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Abstract: The problem of sound propagation in a shallow sea with a rough sea bottom is con-
sidered. A random matrix approach for studying sound scattering by the water–bottom interface
inhomogeneities is developed. This approach is based on the construction of a statistical ensemble of
the propagator matrices that describe the evolution of the wavefield in the basis of normal modes.
A formula for the coupling term corresponding to inter-mode transitions due to scattering by the
sea bottom is derived. The Weisskopf–Wigner approximation is utilized for the coupling between
waterborne and sediment modes. A model of a waveguide with the bottom roughness described
by the stochastic Ornstein–Uhlenbeck process is considered as an example. Range dependencies of
mode energies, modal cross coherences and scintillation indices are computed using Monte Carlo
simulations. It is shown that decreasing the roughness correlation length enhances mode coupling
and facilitates sound scattering.

Keywords: ocean acoustics; sound scattering; random matrix theory; wavefield propagator;
sea bottom roughness

1. Introduction

Sound scattering by random inhomogeneities of the marine environment is one of
the fundamental problems in ocean acoustics. Usually, multiple scattering of acoustic
signals causes phase and amplitude fluctuations and complicates interference pattern and
dispersion characteristics [1]. This process acts as an obstacle preventing the application of
acoustic methods to solving various practical problems in marine science, e.g., underwater
communication and navigation [2–5], or hydroacoustical tomography [6–10].

The stochastic nature of inhomogeneities anticipates the usage of statistical methods
for their description. Typically, longitudinal inhomogeneities of the marine environment
are relatively weak and can be fairly described as perturbations superimposed onto a
range-independent waveguide, in which the acoustic field is conveniently described in
terms of normal modes. This explains why mode-based approaches taking the effect of
scattering into account via the mode coupling are widely used in underwater acoustics
community [11].

One of the most popular approaches is the derivation of coupled kinetic equations for
ensemble-averaged modal intensities. It was originally proposed in the seminal work of
Tappert of Dozier [12], and further developed in a series of papers [13–16]. The ray-based
theory of mode coupling was developed by Virovlyansky [17]. In the present paper, we
consider another promising approach based on the construction of a wavefield propagator
based on the random matrix theory [18,19]. By definition, a propagator is an operator that
governs wavefield evolution in the course of its propagation along the waveguide [20].
The matrix representation of the propagator can be obtained using the basis of normal
modes, and the matrix elements are complex-valued random amplitudes of intermode
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transitions (the propagator matrices considered here are not to be confused with the ones
emerging in the vector–matrix formalism [21] for the representation of the solutions for
wave equations). The main advantage of this approach is the possibility to take into account
interference effects within a full-wave picture. We conducted early studies of a wavefield
propagator for idealized range-periodic waveguides in the context of the wave chaos
problem [22–24]. The propagator properties for waveguides with random inhomogeneities
caused by linear internal waves were considered in [25–27]. The case of nonlinear internal
waves was considered in [28–30]. In [31], this approach was generalized onto the case of
waveguides with adiabatic longitudinal variations. The propagator taking into account
temporal variability of the medium was considered in [5].

In the majority of works concerning the wavefield propagators for randomly inhomo-
geneous waveguides, deep-water propagation scenarios with volumetric inhomogeneities
were investigated. At the same time, the propagators describing sound scattering on ran-
dom sea bottom roughnesshave not been thoroughly studied until now. Indeed, scattering
from rough surfaces is a fairly extensive field of wave physics (see, for example, a brief
review [32], or another paper from the present special issue [33]). However, multiple scat-
tering from roughness in waveguides has some specific features and still is a predominantly
open problem. Sound scattering of this kind has a lot in common with the general problem
of wave transport in disordered quantum mesoscopic waveguides [34,35], and some of the
ideas of the matrix propagator theory are drawn from there (this issue is discussed in [18]).
In fact, the problem of scattering from bottom roughness is of great importance for shallow-
sea acoustics, mainly due to the fact that in real-world applications, the information on
the bathymetry is often insufficiently accurate. To our knowledge, the first paper studying
acoustic mode interaction in a waveguide with range-dependent bathymetry is [36]. A
kind of a wavefield propagator for a shallow sea was studied in [37], where a waveguide
with randomly perturbed interfaces was considered, and the staircase approximation was
used for the interface representation. In addition, we can mention the paper [38] devoted
to the effect of scattering from the rough sea bottom on modal energies, and the paper [39]
with the application of the cross-section method to a waveguide with random bathymetry.

