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Abstract: The phenomenon of repeated impacts on engineering structures is very common, especially
in naval and ocean engineering. When marine structures are subjected to repeated impact loadings,
deformation and damage will accumulate as the impact number increases, resulting in the failure
and damage of the structures, even causing serious accidents. Based on the rigid-plastic assumption,
a theoretical model is established to analyze the plastic mechanical behavior of metal foam sandwich
beams (MFSBs) suffering from repeated impacts, in which the membrane factor method (MFM) is
applied to derive analytical solutions for the plastic responses of MFSBs. The theoretical predictions
agree well with the results of impact tests and numerical simulations, indicating that the theoretical
model is accurate and reliable. In addition, the dynamic responses of MFSBs are analyzed based on
the MFM, and the effects of the core strength and the face thickness on the deflection responses are
determined. The results show that the dimensionless permanent deflection of MFSBs is sensitive to
the core strength ratio and the face thickness ratio, and as the core strength ratio or the face thickness
ratio increases, the dimensionless permanent deflection decreases gradually in an exponential form.
In addition, the influence of the core strength ratio and face thickness ratio becomes more significant
as the impact number increases. The proposed theoretical method can provide a theoretical reference
and technical support for the design of metal foam sandwich structures with improved impact
resistance under repeated impact loadings.

Keywords: sandwich beam with metal foam; repeated impacts; plastic behavior; theoretical analysis;
membrane factor method

1. Introduction

Marine structures are frequently subjected to repeated impact loadings, such as from
supply ships, dropped objects, and floe ice. During navigation and operation, damage will
accumulate, resulting in the failure of the structures and even causing serious accidents.
Therefore, it is necessary to study the dynamic behavior of marine structures under repeated
impact loadings.

In order to investigate the dynamic behavior of marine structures subjected to repeated
impacts, theoretical analysis, numerical simulations, and impact tests have been performed
by many academics. Zhu [1] conducted repeated collision tests on fully clamped rectangular
plates and developed a numerical program based on the finite difference method to study
the dynamic behavior of ship plates subjected to repeated loadings, and an expression of
permanent deflection was given. In order to investigate the effect of low temperatures,
Truong et al. [2,3] performed experimental and numerical investigations on steel beam
and grillage structures subjected to repeated lateral impacts under low temperatures. The
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results showed that the permanent deflections at low temperatures were smaller than those
at room temperature, and the influence was enhanced with the increase in the impact
number. Zhu et al. [4] carried out repeated-impact tests on stiffened plates and proposed a
theoretical method based on inscribing and circumscribing a yield surface, which provided
analytical predictions of the permanent deflection. Zeng et al. [5] conducted experiments
on circular mild-steel plates with surface cracks suffering from repeated impacts at low
temperatures, and the effects of low temperatures as well as surface cracks on the peak
impact force and permanent deflection were determined.

Recently, the pseudo-shakedown phenomenon of structures, caused by repeated im-
pacts, has attracted more and more attention. Jones [6] applied a rigid-plastic method
of analysis to plates subjected to repeated mass impacts and discussed the occurrence
conditions of the pseudo-shakedown phenomenon. The results showed that plates sub-
jected to repeated identical mass impact loadings would not achieve a pseudo-shakedown
state for most impact cases, except in the special case when a small enough impact energy
could be absorbed. He and Soares [7–10] performed experimental and numerical stud-
ies on the dynamic behavior of beams under repeated impacts, and the phenomenon of
pseudo-shakedown was discussed. Cai et al. [11] employed experimental and numerical
methods to determine the dynamic behavior of steel plates suffering from repeated ice
impacts and discussed the conditions of the occurrence of pseudo-shakedown considering
the energy consumption of ice during repeated impacts. The results showed that the
pseudo-shakedown phenomenon occurred when the initial impact energy was smaller
than the elastic energy of the structures.

Recently, increasing attention has been paid to the dynamic behavior of marine struc-
tures suffering from repeated impact loadings, and some new kinds of structures have been
investigated, such as sandwich structures. Zhang et al. [12] performed repeated-impact
experiments and numerical simulations on honeycomb sandwich plates, and the energy-
absorption performance was analyzed. Zeng et al. [13] conducted experimental studies
on aluminum corrugated-core sandwich structures subjected to repeated impacts, and the
failure modes and energy absorption of the sandwich structures were explored.

As sandwich structures with lightweight metal cores exhibit excellent energy absorp-
tion and impact resistance, they have been widely used in the engineering field [14–18],
resulting in an increasing number of investigations into the dynamic behavior of lightweight
metal-core sandwich structures. Jing et al. [19] conducted impact tests on metal foam sand-
wich beams (MFSBs) subjected to aluminum foam projectiles, and the dynamic impact
process was recorded using a high-speed camera system. The deformation and failure
modes of the sandwich beam were analyzed. In order to investigate the dynamic responses
of MFSBs suffering from blast loadings, Qin et al. [20] established a rigid-plastic model
considering the combined effects of the member force and moment and derived analytical
expressions of the dimensionless deflection. In addition, Qin et al. [21] performed a theoret-
ical analysis of MFSBs subjected to low-velocity mass impacts, in which both quasi-static
and dynamic methods were employed and the permanent deflections obtained from those
methods were compared. In order to improve the accuracy of the theoretical solution, local
denting of the front face sheet was taken into account by Qin et al. [22,23]. The results
showed that local denting would absorb impact energy, resulting in the permanent deflec-
tions of MFSBs being decreased. Recently, increasing attention has been paid to sandwich
structures with gradient cores [24–26]. Zhang et al. [27] investigated the stepwise gradient
of the dynamic failure of composite sandwich beams with metal foam cores subjected
to low-velocity impacts. Fang et al. [28] performed studies on the high-velocity impact
resistance of stepwise gradient sandwich beams with metal foam cores. Zhou et al. [29]
proposed an analytical model of fully clamped sandwich beams with layered-gradient
foam cores subjected to low-velocity impact, and the dynamic solutions for the deflection
responses of three-layer-graded core sandwich beams were attained. Recently, some studies
have been performed on MFSBs subjected to repeated-impact loadings. Guo et al. [30,31]
applied experimental and numerical methods to MFSBs subjected to repeated impact
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loadings, and the deformation modes and failure modes of the MFSBs were discussed.
Meanwhile, the effects of the impact location and face thickness distribution on permanent
deflections were evaluated.

