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Abstract: Autonomous Underwater Vehicles (AUVs) have emerged as pivotal tools for intricate
underwater missions, spanning seafloor exploration to meticulous inspection of subsea infrastructures
such as pipelines and cables. Although terrestrial obstacle avoidance paradigms exhibit proficiency,
their efficacy diminishes in aquatic environments due to the nuanced challenges and distinct dynamics
inherent to marine realms and AUV maneuvering. This paper presents an advanced obstacle
avoidance algorithm for AUVs based on a stream function framework. Central to this approach is the
utilization of a stream function, further nuanced by a radial histogram that serves as the defining cost
function. This work also encapsulates constraints related to the maximum allowed path curvature,
ensuring enhanced path optimization. Comprehensive simulation results validate the robustness and
adaptability of the introduced strategy, evincing its capacity to outline both practicable and optimal
evasion trajectories across diverse operational contexts.

Keywords: stream function; path-planning algorithms; obstacle avoidance AUV; fluid dynamics in
path planning

1. Introduction

AUVs are becoming increasingly important in underwater operations such as seafloor
exploration and the inspection of pipelines or cables. Their use not only promises cost
savings, but also reduces the risks associated with systems that require a human operator
on board [1]. A major challenge in the development of advanced autonomous systems is to
create real-time path planning and obstacle avoidance strategies that can effectively guide
the vehicle through unstructured environments.

Research in recent times has seen the development of numerous strategies aimed at
addressing the intricacies of path planning. Fundamentally, path-planning algorithms can
be categorized into pregenerative and reactive types [2]. The former, often known as global
path-planning algorithms, determines the path prior to the mission’s commencement.
Examples include the Free Space Network, which utilizes a directed graph reflecting
environmental properties [3] and the Cell Decomposition approach, which employs an
undirected graph based on subdividing the environment into distinct predefined cellular
structures [4]. Another notable technique is the Octree-based method, optimal for three-
dimensional environments, although it requires recursive subdivisions of mixed cells [5].
A notable limitation of these global algorithms is their rigidity in adapting paths during
active missions due to their nonreal-time nature, although they excel in delivering collision-
free paths.

However, reactive algorithms predominantly employ differential computational meth-
ods. The Potential Field method, for instance, traces the gradient of artificially produced
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potential field lines in an environment. However, this could lead to local minimum chal-
lenges, which could ensnare the vehicle or produce suboptimal solutions [6]. Solutions
such as the stream function, a variant of the harmony function, have been proposed to
counteract this [7]. This technique has witnessed its applicability in areas such as robotic
navigation, with instances of using hydrodynamic analysis to develop stream functions for
intricate geometries [8]. In particular, most existing research is focused on terrestrial and
aerial vehicles, leaving underwater applications relatively unexplored. The underwater
environment presents unique challenges. Communication is hampered due to the restric-
tive bandwidth in the underwater channels. The domain is susceptible to currents and
may span worldwide [9]. Additionally, torpedo-like vehicles exhibit strong non-holonomic
characteristics, with path curvature constraints stemming from vehicle controllability and
sonar system limitations. The limited literature focusing on the planning of underwater-
specific routes accentuates the need for innovative algorithms tailored for these demanding
conditions [1].

Recently, there has been a heightened interest in examining the path-planning capabil-
ities of AUVs through research based on streamline principles. For example, Yongqiang
et al. [10] verified the suitability of the stream function for formation control and path
planning within multi-agent frameworks. This paradigm also extends to wireless sensor
networks, where Wang et al. [11] advocated the application of the stream function to en-
hance network coverage. Deeper in marine dynamics, To et al. [12] advanced a local motion
plan for underwater vehicles, employing the stream function to increase maneuverability.
Furthermore, Nan et al. [12] embarked on a rigorous exploration of the path identification
algorithm in conjunction with the stream function. W. Cai and et al. [13] propose a fluid
mechanics-based obstacle avoidance method for AUVs in 3D IoUT, enhancing energy
efficiency and multi-obstacle avoidance through path deformation and energy models. P.
Yao et al. [14] propose an improved IIFDS-based submerged path-planning method for
autonomous underwater vehicles in intricate ocean settings. The culmination of these
studies underscores the pivotal role of streamline-based methodologies in optimizing
the functionality of various automated systems. Kazimierski et al. [15] conducted an in-
depth examination of process noise, commonly characterized as Gaussian noise with an
author-defined covariance matrix. Their approach combined rigorous analytical methods
with hands-on empirical testing, validating their theoretical insights against established
benchmarks in underwater target tracking.