In the present paper, we develop a theoretical approach that goes beyond the staircase
approximation used in [37] and allows one to take into account the actual form of the
sea bottom roughness. In addition, the particular case of the roughness described by the
stochastic Ornstein–Uhlenbeck process is considered.

The paper is organized as follows. In the next section, we represent the general
theory of the non-unitary matrix propagator for a shallow sea. Section 3 is devoted to the
construction of the matrix propagator in the presence of bottom roughness. The particular
case of the roughness described by the Ornstein–Uhlenbeck process is analyzed in Section 4.
Section 5 presents the result of the numerical simulation of a model waveguide with a
near-bottom sound channel. In the Discussion setion, we summarize the main results and
outline the ways of further development of the approach.

2. General Theory

We start with the Helmholtz equation in cylindrical coordinates r, θ, z. Under the
assumption that azimuthal coupling is weak (i.e., the derivative with respect to θ can be
neglected), it can be written as

∂2P
∂r2 +

1
r

∂P
∂r

+ ρ
∂

∂z

[
1
ρ

∂P
∂z

]
+ k2

0n2P = 0 , (1)

where r is the range, z is the depth, P(r, z) is the acoustic pressure, ρ is the density,
k0 = 2π f /c0 is a reference wavenumber, c0 is a reference sound speed, and n(r, z) is
the refractive index. Invoking the far-field approximation and neglecting back-scattering,
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we can transform Equation (1) to a one-way equation for the wavefield envelope function
Ψ = P

√
k0r exp(−ik0r):

∂Ψ
∂r

= ik0
(
Q̂− 1

)
Ψ , (2)

where the prefactor
√

k0r takes into account cylindrical sound spreading, and the operator
Q̂ is given by the expression [40]

Q̂ =

√
n2 +

1
k2

0
ρ

∂

∂z

[
1
ρ

∂

∂z

]
. (3)

The solution of Equation (2) can be formally written in terms of the propagator Ĝ defined as

Ψ(r, z) = Ĝ(r, r0)Ψ(r0, z) . (4)

In order to facilitate the calculation of Ĝ, it is reasonable to use the basis of normal modes,
i.e., solutions of the Sturm–Liouville problem [40]

k2
0Q̂2Ψm = k2

rmΨm , (5)

with properly imposed boundary and interface conditions [40]. A wavefield can be repre-
sented as an expansion over normal modes:

Ψ(r, z) = ∑
m

am(r)Ψm(z) . (6)

The amplitude of the m-th mode is determined as

am(r) =
h∫

z=0

Ψ∗m(r, z)Ψ(r, z)
ρ(z)

dz . (7)

Hereafter, we consider the case of weak range dependence, assuming that the operator
Q̂ can be expressed as a sum of the range-independent part Q̂0 and a small perturbation
V̂, i.e.,

∂Ψ
∂r

= ik0
(
Q̂0 + V̂(r)− 1

)
Ψ . (8)

In the rest of this study we assume that modes in the Sturm–Liouville problem (5) are
computed for Q̂ = Q̂0, i.e., for the reference range-independent waveguide.

Substituting the ansatz (6) into Equation (8), and taking into account that Ψm satisfies (5)
for Q̂ = Q̂0, we obtain a system of coupled equations for the modal amplitudes am(r):

dam

dr
= i(krm − k0)am + ik0 ∑

n
Vmn(r)an , (9)

where
Vmn(r) =

∫ 1
ρ(z)

Ψ∗m(z)V̂(r)Ψn(z) dz (10)

are the matrix elements of the operator V̂. Equation (9) is similar to the perturbation theory
for the Schrödinger equation in the way it is derived in [41], where the wave function of
the perturbed (time-dependent) quantum system is represented in the form of expansion
over the eigenstates of its counterpart with the time-independent Hamiltonian. Other
approaches to the derivation of the mode coupling equations can be found in [11,40,42–44].

