommended
Speed
(Knot)

BN Weather
Direction

29 October
12:00 - 29 October

12:00
1 30 October

12:00 11.92 4 Beam sea 30 October
10:59 12.44 3 Beam sea

2 31 October
12:00 12.29 4 Following sea 31 October

12:32 11.55 4 Following sea

3 1 November
12:00 12.33 3 Following sea 1 November

13:53 11.67 3 Following sea

4 2 November
12:00 11.71 3 Beam sea 2 November

15:59 10.77 2 Beam sea

5 3 November
12:00 12.42 3 Head sea 3 November

20:00 10.64 3 Beam sea

6 4 November
12:00 11.0 4 Beam sea 4 November

18:17 11.84 4 Beam sea

7 5 November
12:00 11.54 3 Beam sea 5 November

17:25 11.98 3 Beam sea

8 6 November
12:00 11.50 4 Following sea 6 November

14:45 12.93 4 Following sea

9 7 November
12:00 10.33 7 Beam sea 7 November

12:00 11.68 7 Beam sea

Oil
consumption

(ton)
347.42 338.68

difference −2.5%

3.2. Sensitivity Analysis

To validate the proposed model, the sensitivity analysis for target ship A and the
itinerary between Kaohsiung and Gladstone was conducted. In Section 3.2.1, the different
BN-affected speed–fuel consumption curves are discussed. In Section 3.2.2, the different
weather direction-affected speed–fuel consumption curves are discussed. In Section 3.2.3,
the effects of different total sailing time are investigated.

3.2.1. Effects of Different BN-Affected Speed–Fuel Consumption Curves

Through the model establishment Equations (1)–(12) and case studies, the speed–fuel
consumption curves proved to be critical in the optimization model. As we discussed
in Section 2.2, the speed–fuel consumption curves could be derived by the sea trial test.
However, the realistic condition may be different from the sea trial condition, and may
be obtained by the regression of the later historical voyage data. Thus, the speed–fuel
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consumption curves were directly set in this section to simulate the regression of historical
data. To separate the effects of BN and weather direction, the weather direction was
considered no influence on the speed–fuel consumption curves in this section.

To investigate the effects of different fuel consumption curves, four scenarios—designated
as Scenario 1 through Scenario 4—were established to represent different effects of the
Beaufort scale on fuel usage. Scenario 1 posited that the Beaufort scale had no influence on
oil consumption. Conversely, Scenarios 2, 3, and 4 indicated that a single unit increase in
the BN would result in a 2%, 4%, and 6%, rise in fuel consumption, respectively. The fuel
consumption parameter as for the different BNs are listed in Table 8, with cs consistently
fixed at 3. In other words, the fuel consumption curves in Scenarios 1–4 follow the formula
as·V3. The set fuel consumption curves for each scenario are shown in Figure 8. Therefore,
all the curves in Figure 8 are cubic. By comparing the optimal speed of Scenario 1 and
the theoretical optimal speed profile (average speed), the optimization process could be
validated. By comparing the optimal speed of Scenario 1, 2, 3, and 4, the effects of different
BN-affected oil consumption curves could be evaluated.

Table 8. Setting fuel consumption parameter as in different scenarios.

as Scenario 1 Scenario 2 Scenario 3 Scenario 4

BN = 2 0.0004370 (+0%) 0.0004195 (−4%) 0.0004020 (−8%) 0.0003846 (−12%)
BN = 3 0.0004370 (+0%) 0.0004283 (−2%) 0.0004195 (−4%) 0.0004108 (−6%)
BN = 4 0.0004370 (+0%) 0.0004370 (+0%) 0.0004370 (+0%) 0.0004370 (+0%)
BN = 5 0.0004370 (+0%) 0.0004457 (+2%) 0.0004545 (+4%) 0.0004632 (+6%)
BN = 6 0.0004370 (+0%) 0.0004545 (+4%) 0.0004720 (+8%) 0.0004894 (+12%)