This paper introduces a two-dimensional path-planning approach based on stream
functions, specifically designed for AUVs. A majority of AUVs separate depth control and
path control, making two-dimensional path planning more feasible than three-dimensional.
Notably, Forward-Looking Sonar (FLS) sensors enable three-dimensional navigation, but
they mainly scan laterally, usually providing information in the xy plane. Given these
observations, the research accentuates the utility of a two-dimensional stream function.
Introduced herein is a streamline function methodology for singular obstacle evasion, with
mathematical validations elucidating the generated stream path’s aptitude for obstacle
circumvention sans local minima confrontations. To prove the effectiveness of the proposed
path-generation method, the path planning was conducted in accordance with the require-
ments of the FLS sensor installed on the newly developed LIG Nex1 AUV. The LIG Nex1
AUV, developed by LIG NEX1, is the AUV chosen as the target system for this study. The
efficiency of the designed path model was then assessed through detailed simulations in
collaboration with the on-board control system.

This paper presents two contributions. First, a mathematical analysis of the streamline-
based obstacle avoidance algorithm has been performed, demonstrating that the proposed
technique does not encounter a local minimum. Second, the effectiveness of the path-
planning algorithm has been validated through simulations based on AUV dynamics,
using obstacle detection sensors on an actual AUV model.

The subsequent sections of this paper are structured as follows. Section 2 delves
into preliminaries on the stream function and its path-planning applications. Section 3
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explicates the proposed methodology. Section 4 presents a case study accompanied by
simulation results. Finally, Section 5 concludes the paper.

2. Preliminaries

The study of flows of incompressible, inviscid and irrotational fluids hinges on the
potential function, a fundamental concept that allows for the formal representation of such
flows. The stream function, a broader mathematical construct, encapsulates both spatial
coordinates and temporal progression. Its existence is intrinsically tied to the principles of
continuity and incompressibility that govern fluid dynamics, with empirical observations
indicating its presence even in viscous media [16].

In the framework of infinitesimal increments, denoted as δx and δy, velocity compo-
nents aligned to the respective axes, represented as u and v, adhere to the following relation:

u = −∂ψ

∂y
, v =

∂ψ

∂x
(1)

Here, the velocities u and v pertain to the x and y directions, correspondingly. The term
∇2ψ epitomizes the vorticity of fluid flow. An irrotational flow within a domain Ω satisfies
∇2ψ = 0, ψ is a harmonic function on Ω [17]. It is a well-known fact that harmonic
functions do not possess any local optimum [18]. Consequently, stream functions also lack
local optimum.

This work harnesses the representation of the stream function through complex equa-
tions. In this context, the marriage between stream and potential functions yields the
following complex equation:

Definition 1. Complex Potential Given φ and ψ as the velocity potential and stream function
describing the irrotational bidimensional movements of an inviscid fluid, the associated complex
potential ω is given by:

ω = φ + iψ (2)

This results in the following velocity components:

∂φ

∂x
=

∂ψ

∂y
,

∂φ

∂y
= −∂ψ

∂x
(3)

This relationship precisely aligns with the Cauchy–Riemann equations, signifying that ω operates
as a holomorphic function of the complex variable z = x + iy, in regions where φ and ψ are singular.

A fundamental proposition in using stream functions within path-planning algorithms
stems from the inherent ability of the stream function to depict a continuous, smooth
trajectory devoid of local extremes. The crux lies in devising a complex stream function
sensitive to the positional nuances of obstacles, thereby facilitating an intricate obstacle
avoidance technique in alignment with streamlines.

Upon introducing an obstacle into a flow, the incumbent boundary condition necessi-
tates the flow to be tangential to the obstacle’s surface. This is in tandem with the consistent
nature of the stream function on an obstacle surface, as ψ maintains uniformity along a
streamline. To identify a streamline that envelopes the specified obstacle, one must calibrate
the imaginary component of the complex potential function to be consistent.

The subsequent theorem, known as the Circle Theorem, elucidated in [16], delves into
the dynamics of the complex potential with an integrated boundary condition.