Using the substitution

bm(r) = am(r)e−i(krm−k0)r , (11)
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we can transform Equation (9) to the following form:

dbm

dr
= ik0 ∑

n
Vmnei(krn−krm)rbn . (12)

It is formally equivalent to a Volterra-type integral equation

bm(r) = bm(r = r0) + ik0 ∑
n

r∫
r′=r0

Vmnei(krn−krm)r′bn(r′) dr′ . (13)

The respective expression for mode amplitudes am reads as

am = ei(krm−k0)r

am(r = 0) + ik0 ∑
n

r∫
r′=0

Vmn(r′)ei(krn−krm)r′ an(r′) dr′

 . (14)

Basically, there are two kinds of modes in a shallow-water waveguide: waterborne
modes with weak attenuation, and modes predominantly propagating inside the bottom
sediment layer and experiencing strong losses. In practice, the latter ones are poorly known
(due to the lack of data about precise bottom structure), and it is reasonable to exploit the
fact that their contribution to the field is relatively small. This can be performed in the
spirit of the Weisskopf–Wigner approach that is well known in the theory of open quantum
systems [45]. Without loss of generality, we can assume that waterborne modes correspond
to m ≤ M, and modes with m > M have maxima in the bottom.

The expansion (6) can be rewritten as

Ψ(r, z) =
M

∑
m=1

bm(r)ei(krm−k0)rΨm(z) +
Mmax

∑
m=M+1

bm(r)ei(krm−k0)rΨm(z) , (15)

where Mmax is the total number of discrete-spectrum modes taken into account. Separating
the contributions of water and sedimental modes in (12), we have

dbm

dr
= ik0

M

∑
n=1

Vmn(r)ei(krn−krm)rbn + ik0

Mmax

∑
n=M+1

Vmn(r)ei(krn−krm)rbn . (16)

Waterborne and sedimental modes overlap weakly; therefore, transitions between
them can be considered a second-order effect. Except for very low frequencies, the sed-
imental modes have very strong attenuation; therefore, we can neglect the scattering of
acoustic energy from sedimental to water modes. Since it is natural to assume that only the
water modes are excited at r = r0, it means that solutions for the sedimental modes can be
written as

bn(r) = ik0

Mmax

∑
n′=1

r∫
r′=r0

Vnn′(r
′)ei(krn′−krn)r′bn′(r

′) dr′, n > M . (17)

Substituting (17) into (16), we obtain equations for modes with m ≤ M

dbm

dr
= ik0

M

∑
n=1

Vmn(r)ei(krn−krm)rbn

− k2
0

Mmax

∑
n=M+1

Mmax

∑
n′=1

r∫
r′=r0

Vmn(r)Vnn′(r
′)ei(krn−krm)r+i(krn′−krn)r′bn′(r

′) dr′ . (18)
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If r is sufficiently large, only the terms with n′ = m efficiently contribute to this double
sum, and we rewrite the latter equality as

dbm

dr
= ik0

M

∑
n=1

Vmn(r)ei(krn−krm)rbn

− k2
0

Mmax

∑
n=M+1

r∫
r′=r0

Vmn(r)Vnm(r′)e(αm−αn)(r−r′)ei(kn−km)(r−r′)bm(r′) dr′ , (19)

where km = <krm, αm = =krm. The second term describes the mode attenuation caused by
coupling to sedimental modes. Here, we do not imply any symmetries for the perturbation
matrix, assuming that in general Vmn 6= Vnm.