The optimization results are presented in Table 9 and visualized in Figure 9. For
Scenarios 2, 3, and 4, the optimal solutions indicated that ships ought to have a higher and
lower speed during adverse and favorable weather conditions, respectively. Specifically,
optimal speeds in Scenario 2, 3, and 4 led to a lower BN in leg 8 compared with that
in Scenario 1. In Scenario 1, an average speed was proposed, given that the same fuel
consumption parameter remained constant across different BNs. The proposed method
is validated by comparing the theoretical best speed (i.e., the average speed) with the
optimized speed. The slight difference between Scenario 1 and theoretical average speed
was due to the fact that GA can only obtain the approximate optimal solution. As the
disparity in Beaufort number increased from Scenario 2 to Scenario 4, the difference between
the highest and lowest recommended speeds widened. This suggests that decreasing speed
during adverse weather conditions and increasing speed during more favorable weather
yield greater advantages when adverse conditions substantially increase oil consumption.
Furthermore, Scenario 4 obtained a lower BN in leg 1 than those in Scenario 2 and 3. This
shows that if the lower BN can only be obtained by adjusting the speed profile a lot, GA
will determine whether it is worthy to adjust. In this case, it was not worthy to adjust it
for the fuel consumption curves of Scenario 2 and 3, but the fuel consumption curves of
different BNs were different enough for the optimal speed to adjust more in Scenario 4.

Table 9. Optimization results for different scenarios.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Leg No. Speed (Knot) BN Speed (Knot) BN Speed (Knot) BN Speed (Knot) BN

1 12.26 4 12.21 4 12.3 4 11.19 3
2 12.26 4 12.21 4 12.31 4 12.58 4
3 12.25 4 12.2 4 12.29 4 12.58 4
4 12.25 4 12.2 4 12.18 4 12.58 4
5 12.25 3 12.29 3 12.39 3 12.42 3
6 12.24 3 12.29 3 12.4 3 12.4 3
7 12.24 4 12.2 4 12.19 4 12.11 4
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Table 9. Cont.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Leg No. Speed (Knot) BN Speed (Knot) BN Speed (Knot) BN Speed (Knot) BN

8 12.24 5 12.2 4 12.11 4 12.1 4
9 12.24 3 12.31 3 12.27 3 12.39 3

10 12.24 3 12.31 3 12.25 3 12.37 3
11 12.24 3 12.31 3 12.26 3 12.36 3
12 12.24 4 12.21 4 12.01 4 12.05 4
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Figure 8. Four scenarios for investigating the effects of different speed–fuel consumption curves corre-
sponding to different BNs. The darker line corresponds to a bigger BN. (a) Scenario 1, (b) Scenario 2,
(c) Scenario 3, and (d) Scenario 4. A closer look is shown in (e–h). (e) Scenario 1, (f) Scenario 2,
(g) Scenario 3, and (h) Scenario 4.
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3.2.2. Effects of Different Weather Direction-Affected Speed–Fuel Consumption Curves

In this subsection, the effects of different weather direction-affected speed–fuel con-
sumption curves were investigated, and the BN was assumed to have no influence on fuel
consumption. Similarly, three scenarios were set to represent different weather direction
effects. Scenario 5 posited that the weather direction had no influence on fuel consumption.
Scenario 6 and 7 represented the fuel consumption of head sea condition being higher than
that of beam sea condition by 1% and 2%, respectively. On the other hand, Scenario 6 and 7
were set so that the fuel consumption of following sea condition was lower than that of
beam sea condition by 1% and 2%, respectively. The fuel consumption parameter ap for
the different weather directions are listed in Table 10, with cp consistently fixed at 3. In
other words, the fuel consumption curves in Scenarios 5–7 follow the formula ap·V3. By
comparing the optimal speed of Scenario 5 and the average speed, the optimization process
could be validated. By comparing the optimal speed of Scenario 5, 6, and 7, the effects of
different weather direction-affected oil consumption curves could be evaluated.

Table 10. Setting fuel consumption parameter ap in different weather direction scenarios.

ap Scenario 5 Scenario 6 Scenario 7

Head sea 0.0004370 (+0%) 0.0004414 (+1%) 0.0004457 (+2%)
Beam sea 0.0004370 (+0%) 0.0004370 (+0%) 0.0004370 (+0%)

Following sea 0.0004370 (+0%) 0.0004326 (−1%) 0.0004283 (−2%)

The optimal speed of Scenarios 5 to 7 was shown in Table 11 and Figure 10. Similarly,
the optimal speed of Scenario 5 is slightly different from the theoretical optimal average
speed, because of the nature of GA. In Scenarios 6 and 7, the optimal speed is sailing faster
in lower fuel consumption condition, that is, the following sea condition. The gap between
the maximum and minimum speed of Scenario 7 is larger than that of Scenario 6 because
of the larger difference in the fuel consumption curves in Scenario 7.