Theorem 1. Circle Theorem [16] considers an irrotational, bidimensional flow of an incompressible
inviscid fluid across the z-plane devoid of rigid boundaries. If the complex potential of the flow is
denoted by f (z), and all singularities of f (z) lie beyond a distance r from a reference point b, then
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the introduction of a circular cylinder, characterized by its cross-sectional circle C where |z− b| = r,
alters the complex potential as:

ω = φ + iψ = f (z) + f̄
(

r2

z− b
+ b̄
)

(4)

Proof. A detailed proof is articulated in [16].

Here, f̄ denotes the conjugate function, while b̄ represents the associated conju-
gate variable in the complex plane. The obstacle b is expressed in its complex form as
b = ox + oyi, where ox and oy designate the coordinates of the obstacle in the x and y axes,
respectively. Similarly, the position (z) is expressed as z = x + yi.

The Circle Theorem provides a framework for constructing the vehicle’s stream func-
tion using primitives located in arbitrary positions. A particularly salient primitive for
AUVs is the sink, represented by fs:

fs(z) = −K ln(z) (5)

where K ∈ R+ denotes the strength of the associated singularity.
Given that the sink is positioned at the origin and an obstacle is situated at (ox, oy),

the complex potential ω, by invoking the Circle Theorem, becomes:

ω = −K ln(z)− K ln
(

r2

z− b
+ b̄
)

(6)

The ensuing stream function, derived from the imaginary component of Equation (6), is
expressed as:

ψ(z) = ψs(z) + ψo(z) = −K tan−1
( y

x

)
− K tan−1

 r2(y−oy)

(x−ox)2+(y−oy)2 + oy

r2(x−ox)
(x−ox)2+(y−oy)2 + ox

 (7)

In the above relation, ψs and ψo denote the stream function components for the sink and the
obstacle, respectively. The detailed derivation of Equation (7) is explained in Appendix A.

3. Obstacle Avoidance Path Based on Stream Function
3.1. Design of Stream Function for Path Planning

In this study, a novel path-planning approach for AUV in a two-dimensional plane
is introduced. This methodology requires three pivotal coordinates: the starting point,
the location of the obstacle and the destination. The stream function, as articulated in
Equation (7), omits the target location, maintaining the origin as the fixed starting point.
Consequently, the objective is to devise a flow function that encompasses the target location.
A comparison is made between the conventional stream function and the proposed ap-
proach, in which the source primitive symbolizes the target location, and the sink primitive
denotes the start position. The complex potential function (6) is extended to incorporate
this additional dimension, detailed as follows:

ω = −K ln(z− s) + K ln(z− g)− K ln
(

r2

z− o
+ ō
)

(8)
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The coordinates of the starting and goal points are represented by s = sx + syi and
g = gx + gyi, respectively. Consequently, the stream function is calculated as follows:

ψ(z) = ψs(z) + ψg(z) + ψo(z)

= −K tan−1
(

y− sy

x− sx

)
+ K tan−1

(
y− gy

x− gx

)
− K tan−1

 r2(y−oy)

(x−ox)2+(y−oy)2 + oy

r2(x−ox)
(x−ox)2+(y−oy)2 + ox

 (9)

Here, ψg(z) represents the stream function component for the goal point.
Given the AUV’s heading as θh, the waypoint for an avoidance path can be computed

using the following relations:

x(t + 1) = x(t) + L cos θh(t), (10)

y(t + 1) = y(t) + L sin θh(t), (11)

where L denotes the movement distance and θh(t) represents the heading angle at time t.
This formulation transforms the coordinate components of the waypoint determination
from (x, y) to (L, θh(t)). The core objective of this investigation is to identify the opti-
mal heading angle, θh(t), ensuring that the waypoint (x, y) is contained within C f . It is
noteworthy that the movement distance L is inherently determined by the vehicle’s speed.

In the context of this study, the stream function plays a crucial role in determining
the optimal heading angle. The objective is to ascertain the optimal heading angle, θopt(t),
such that it minimizes a defined cost function. Formally, the problem can be framed as:

θopt(t) = arg min
θ

fcost(θ(t)). (12)

The function fcost(θ(t)) quantifies the desirability of each potential heading angle. A
representative cost function, constructed using the stream function, is given by:

f (θ(t)) = ‖ψ(x(t) + L cos θ(t) + i · (y(t) + L sin θ(t)))‖2, (13)

where the pair (x(t), y(t)) delineates the boundary coordinate of the sonar’s fan-shaped
search zone. Through this cost function, the magnitude of the flow function is calculated,
with θopt(t) being the angle that yields the minimal value of the flow function.