Below, we consider only the case of an operator V̂ describing some stationary random
process. It means that the corresponding matrix elements Vmn(r) are stationary random
functions as well, and Equation (19) is stochastic with non-Markovian kernels [15,46]. The
presence of Vmn within the kernels anticipates fluctuations of attenuation. However, as long
as perturbation is assumed to be weak, matrix elements Vmn are small. Therefore, we can
ignore fluctuations of attenuation and replace the product VmnVnm by its statistical average.
Also, we can take into account that sedimental modes have much higher damping rates αm.
This implies that the function

Cmn(r, r′) =
〈
Vmn(r)Vnm(r′)

〉
e(αm−αn)(r−r′), n > M , (20)

rapidly decays with increasing |r− r′|. This allows us to invoke the Markov approximation
and ignore range non-locality. Thus, we obtain

dbm

dr
= ik0

M

∑
n=1

Vmn(r)ei(krn−krm)rbn − Γmbm . (21)

Here the damping coefficients Γm are evaluated by means of the Wiener–Khintchin theorem,

Γm = k2
0

Mmax

∑
n=M+1

C̃mn(∆kmn), ∆kmn = km − kn , (22)

where C̃mn(k) is Fourier-transformed Cmn(r). Invoking the perturbation theory for
Equation (21) and taking into account (11), we obtain the first-order approximation for the
waterborne modes in the following form:

am(r) = eikmr−γmr

am(r = 0) + ik0

M

∑
n=1

r∫
r′=0

Vmn(r′)ei(krn−krm)r′ an(r′) dr′

 , (23)

where γm = αm + Γm. This equation can be rewritten in the matrix form as

G(r, r0) = Λ(I + iA) , (24)

where I is the identity matrix, and Λ is a diagonal matrix corresponding to the unperturbed
propagator

Λmn(r, r0) ≡ δmnei(krm−k0)(r−r0) , (25)

and A is the perturbation matrix with elements

Amn(r, r0) = k0

r∫
r′=0

Vmn(r′)ei(krn−krm)r′ dr′ . (26)
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Note that within this study bold letters denote matrices, e.g., A, while their respective
elements are written as Amn.

The key idea of the approach based on random matrix theory is to represent matrix
elements Amn as random Gaussian variables whose variance is determined by variance of
the integral (26). This approach is well developed in the case of deep-water acoustic waveg-
uides with volume inhomogeneities, when the propagator is nearly unitary [18,19,27,31].

The validity of the first-order perturbation theory demands the propagator step to be
sufficiently small. In order to perform long-range propagation modeling, we can partition
the waveguide into short segments of length ∆r, and represent the resulting propagator as
a product

Ĝ(rF, r0) = Ĝ(rF, rF − ∆r)Ĝ(rF − ∆r, rF − 2∆r)...Ĝ(r0 + ∆r, r0), (27)

or, in the matrix representation,

G(rF, r0) = G(rF, rF − ∆r)G(rF − ∆r, rF − 2∆r)...G(r0 + ∆r, r0), (28)

Now the segment propagators can be obtained from Equation (24).

3. Random Sea Bottom Roughness

Let us now consider the case where the water depth randomly fluctuates with the
range r, i.e.,

h(r) = h0 + δh(r) , (29)

where δh(r) is some random function to be specified later. To derive the expression for the
perturbation operator V̂, it is convenient to introduce the rescaled depth variable

Z =
h0

h(r)
z =

1
1 + η

z , (30)

where
η ≡ δh

h0
. (31)

Similar transformations of variables are often used in quantum–mechanical problems with
moving boundaries [47–49]. We assume that variations of the water depth are weak, i.e.,
that η � 1. Transformation of the depth variable (30) leads to the transformation of
derivatives in (2) and (3):

∂

∂r
→ ∂

∂r
+ Z

(∂h/∂r)
h

∂

∂Z
, (32)

∂

∂z
→ 1

(1 + η)

∂

∂Z
. (33)

Substituting (32) and (33) into (2) and (3), we obtain

∂Ψ
∂r

= −Z
h

dh
dr

∂Ψ
∂Z

+ ik0

(√
n2(r, Z) +

ρ(r, Z)
k2

0(1 + η)2
∂

∂Z

[
1

ρ(r, Z)
∂

∂Z

]
− 1

)
Ψ . (34)

As long as η is small compared to 1, we can separate the range-independent and
range-dependent parts of n2(r, Z) and ρ(r, Z) using the Taylor expansion. Leaving only
the zero-order and first-order terms, we have

n2(r, Z) = n2
0(Z) + 2n0(Z)

∂n0

∂Z
Zη(r) , (35)

ρ(r, Z) = ρ0(Z) +
∂ρ

∂Z
Zη(r) , (36)
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where
n0(Z) ≡ n(Z)|η=0,

ρ0(Z) ≡ ρ(Z)|η=0.