Table 11. Optimization results for different weather direction scenarios.

Scenario 5 Scenario 6 Scenario 7

Leg
No.

Speed
(Knot)

Weather
Direction

Speed
(Knot)

Weather
Direction

Speed
(Knot)

Weather
Direction

1 12.26 Beam sea 12.27 Beam sea 12.21 Beam sea
2 12.26 Following sea 12.31 Following sea 12.31 Following sea
3 12.25 Following sea 12.31 Following sea 12.31 Following sea
4 12.25 Beam sea 12.25 Beam sea 12.23 Beam sea
5 12.25 Beam sea 12.25 Beam sea 12.24 Beam sea
6 12.24 Beam sea 12.25 Beam sea 12.25 Beam sea
7 12.24 Beam sea 12.25 Beam sea 12.25 Beam sea
8 12.24 Beam sea 12.25 Beam sea 12.26 Beam sea
9 12.24 Following sea 12.3 Following sea 12.36 Following sea
10 12.24 Beam sea 12.6 Following sea 12.6 Following sea
11 12.24 Beam sea 12.37 Following sea 12.37 Following sea
12 12.24 Beam sea 11.59 Beam sea 11.59 Beam sea
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3.2.3. Effects of Different Total Sailing Time

This study also investigated the fuel consumption associated with different total sailing
times. The accuracy of these results is directly affected by the fuel consumption curves,
which can be further refined with high-frequency raw data. The itinerary commenced on
26 May at 12:00 and concluded at various times: 6 June at 18:00, 7 June at 02:00, 7 June
at 10:00, 7 June at 18:00, and 8 June at 02:00, as detailed in Table 12. As expected, fuel
consumption was higher at shorter sailing times. However, reducing the total sailing time
led to a more pronounced increase in fuel consumption than the fuel savings achieved by
extending the total sailing time by an equivalent duration. This phenomenon aligns well
with the nonlinear nature of fuel consumption curves. Specifically, increasing speed led
to a more substantial rise in fuel consumption than the corresponding reduction achieved
by a similar decrease in speed. Practically, slow steaming may cause other issues. In the
low-load condition, the unburned fuel and lubricating oil may accumulate in the exhaust
pipes. These carbon deposits could be cleaned by periodically increasing the main engine
back to the high-load condition [37].

Table 12. Optimization results for different itinerary end times.

Itinerary End Time Total Sailing Time (h) Fuel Consumption (ton)

6 June 18:00 270 (−5.6%) 287.65 (+2.5%)
7 June 02:00 278 (−2.8%) 283.16 (+0.9%)
7 June 10:00 286 (+0%) 280.63 (+0%)
7 June 18:00 294 (+2.8%) 278.38 (−0.8%)
8 June 02:00 302 (+5.6%) 276.14 (−1.6%)

4. Conclusions and Prospects

This study introduced a speed optimization model tailored for two-port bulk carrier
routes, incorporating weather conditions along the route. Using GA for problem-solving,
the model estimated fuel consumption through regression analysis of historical noon
reports. In this study, the different weather conditions of different time at the same location
were considered, and the weather matrix was established in the mathematical model.
The proposed method could effectively reduce fuel consumption by around 2–3%, as
evidenced by the case study. Generally, the optimal speed recommendation suggested
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that the ship should sail at a higher speed under conditions of lower fuel consumption,
such as lower BN and following sea conditions. However, if lower fuel consumption
conditions could be achieved by adjusting the speed, the GA would determine whether
it was worthwhile to pursue. Subsequently, this study conducted sensitivity analyses
of different weather affected fuel consumption curves. The findings indicated that for
ships whose fuel consumption is highly sensitive to BNs or weather directions, speed
adjustments based on weather conditions become critical for maintaining energy efficiency.
Given that bulk carriers often lack strict arrival time constraints at their finals, the study
also explored the relationship between arrival time and fuel consumption. Consistent with
other studies, reduced speed is correlated with lower fuel consumption. The model was
also validated by comparing the theoretical optimal speed of Scenario 1 and 5 with the
optimized speed in these sensitivity analyses. The accuracy of the proposed optimization
model hinges on two primary factors: the reliability of weather forecasts, and the precision
of fuel consumption estimates. By considering more factors and higher-frequency data, the
fuel consumption model may be more realistic. On the other hand, although slow steaming
can effectively reduce fuel cost and carbon emissions, the profits and other costs of the ship
may be affected. This practical trade-off can be considered to determine the best sailing
mode. While the present research focuses on bulk carriers, different ship types may also be
considered in the future. Future work could potentially focus on refining these aspects to
further enhance the model’s effectiveness.