To bolster the robustness of the approach, this study introduces a histogram-based
technique for the cost function. Specifically, a radial histogram formulation is proposed:

fcost(t) =
ls

∑
l=0

θh(t−1)+θs

∑
θ=θh(t−1)−θs

‖ψ(x0 + l cos θ + i · (y0 + l sin θ))‖2, t > 2, (14)

where θh(t − 1) denotes the AUV’s prior heading angle. The parameter ls signifies the
maximum detection range of the FLS and θh(0) represents the AUV’s initial heading angle.

3.2. Characteristic of Forward Looking Sonar

A crucial challenge in AUV deployment concerns the measurement methodologies
adopted. Predominantly, sonar sensors are employed for obstacle detection, with their
emitted acoustic signals undergoing a series of intricate signal and image processing
transformations prior to visualization. Although this manuscript does not delve extensively
into the nuances of image processing or enhancements in sonar efficiency, the repercussions
of these preprocessing phases warrant consideration. This discourse is predicated on
several foundational assumptions:

• Every obstacle within the search area is identified post-preprocessing.
• The discerned data include only the position and distance of the obstacles.
• Pre-processing procedures are sufficiently rapid to facilitate real-time operations.
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In the present investigation, the characteristics of the FLS sensor were incorporated
to enhance the accuracy of the path planning for AUVs. The FLS sensor, integrated into
the LIG AUV, covers a scanning ambit of 120 degrees, systematically segmented into
60 bins. Each bin, with an angular breadth of 2 degrees, furnishes data on five discrete
distances. Furthermore, the vertical scanning range of the sensor extends to 15 degrees.
The fundamental coordination of the FLS is depicted in Figure 1a and images captured
from the actual sensor are presented in Figure 2. Within these figures, obstacles are denoted
by a red dot, whereas dots of varying colors signify reflections of diminished intensity. The
designated search angle in the figure is 90 degrees with a maximum detectable range of
100 m. As a result, the FLS of the LIG Nex1 AUV produces a matrix, denoted as DFLS,
described as:

DFLS =


d1,1 d1,2 . . . d1,5
d2,1 d2,2 . . . d1,5
. . . . . . . . . . . .

d60,1 d60,2 . . . d60,5

 (15)

where di,j denotes the distance of the target with the jth intensity at the ith angle. If no
obstacle is detected at the ith scanning angle, then di,jk∀k is set to 0.

(a) Coordination of FLS
(b) Sensor and Processing board of FLS

Figure 1. FLS of LIG Nex1 AUV.

Figure 2. Raw data visualization of LIG Nex1 AUV’s FLS sonar.
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In conventional marine navigation settings, encounters with various obstacles are
sporadic. Although path planning for terrestrial robots in intricate environments has been
thoroughly examined, underwater terrains inherently span three dimensions. Floating
objects, potentially perceived as underwater obstacles, are seldom observed in operational
contexts. A particularly intricate component involves detecting obstacles and gauging
their positions using sensors like the FLS. This study delves into a technique for obstacle
recognition leveraging DFLS data, seamlessly integrating this identification within the
streamline path-planning approach. Let θB

i denote the scanning angle of the ith bin of the
FLS sensor and let B(θ) represent the index value of the bin that encompasses an arbitrary
angle θ. Figure 3 illustrates an example of DFLS generated by LIG Nex1 AUV’s FLS during
the detection of single obstacles. Obstacles manifest as clusters in the values, and based
on the perspective of the unmanned submersible, the distances from the obstacle can be
derived from the index values of the most left angle θB

l and the most right angle θB
r . When

an obstacle is detected, evasion must be carried out based on the information of the nearest
obstacle. Thus, for each bin, the information about the closest obstacle to evasion can be
defined as follows:

Di =
5

min
k=1

di,k (16)

The size of the detected obstacle os can be estimated as follows when a single obstacle
is identified:

Figure 3. Example of the search angle and result matrix values when an obstacle is detected by
the FLS.