For the sake of simplicity, we neglect the terms involving ∂ρ/∂Z. Also, we can take into
account that

1
h

dh′

dr
≈ dη

dr
,

1
(1 + η)2 ≈ 1− 2η . (37)

Now Equation (34) can be rewritten as

∂Ψ
∂r

= i
dη

dr
D̂aΨ + ik0

(√
n2

0(r, Z) +
ρ0(Z)

k2
0

∂

∂Z

[
1

ρ0(Z)
∂

∂Z

]
+ 2η(r)D̂b − 1

)
Ψ , (38)

where differential operators D̂a and D̂b are given by expressions

D̂a = iZ
∂

∂Z
, (39)

D̂b = n0(Z)
∂n0

∂Z
Z− ρ0(Z)

k2
0

∂

∂Z

[
1

ρ0(Z)
∂

∂Z

]
. (40)

In order to find out the resulting perturbation operator V̂ (see (8)), we have to extract
the perturbation term containing η(r) from the square-root operator. This problem can be
solved by means of the Taylor approximation (which is widely used in similar studies, see,
for example, [50]):

Q̂ ' Q̂0 +
√

1 + 2η(r)D̂b − 1 ' Q̂0 + η(r)D̂b . (41)

After such transformation, the perturbation operator reads as

V̂(r) =
1
k0

dη(r)
dr

D̂a + η(r)D̂b, (42)

Matrix elements of the operator V̂ are expressed as

Vmn =
1
k0

dη(r)
dr

Da,mn + η(r)Db,mn , (43)

where

Da,mn =
∫ Ψ∗m(Z)D̂aΨn(Z)

ρ0(Z)
dZ , (44)

Db,mn =
∫ Ψ∗m(Z)D̂bΨn(Z)

ρ0(Z)
dZ , (45)

and normal modes Ψn(z) correspond to the unperturbed problem with V̂ = 0. Elements of
the perturbation matrix A are given by the formula

Amn(∆r) = k0(υa,mnDa,mn + υb,mnDb,mn) , (46)

where

υa,mn =
1
k0

∆r∫
r′=0

dη

dr
(r′)ei(krn−krm)r′ dr′ , (47)
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υb,mn =

∆r∫
r′=0

η(r′)ei(krn−krm)r′ dr′ . (48)

Here, υa,mn and υb,mn are stochastic integrals which depend on statistical properties of
η(r). The presence of nonzero imaginary parts of wavenumbers krn destroys symmetries
of the matrix A. However, the attenuation of water modes is usually weak and obeys
inequality =krn � ∆r−1. Therefore, we can neglect the impact of imaginary parts in
Equations (47) and (48) and assume krn ' kn. Then, Equations (47) and (48) read as

υa,mn =
1
k0

∆r∫
r′=0

dη

dr
(r′)ei(kn−km)r′ dr′ , (49)

υb,mn =

∆r∫
r′=0

η(r′)ei(kn−km)r′ dr′ . (50)

4. Ornstein–Uhlenbeck Sea Bottom Roughness

In this section, we consider the sea bottom roughness described by the formula

η(r) = ση η̄(r) , (51)

where η̄(r) is the normalized stochastic Ornstein–Uhlenbeck process being the solution of
the Langevin equation

dη̄

dr
= − η̄

rc
+

√
2
rc

ξ . (52)

In this formula, rc is the roughness correlation length, and ξ is Gaussian white noise,

〈ξ〉 = 0, 〈ξ(r)ξ(r′)〉 = δ(r− r′) , (53)