The future research aspects can also be carried out by applying different optimization
algorithms such as particle swarm optimization (PSO) and ant colony optimization (ACO)
on the proposed model. The most effective and suitable algorithm of the problem can then
be assessed by comparing the obtained results and consumed resources.
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Nomenclature and List of Abbreviations

Symbol Unit Explanation
Abbreviations
BHP Brake horsepower
BN Beaufort number
DWT Deadweight tonnage
GA Genetic algorithm
GHG Greenhouse gas
IMO International Maritime Organization
SFOC Specific fuel oil consumption
Indices and sets
N Set of all waypoints (legs) on the ship route, n ∈ N
S Set of all BNs on the ship route, s ∈ S
P Set of all weather directions on the ship route, p ∈ P

O
Set of all linear segments of the simulation of BHP
-SFOC relationship, o ∈ O

Parameters
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Symbol Unit Explanation

FC ton
Calculated fuel consumption for the whole itinerary.
Objective to be minimized

tw h
Accumulated acceptable earliest arrival time at each
waypoint

M h Fixed allowable arrival time interval at each waypoint

an,s,p
Main engine fuel consumption–speed coefficient of BN s
and weather direction p for leg n in the sailing period

cn,s,p

Main engine fuel consumption–speed power coefficient
of BN s and weather direction p for leg n in the
sailing period

Dn nm Sailing distance for leg n
Vn knot Ship speed over ground for leg n in the sailing period
trn h Sailing period for leg n

δn,s
Binary, equals 1 if and only if the wn,tn equals s in leg n;
0 otherwise

γn,p
Binary, equals 1 if and only if the un,tn equals p in leg n;
0 otherwise

wn,tn

BN encountered when the arrival time of waypoint-n
equals tn

un,tn

Weather direction encountered when the arrival time of
waypoint-n equals tn

b1,o
Main engine BHP-SFOC first-order coefficient of
segment o

b0,o Main engine BHP-SFOC coefficient of segment o

a′s
Main engine Speed-BHP coefficient of BN s in the
sailing period

c′s
Main engine Speed-BHP power coefficient of BN s in the
sailing period

Decision variables
tn Accumulated arrival time of waypoint-n
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22. Beşikçi, E.B.; Arslan, O.; Turan, O.; Ölçer, A.I. An artificial neural network based decision support system for energy efficient ship
operations. Comput. Oper. Res. 2016, 66, 393–401. [CrossRef]

23. Blendermann, W. Parameter identification of wind loads on ships. J. Wind. Eng. Ind. Aerodyn. 1994, 51, 339–351. [CrossRef]
24. Bialystocki, N.; Konovessis, D. On the estimation of ship’s fuel consumption and speed curve: A statistical approach. J. Ocean

Eng. Sci. 2016, 1, 157–166. [CrossRef]
25. Blank, J.; Deb, K. Pymoo: Multi-Objective Optimization in Python. IEEE Access 2020, 8, 89497–89509. [CrossRef]
26. Tzortzis, G.; Sakalis, G. A dynamic ship speed optimization method with time horizon segmentation. Ocean Eng. 2021, 226,

108840–108853. [CrossRef]
27. Vettor, R.; Bergamini, G.; Guedes Soares, C. A Comprehensive Approach to Account for Weather Uncertainties in Ship Route

Optimization. J. Mar. Sci. Eng. 2021, 9, 1434. [CrossRef]
28. Vettor, R.; Soares, C.G. Reflecting the uncertainties of ensemble weather forecasts on the predictions of ship fuel consumption.