os =

∣∣θB
l − θB

r
∣∣∣∣B(θb

r )− B(θb
l )
∣∣ θB

r

∑
θ=θB

l

Dθ (17)
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Furthermore, the location of the obstacle (ox, oy) and the distance between obstacle and
AUV od can be estimated as described below,

od =
1∣∣B(θb

r )− B(θb
l )
∣∣ θB

r

∑
θ=θB

l

Dθ (18)

ox = x + od(k) cos(
θB

l + θB
r

2
) (19)

oy = y + od(k) sin(
θB

l + θB
r

2
) (20)

where x, y are the position of the AUV.

3.3. Design of Avoidance Path Planning for Single Obstacle

In general aquatic environments, excluding the topography, most obstacles in a floating
state are often singular. Therefore, the initial focus is on the methodology for generating
obstacle avoidance paths in the presence of a single floating obstacle. Assume that there
are n waypoints generated by the global path technique. If the kth waypoint is denoted
as P(k) = (xp(k), yp(k)), then the obstacle avoidance path generated when moving to the
next waypoint (k + 1)th can be formed using the stream function ψs(z) such as defined:

ψs(z) = |ψk(z) + ψk+1(z)|+ |g(ψo(z))| (21)

ψk(z) = −K tan−1
(

y(t)− yp(k)
x(t)− xp(k)

)
(22)

ψk+1(z) = K tan−1
(

y(t)− yp(k + 1)
x(t)− xp(k + 1)

)
(23)

where the function g(ψo(z)) is defined as:

g(ψo(z)) =

{
ψo(z) if od ≥ os

ρo otherwise
(24)

where ρo denotes the minimum bias value of the obstacle’s stream function.

Assumption 1. The AUV traverses between two waypoints, P(k) and P(k+ 1). When its position,
denoted by x(t) and y(t), nears P(k + 1), the index k increments. The criterion to determine if the
AUV has reached the designated waypoint is when the distance between the AUV and P(k + 1) is
less than the safety threshold Rs.

Theorem 2. Consider an AUV with a maximum radius ra. Let an obstacle of radius os be positioned
at (ox, oy) ∈ R. The AUVs avoid the obstacle between waypoint P(k) and P(k + 1) if and only if:

ρo > 2lsθs‖ψmax‖2 (25)√
(∆gx)2 + (∆gy)2 >

√
(∆ox)2 + (∆oy)2 + r + ra (26)

where ∆ox = ox − xp(k), ∆oy = oy − yp(k), ∆gx = xp(k + 1) − xp(k) and ∆gy = yp(k +
1)− yp(k). ψmax is the peak value of the stream function ψ(z) outside the obstacle zone. ls is the
maximum range of FLS sonar. θs is the maximum search angle of FLS. Then, collision-free local
waypoints between P(k) and P(k+1) are calculated by:

x(t + 1) = x(t) + L cos(θh(t)) (27)

y(t + 1) = y(t) + L sin(θh(t)) (28)
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where the optimal avoidance angle θh is determined as:

θh(t) = arg min
θ

 ls

∑
l=1

θh(t−1)+θs

∑
θ=θh(t−1)−θs

‖ψs(x(t) + l cos(θ) + i(y(t) + l sin(θ)))‖2

 (29)

Proof. The proof is to substantiate two propositions:
1. Collision avoidance: The path does not intersect the obstacle.
Given the cost function fcost defined for (x, y) /∈ O, the following relationship

is established:

θh(t−1)+θs

∑
θ=θh(t−1)−θs

‖ψm(x(t) + L cos(θ) + i(y(t) + L sin(θ)))‖2 <

θh(t−1)+θs

∑
θ=θh(t−1)−θs

‖ψmax‖2 < 2lsθs‖ψmax‖2 (30)

If ρo > 2lsθs‖ψmax‖2, then:

fcost(z1) < fcost(z2), where z1 /∈ O and z2 ∈ O (31)

This ensures the absence of points (x(t) + cos(θh), y(t) + sin(θh)) in the obstacle region,
confirming our first assertion.