δ(r) is the delta function, and angular brackets denote ensemble averaging. Roughness
autocorrelation function is given by [51]

Cη(s) = 〈η(r)η(r− s)〉 = σ2
η e−

|s|
rc . (54)

Taking into account (52), we find

υa,mn = −
υb,mn

k0rc
+

ση

k0

√
2
rc

ξa,mn, (55)

where ξa,mn is a Gaussian complex random variable with zero mean and unit variance.
These Gaussian variables obey the relation

ξa,mn = ξ∗a,nm . (56)

In order to find the corresponding expression for υb,mn, we can use spectral representation
of the Ornstein–Uhlenbeck process:

η =

∞∫
−∞

dk
√

S(k)ei(kr+φ(k)) , (57)
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where φ(k) is a random phase function obeying

−π ≤ φ ≤ π, φ(−k) = φ(k),
〈
φ(k)φ(k′ 6= ±k)

〉
= 0 , (58)

and S(k) is the power spectrum of η(r) given by the formula

S(k) =
∫

C(s)e−iks ds =
σ2

ηrc

π(1 + k2r2
c)

. (59)

Substituting (57) into (48), we obtain

υb,mn = σmnξb,mn , (60)

where ξa,mn is another Gaussian random variable with zero mean and unit variance,
also obeying

ξb,mn = ξ∗b,nm . (61)

and the corresponding variance is determined via the formula

σ2
mn =

∫
dkS(k)sinc2

[
(k + kn − km)∆r

2

]
. (62)

The resulting expression for perturbation matrix elements can be written as

Amn = k0

[
Da,mn

√
2∆r
rc

ξa,mn + Wmnξb,mn

]
, (63)

where
Wmn = Db,mn −

υa,mn

k0rc
. (64)

In order to evaluate the coefficients of damping caused by coupling to sedimental
modes, one has to compute the correlator Cmn(r′, r′′) (20). Let us denote η′ = dη/dr and
recall that

〈ξ(r)η(r− s)〉 = 0 .

Then, according to (52), we have

〈
η′(r)η(r− s)

〉
=

1
rc

Cη(s),
〈
η′(r)η′(r− s)

〉
=

Cη(s)
r2

c
+

2
rc

δ(s) , (65)

where δ(s) is the delta function. The correlator can therefore be written as

Cmn(r′, r′′) = σ2
ηW2

mn exp
[
−
(

1
rc

+ αn − αm

)
|r′′ − r′|

]
+

2Da,mn

k2
0rc

δ(r′′ − r′) . (66)

Applying the Wiener–Khintchin theorem, we find that

C̃(k) =
2D2

a,mn

k2
0rc

+
σ2

ηW2
mn

πγc(1 + k2r2
c)

, (67)

where
γc =

1
rc

+ αn − αm . (68)
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5. Numerical Simulation

For the numerical simulation, we use a model of a shallow-water waveguide with the
sound–speed profile described by the formula [52–54]

c(z) =

c0 −
∆c

2

[
1 + tanh

(
z− zc

∆z

)]
, 0 ≤ z < h,

cb, h ≤ z ≤ L ,
(69)

where c0 = 1500 m/s is the sound speed at the ocean surface, ∆c = 25 m/s, zc = 50 m,
∆z = 10 m, cb = 1600 m/s, and L = 300 m. The interface at the depth z = h = 100 m
separates the water water column and sediment layer. The sound speed profile in the water
is presented in Figure 1.

c, m/s

z,
 m Water column

Sediment layerSediment layer

 0

 50

 100

 500

 1470  1480  1490  1500  1600

Figure 1. Sound–speed profile for the waveguide model used in numerical simulation .

The magnitude of the bottom roughness is ση = 0.01; this corresponds to the r.m.s.
displacement of 1 m. The correlation length of roughness rc is varied from 100 to 1000 m.
The sediment attenuation coefficient is taken to be 0.5 dB per wavelength.