Ocean Eng. 2021, 250, 111009. [CrossRef]
29. Weile, D.S.; Michielssen, E. Genetic algorithm optimization applied to electromagnetics: A review. IEEE Trans. Antennas Propag.

1997, 45, 343–353. [CrossRef]
30. Cus, F.; Balic, J. Optimization of cutting process by GA approach. Robot. Comput.-Integr. Manuf. 2003, 19, 113–121. [CrossRef]
31. Fernandez, M.; Caballero, J.; Fernandez, L.; Sarai, A. Genetic algorithm optimization in drug design QSAR: Bayesian-regularized

genetic neural networks (BRGNN) and genetic algorithm-optimized support vectors machines (GA-SVM). Mol. Divers. 2011, 15,
269–289. [CrossRef]

32. Johnson, J.M.; Rahmat-Samii, Y. Genetic algorithm optimization and its application to antenna design. In Proceedings of the IEEE
Antennas and Propagation Society International Symposium and URSI National Radio Science Meeting, Seattle, WA, USA, 20–24
June 1994; pp. 326–329.

33. Abdelmegid, M.A.; Shawki, K.M.; Abdel-Khalek, H. GA optimization model for solving tower crane location problem in
construction sites. Alex. Eng. J. 2015, 54, 519–526. [CrossRef]

34. Fitzgerald, J.; Wong-Lin, K. Multi-objective optimisation of cortical spiking neural networks with genetic algorithms. In
Proceedings of the 2021 32nd Irish Signals and Systems Conference (ISSC), Athlone, Ireland, 10–11 June 2021; pp. 1–6.

35. Khan, A.; Deb, K. Optimizing Keyboard Configuration Using Single and Multi-Objective Evolutionary Algorithms. In Proceedings
of the Companion Conference on Genetic and Evolutionary Computation, Lisbon, Portugal, 24 July 2023; pp. 219–222.

36. Deb, K.; Sindhya, K.; Okabe, T. Self-adaptive simulated binary crossover for real-parameter optimization. In Proceedings
of the 9th Annual Conference on Genetic and Evolutionary Computation, GECCO ’07, New York, NY, USA, 7–11 July 2007;
pp. 1187–1194. [CrossRef]

37. Wiesmann, A. Slow steaming—A viable long-term option. Wartsila Tech. J. 2010, 2, 49–55.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.2534/jjasnaoe.8.171
https://doi.org/10.1016/j.oceaneng.2015.07.042
https://doi.org/10.5351/KJAS.2017.30.5.633
https://doi.org/10.1016/j.tre.2020.101972
https://doi.org/10.1016/j.trd.2017.09.014
https://doi.org/10.3390/jmse9020137
https://doi.org/10.1016/j.cor.2015.04.004
https://doi.org/10.1016/0167-6105(94)90067-1
https://doi.org/10.1016/j.joes.2016.02.001
https://doi.org/10.1109/ACCESS.2020.2990567
https://doi.org/10.1016/j.oceaneng.2021.108840
https://doi.org/10.3390/jmse9121434
https://doi.org/10.1016/j.oceaneng.2022.111009
https://doi.org/10.1109/8.558650
https://doi.org/10.1016/S0736-5845(02)00068-6
https://doi.org/10.1007/s11030-010-9234-9
https://doi.org/10.1016/j.aej.2015.05.011
https://doi.org/10.1145/1276958.1277190

	Introduction 
	Problem Description and Model Establishment 
	Problem Description 
	Fuel Consumption Model 
	First Approach 
	Second Approach 

	Optimization Algorithm 
	Mathematical Model 

	Results and Discussion 
	Case Study 
	Case Study 1—93,000 DWT Bulk Carrier 
	Case Study 2—200,000 DWT Bulk Carrier 

	Sensitivity Analysis 
	Effects of Different BN-Affected Speed–Fuel Consumption Curves 
	Effects of Different Weather Direction-Affected Speed–Fuel Consumption Curves 
	Effects of Different Total Sailing Time 


	Conclusions and Prospects 
	References