2. Path Validity: The path begins at P(k) and concludes at P(k + 1).
Consider two stream functions as defined by:

ψk(z) + ψk+1(z) = −C tan−1(m1) + C tan−1(m2) (32)

where m1 =
y(t)− yp(k)
x(t)− xp(k)

, m2 =
y(t)− yp(k + 1)
x(t)− xp(k + 1)

(33)

Similarly, the obstacle stream function can be expressed as:

ψo(z) = tan−1
(

r̂
y(t) + (1/r̂− 1)oy

x(t) + (1/r̂− 1)ox

)
(34)

where r̂ = o2
s /{(x(t)− ox)2 + (y(t)− oy)2}. The modified stream function is:

ψm(z) = | − C tan−1(m1) + C tan−1(m2)|+
∣∣∣∣g(tan−1

(
r̂

y(t) + (1/r̂− 1)oy

x(t) + (1/r̂− 1)ox

)
)

∣∣∣∣ (35)

The optimal path is achieved by selecting the angle yielding the minimum mean square sum
from Equation (41). This minimum is primarily influenced by the values of ψk(z) +ψk+1(z),
which is least when:

C tan−1(m1) = C tan−1(m2) (36)

This results in ψk(z) + ψk+1(z) having a minimum at (x, y) which satisfies:

y =
yp(k + 1)− yp(k)
xp(k + 1)− xp(k)

x + yp(k)−
yp(k + 1)− yp(k)
xp(k + 1)− xp(k)

xp(k) (37)

This equation encompasses both the starting and ending points. Additionally, all stream-
lines converge to (xp(k), yp(k)) and (ox, oy) since ψk(z) and ψk+1(z) represent the primary
sources of sink and source. This validates our second assertion.
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3.4. Path Generation Considering the Motion of AUV

The torpedo-like AUV has its propellers and control fins at the after body. This strategic
placement gives the AUV the ability to maneuver while maintaining forward propulsion.
The control fins of an AUV largely determine the shape of its trajectory, particularly its
curved path. When in a steady operational state, this force helps identify the minimum
possible turning radius Rt(u). Therefore, when making a plan for the trajectory, it is
essential to take into account this minimum turning radius.

In a stabilized state, the external force Next that influences the turning angle ψ can be
summarized as follows [19]:

∑ Next = Nhydrostatic + Nli f t + Ndrag + Ncontrol (38)

Ncontrol = Nuuqδr u2δr (39)

where Nhydrostatic is hydrostatic force, Nli f t is body lift force and Ndrag is drag force. δr
denotes the angle of the control fin of the rudder. Although most external forces change
in relation to velocity, the control force varies in proportion to the square of the velocity.
Therefore, in a stabilized state, it is possible to estimate the maximum turning angle ψm(u)
based on velocity. Estimation of the maximum turning angle ψm(u) is commonly achieved
through simulations of sea elevation. Due to variations in the hydrodynamic coefficients
based on the shape of the AUV, it is challenging to define a generalized maximum value.
Once the maximum turning angle is defined, it can be incorporated into the previously
proposed path-planning technique.

Figure 4 presents the results of the simulation of the maximum rotation at 3 kt from the
stabilized motion model mentioned above. While a driving control command for rotation
was given at 6 degr/s, it can be observed that the maximum rotational speed is limited to
5 deg/s. The maximum deflection angle of the rudder is limited to 14 degrees and maintains
this maximum angle during rotation, as shown in Figure 4. The maximum rotation angle
was calculated based on the maximum rotation angular velocity rmax obtained from the
simulation, utilizing the FLS’s maximum detection distance ls and speed u as follows:

ψm(u) = rmax
ls
u

(40)
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Figure 4. Maximum rotation radius simulation at 3 kts with 6 degree heading angle.
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The proposed path-planning method is formulated around finding the optimal avoid-
ance angle based on obstacle locations determined via FLS and the current position of the
AUV. By integrating the turning constraints of the AUV into the optimal obstacle avoidance
angle, a trajectory that takes into account the AUV’s motion can be formulated. Then, the
optimal avoidance angle θh considering AUV’s motion constraints is calculated as:

θh(t) = arg min
θ

 ls

∑
l=1

θh(t−1)+θd

∑
θ=θh(t−1)−θd

‖ψs(x(t) + l cos(θ) + i(y(t) + l sin(θ)))‖2

 (41)

where θd is the minimum value between the maximum turning angle ψm(u) and the
maximum detection angle θs.