Calculation of the propagator described above is based on the mode perturbation theory
that provides accurate prediction only for relatively low signal frequencies. We carried out
the statistical modeling of propagator matrices for two values of frequency, namely 100 and
200 Hz. It was found that the number of waterborne modes in the considered model of a
waveguide is related to the acoustic frequency via the formula f ' 20 M. That is, we have
5 waterborne modes for 100 Hz, and 10 waterborne modes for 200 Hz. The propagator step
∆r is taken to be equal to the correlation length of the roughness ∆r = rc. This ensures
the applicability of the perturbation theory to the evaluation of the matrix elements of the
propagator, and, on the other hand, meets the condition of statistical independence of the
propagators for neighboring waveguide segments. This condition allows us to neglect the
correlations between the segment propagators. For each set of the parameters, a statistical
analysis is carried out using 1000 realizations of propagator matrices.

Firsly, let us examine range variations of modal energies. In the case of a single-mode
source, normalized mean energies are determined by the formula

Jm(r) =
〈
|am(r)|2

〉
|am(r = 0)|2 =

〈
|Gmm(r, 0)|2

〉
. (70)
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The angular brackets in this formula denote averaging over the ensemble of roughness
realizations. Decreasing the roughness correlation length enhances the impact of scattering
and transitions of mode energy to higher-order modes, exhibiting faster attenuation by the
bottom. Therefore, in this case, the scattering increases energy losses. It is confirmed by the
data presented in Figures 2 and 3. Notably, in the case of the acoustic frequency of 100 Hz,
the decay is exponential (this is revealed by the linear decreasing of the energy logarithm).
In the case of f = 200 Hz, higher-order modes decay slower than the exponential rate due
to the partial re-pumping from much more energetic lower-order modes. The presence of
energy flux from lower to higher modes due to mode coupling is illustrated in Figure 3a,b,
where the range dependence of the first mode energy is depicted. It is shown that decreasing
rc, anticipating stronger coupling, leads to faster attenuation.
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Figure 2. Dependence of mode energies on range. Values of acoustic frequency: 100 Hz for panels
(a,b), and 200 Hz for panels (c,d). Values of roughness correlation length rc: 100 m for panels (a,c),
and 500 m for panels (b,d).

Decay of the first mode energy consists of two components: energy transfer to the
sedimental modes with high loss, and energy transfer to the waterborne modes with
relatively low loss. To eliminate the contribution of the latter component, we can estimate
the roughness-induced enhancement of losses. In particular, we can consider the depth-
integrated transmission loss for a wavefield created by a single-mode source. Using the
propagator, it can be calculated using the formula

TL(n, r) = −10 log10

[
rref
r

〈
∑
m
|Gmn(r, 0)|2

〉]
, (71)

where rref = 1 m. The corresponding data for n = 1 are presented in Figure 3c,d. It turns
out that the coupling of the first mode to lossy sedimental modes is fairly weak; therefore,
the bottom roughness weakly influences transmission loss.
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Figure 3. Range dependence of the first mode energy (panels (a,b)) and depth-integrated transmission
loss of a wavefield with the initial condition in the form of the first mode. Values of acoustic frequency:
100 Hz (a,c), and 200 Hz (b,d). Values of roughness correlation length are indicated in the figure.

Another characteristics that can be used for the description of mode coupling is modal
cross-coherence defined as

Jmn(r) =
〈|am(r)a∗n(r)|〉√
〈|am(r)|2〉〈|an(r)|2〉

, (72)

where range dependencies of modal amplitudes are calculated for the initial conditions of
the following form:

aj =

{ 1√
2

, j = m, n ,

0, j 6= m, n .
(73)

We focus our attention on the cross-coherence of the first mode with other waterborne
modes. Data for frequency of 100 Hz are presented in Figure 4. The data suggest that the
first three modes maintain a high degree of coherence throughout the entire distance under
consideration. On the other hand, the fifth mode experiencing the strongest scattering
among the waterborne modes undergoes the fastest decoherence.