4. Simulation Results and Analysis

The proposed streamline-based path-planning method addresses both the generation
of obstacle avoidance trajectories in intricate maritime scenarios and the facilitation of local
path planning amidst waypoints. An inherent attribute of the trajectories produced through
this approach is their alignment with rational principles, facilitating the navigation of AUV.
The effectiveness of this method was evaluated through obstacle avoidance simulations
based on the AUV motion model developed by LIG Nex1. As shown in Figure 5, the
characteristics of the obstacle avoidance sensors incorporated into the LIG Nex1 AUV were
considered. For an authentic simulation environment, real-world representative obstacle
data derived from these sensors were utilized. The chief specification of the in-use FLS is
as follows:

• Feasible operating range: 30 m.
• Horizontal beam width: 120◦.

Note that the insonified region of FLS is not included in the simulation results
presented.

Figure 5. Mock-up of LIG Nex1 AUV (FLS sonar is installed in front head in real AUV).

4.1. Obstacle Avoidance Standalone Simulation

A comprehensive performance assessment of the path-generation algorithm was
performed through simulations. These simulations were designed to both evaluate the
algorithm’s efficacy against generic obstacle patterns and test its robustness in overcoming
obstacles leading to local minima. The primary objective is to empirically validate its
robustness and feasibility. For consistency, each simulation was conducted under the
assumption that the dimensions of the underwater environment are (100 m × 100 m).
Furthermore, the AUV is abstracted as a particle with a radius of 2 m. The threshold
bias value, ρ0, is designated as 105. This value sufficiently satisfies the condition given by
Equation (25) in Theorem 2, particularly as ψmax remains below 103 across all underwater
environmental points.
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Figure 6 highlights the local minimum dilemma often encountered in potential field
methods. Here, the AUV speed is set to (1 m/s) with a sonar operating range of 20 m.
Traditional potential-field techniques tend to cause the AUV to stall in front of U-shaped
obstacles. On the contrary, our proposed stream function-centric approach successfully
navigates these challenges, generating smooth paths for obstacle avoidance.
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m

Figure 6. Illustration of the local minimum challenge in potential fields.

Figures 7 and 8 represent scenarios with increased navigational complexity. The algo-
rithm consistently produces reliable avoidance paths in the majority of these complicated
cases. Ensuring an AUV’s precision in following the designated trajectory is paramount.
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Figure 7. AUV avoidance path in a multifaceted environment (Scenario I).
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Figure 8. AUV avoidance path in a multifaceted environment (Scenario II).

4.2. Integrated Obstacle Avoidance Simulation

To determine whether the proposed route is easily navigable for the autonomous
underwater vehicle, a simulation that integrates both the control algorithm and the motion
model is essential. To implement the proposed obstacle generation technique in the actual
control algorithm, a simulation framework was designed, as shown in Figure 9, which
encompasses the AUV’s motion dynamics, path-planning algorithm and virtual obstacle
management. The motion dynamics, calculated in real-time, utilize a 6-degrees-of-freedom
equation to derive the AUV’s posture and position. The Mission Management module
orchestrates AUV operations and formulates the overarching mission trajectory. Within this
simulated environment, the dynamics and obstacle data converge to generate virtual obsta-
cles, currently focusing solely on circular-shaped challenges. The obstacle avoidance sonar
model, mirroring the functionalities of the FLS, identifies these virtual impediments and
provides pertinent data. Core path planning, capitalizing on a streamline-based algorithm,
discerns optimal traversal paths and depths. The entire navigation process culminates with
a nonlinear controller guiding the AUV based on this predetermined trajectory and depth.
All components were conceptualized and instantiated using MATLAB.

Figure 9. Simulation configuration for LIG AUV model.

Figure 10 illustrates the trajectories of an AUV travelling at 4 knots and navigating
between waypoints 150 m apart, with a sonar detecting range of 30 m and a maximum
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turning angle of 120◦. The strategic placement of obstacles modulated the trajectories and
the changes were highlighted. Additionally, Figure 11 shows the control output fluctuations
due to depth changes for avoiding obstacles. Complicated paths may make control angles
to their limits, possibly slowing down the AUV and increasing energy usage. As more
obstacles are added, the navigation path lengthens, causing the control panel’s operation to
slow down. The chattering phenomenon in the control angle is not due to the generated
path but is inherent to the nonlinear controller’s characteristics. During actual navigation,
many sensors provide directional input. To robustly handle this input, the controller has
an uncontrolled region set, which leads to the chattering effect. The occurrence of chatter
indicates a small error between the commanded and actual path, suggesting that the path
is easily navigable for the autonomous underwater vehicle. Upon the second obstacle
avoidance, one can observe a pronounced curve in the path as illustrated in Figure 10.
However, examining the rudder angle shows that while it briefly maintains its maximum
value for the initial rotation maneuver, it does not utilize the entire deflection angle for the
subsequent path control. This indicates that the proposed path is traceable. The reason for
maintaining the initial maximum deflection is to alter the initial direction, a phenomenon
executed to avoid rapid obstacles.
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Figure 10. Comparison of simulation trajectories with various obstacle conditions.
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Figure 11. Comparison of control fins with various obstacle conditions.

5. Conclusions

This paper proposed the development of an obstacle avoidance algorithm for AUVs
that utilizes a stream function. Recent studies have shown a growing interest in stream
function-based approaches, and this work defines a path-planning problem based on the
stream function to identify the optimal traversal path. It was shown that the derived optimal
path for a single obstacle is free of collisions and local minima. Additionally, a methodology
was proposed to generate paths within avoidance capabilities, taking into account the
turning radius of torpedo-shaped AUVs. The proposed path-planning technique was then
integrated with the FLS specifications used in a prototype AUV and linked to a motion
model-based controller. This approach was not only used for path planning but was also
extended to simulations of the entire mission, thus demonstrating its effectiveness. Future
research will aim to confirm the stable obstacle avoidance in real-sea conditions through
field tests, integrating the obstacle sensor and the controller in actual scenarios.

Author Contributions: Conceptualization, M.H.K.; methodology, M.H.K.; software, T.Y.; validation,
T.Y. and M.H.K.; formal analysis, M.H.K.; investigation, M.H.K. and T.Y.; resources, S.J.P.; data
curation, T.Y.; writing—original draft preparation, M.H.K.; writing—review and editing, K.O.; su-
pervision, K.O.; project administration, M.H.K. and K.O. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



J. Mar. Sci. Eng. 2023, 11, 1998 16 of 17

Appendix A. Derivation of the Stream Function

The Circle Theorem yields the complex potential ω as:

ω = −K ln(z)− K ln
(

r2

z− b
+ b̄
)

, (A1)

where z is the complex position of a point in the flow. b = ox + ioy is the complex position
of the obstacle. b̄ is its complex conjugate. r denotes the radius associated with the obstacle.

The stream function ψ(z) is derived from the imaginary part of ω. Leveraging the
characteristic of the imaginary segment of a complex logarithm, the following is established:

=(ln(z)) = tan−1
(
=(z)
<(z)

)
. (A2)

Dissecting the terms individually:
For the sink term:

=(−K ln(z)) = −K tan−1
(
=(z)
<(z)

)
, (A3)

Given z = x + iy, (A4)

ψs(z) = −K tan−1
( y

x

)
. (A5)

For the obstacle-induced term:

=
(
−K ln

(
r2

z− b
+ b̄
))

(A6)

Given:

z = x + iy,

b = ox + ioy,

it is deduced as:

z− b = (x− ox) + i(y− oy), (A7)

|z− b| =
√
(x− ox)2 + (y− oy)2. (A8)

Continuing the derivation:

r2

z− b
=

r2(x− ox)

(x− ox)2 + (y− oy)2 + i
r2(y− oy)

(x− ox)2 + (y− oy)2 . (A9)

Combining with b̄, the real and imaginary components are:

<
(

r2

z− b
+ b̄
)
=

r2(x− ox)

(x− ox)2 + (y− oy)2 + ox, (A10)

=
(

r2

z− b
+ b̄
)
=

r2(y− oy)

(x− ox)2 + (y− oy)2 + oy. (A11)

Extracting the imaginary component:

ψo(z) = −K tan−1

 r2(y−oy)

(x−ox)2+(y−oy)2 + oy

r2(x−ox)
(x−ox)2+(y−oy)2 + ox

. (A12)
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Incorporating both the sink and obstacle components, the total stream function
becomes:

ψ(z) = ψs(z) + ψo(z). (A13)
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