In the case of f = 200 Hz (see Figure 5), we also consider the first five modes. However,
as the frequency is increased, these modes correspond to flatter rays [55] that are less in
contact with the sea bottom roughness. Therefore, they expose much weaker scattering:
considerable decoherence is observed only in the case of short-range roughness. In the
cases of rc = 500 and 1000 m, the cross-coherence decay is very weak.
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Figure 4. Cross-coherence functions for the first mode for acoustic frequency 100 Hz. Values of
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Figure 5. Cross-coherence functions for the first mode for acoustic frequency 200 Hz. Values of
roughness correlation length rc: 100 m (a), 200 m (b), 500 m (c), and 1000 m (d).

Fluctuations of modal amplitudes can be estimated by means of the corresponding
scintillation index defined as

SI(m, r) =
〈
|Gmm(r, 0)|2

〉
〈|Gmm(r, 0)〉2

− 1 . (74)
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The data presented in Figure 6 demonstrates the growth of fluctuations as the unperturbed
(i.e., calculated in the unperturbed waveguide without roughness) modal attenuation rate
increases. However, with a distance of 20 km, only the highest waterborne modes manage
to achieve statistical saturation with SI ' 1 [56]. Moreover, in the case of f = 100 Hz (see
Figure 4a,b), even the highest five modes do not achieve plateau, despite the high values of
the scintillation index. It means that saturation for low-frequency propagation should occur
at longer distances. According to Figure 7, the first mode exposes very weak fluctuations
for all values of the roughness correlation length, anticipating nearly adiabatic propagation.
Comparing Figure 7a,b, a twofold increase in frequency leads to a twofold increase in the
scintillation index, implying that the fluctuation strength is proportional to the frequency.
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Figure 6. Dependence of mode scintillation indices on range. Values of acoustic frequency: 100 Hz
for panels (a,b), and 200 Hz for panels (c,d). Values of roughness correlation length rc: 100 m for
panels (a,c), and 500 m for panels (b,d).
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6. Discussion

In the present study, we outline a novel approach to the modeling of sound scattering
by random sea bottom roughness. This approach is based on the construction of random
propagator matrices. It is a very computationally efficient tool for wavefield modeling
that has many other attractive features as well. In particular, the propagator takes into
account almost all information about the acoustic properties of the waveguide segment
under consideration. Therefore, it can provide comprehensive information about the
scattering physics, including statistics of losses and fluctuations, and estimates of cross-
modal coherence, as well as the behavior of many other wavefield parameters.

We derive explicit analytical expressions for the propagator matrix elements for rough-
ness described by the stochastic Ornstein–Uhlenbeck process. It is very important from the
viewpoint of practical implementation, as the Ornstein–Uhlenbeck process represents a
typical example of roughness with exponentially decaying autocorrelation function that
can be a good model of realistic water depth variations in a shallow sea. Statistical analysis
of sound propagation in a shallow-sea with the Ornstein–Uhlenbeck bottom roughness
shows that the low-order modes are weakly affected by the scattering and exhibit highly
unsaturated statistics of fluctuations. Nevertheless, mode coupling due to scattering results
in significant increasing of attenuation rates of the lowest-order modes. Decreasing the
roughness correlation length leads to drastic enhancement of the scattering, especially for
the highest waterborne modes. It is reflected as the fast decay of cross-mode coherence
functions, as well as the sharp increase in the modal scintillation indices. Such enhancement
of scattering was earlier reported in [39].

Further development of the propagator approach based on the random matrix theory,
in our opinion, should involve generalization to 3D propagation scenarios [57–59]. This
can be accomplished, for example, in the framework of pseudodifferential mode parabolic
equations [60,61]. Indeed, the effect of the horizontal refraction on the field at a reception
point can be very significant in a shallow sea. Some phenomena similar to the branching
of light beams in optics can be expected in this case [62]. Another promising direction of
generalization of the results presented here is the development of the random matrix theory
for broadband signals that would accurately handle inter-frequency correlations. Finally,
the results of the present work can be extended to the case of an elastic bottom by using the
approach proposed in [63]. Arguably, bottom elasticity would not significantly change the
results of the numerical experiments reported here, as one can expect its contribution to
manifest primarily in somewhat greater attenuation coefficients of the bottom modes.
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