There have been many investigations into the dynamic responses of marine structures
subjected to repeated impacts and metal foam sandwich structures suffering from a single
impact, in which some theoretical models have been established. However, there are
few studies that provide a theoretical analysis of the dynamic mechanical behavior of
metal foam sandwich structures under repeated-impact loadings. Therefore, establishing
a theoretical model is essential to reveal the mechanism of deformation accumulation in
metal foam sandwich structures suffering from repeated-impact loadings.

The objective of this work is to propose an efficient analytical method to predict the
plastic responses of MFSBs subjected to repeated mass impacts, in which the theoretical
model is established and the rebound effect of the sandwich beam is taken into account.
Meanwhile, based on the maximum normal yield surface, the incorporation between the
moment and membrane force is considered in the theoretical model, and the membrane
factor method (MFM) is developed and applied to the solutions, the results of which are
much more accurate than those of previous works. Moreover, the bound solutions based
on the square yield surface are derived, and the dimensionless permanent deflections
are given. In addition, the deflections obtained from the proposed theoretical model are
compared with those of impact tests and numerical simulations, and the accuracy of the
theoretical model is verified. At last, the effects of core strength and face thickness on
permanent deflections are determined. Figure 1 presents a flowchart that summarizes the
sequence of the developed analytical model.
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The main content of this paper includes the following:
(1) Formula derivation for a unified yield criterion for sandwich structures.
(2) Theoretical derivation of analytical solutions based on the membrane factor method

and square yield surface.
(3) Validation of the theoretical model by comparing the results of analytical solutions

with those of impact tests and numerical simulations.
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(4) Discussion of the dynamic responses of MFSBs, including dimensionless per-
manent deflection, dimensionless impact force, and the relationship between them and
impact number.

(5) Investigation of parameter influences, including the effect of core strength and face
thickness.

(6) Summary of the main findings and presentation of our main conclusions.

2. A Unified Yield Criterion for Sandwich Structures

When suffering from external loadings, the structures may appear deformed, including
bending and axial tension. Therefore, when establishing the yield criteria, the interaction
between the bending moment and the membrane force should be taken into account [32].
As for the sandwich beam, it is composed of three parts, including the front and back
face sheets and the core layer, and its stress state is much more complex than that of the
single-layer beam. According to the superposition principle of force, the complex stress
state of a sandwich beam can be decomposed into pure bending and uniaxial tension. When
the position of the neutral axis is different, the corresponding force state and direction
are different.

It can be observed in reference [30] that, when MFSBs are subjected to repeated
impacts, there is no delamination between the face sheets and the metal foam core. Thus,
it is assumed that the face sheets are perfectly bonded to the core, and the face sheets
and metal foam core obey the perfectly rigid plastic law. Meanwhile, the shear force
is negligible compared to the bending moment and the axial force. Therefore, the slip
interaction between the three layers is neglected in the theoretical model.

It is assumed that the thickness of the front and back face sheets is t, the thickness
of the metal core is c, the width of the MFSB is b, and the distance from the bottom of the
back face to the neutral axis is h. The yield strength of the face sheet and the metal foam is
assumed to be σf and σc, respectively. Meanwhile, the moment and axial force of the MFSB
are defined as M and N, respectively, and the plastic yield moment and plastic yield axial
force are MP and NP. It is assumed that ξ = h/(c + 2t) is a dimensionless distance from
the neutral axis; then, the stress state of the MFSB can be divided into two forms according
to the position of the neutral axis, as shown in Figure 2.
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If 0 ≤ ξ ≤ t
c+2t ,

N = σcbc + 2σf b[t− ξ(c + 2t)] (1)

M = σf b(c + 2t)(1− 2ξ) (2)

Otherwise, if t
c+2t ≤ ξ ≤ 1

2 ,

N = b · σc · (c + 2t)(1− 2ξ) (3)

M =
b
4

{
σc

[
c2 − (c + 2t)2(1− 2ξ)2

]
+ σf

[
(c + 2t)2 − c2

]}
(4)

The plastic yield moment and plastic yield axial force can be expressed as

NP = bc · σc + 2b · t · σf (5)

MP =
b
4

c2 · σc + b · t(c + t) · σf (6)

Dimensionless parameters can be introduced, i.e., σ = σc/σf , t = t/c. Then, combin-
ing Equations (5) and (6), we can obtain

NP · c
MP

=
4
(
σ + 2t

)
σ + 4t(1 + t)

(7)

It can be derived from Equations (1)–(7):

N
NP

=


σ+2[t−ξ(1+2t)]

σ+2t

(
0 ≤ ξ ≤ t

c+2t
)

σ(1+2t)(1−2ξ)
σ+2t

(
t

c+2t ≤ ξ ≤ 1
2

) (8)

M
MP

=


4(1+2t)2

(1−ξ)ξ
σ+2t

(
0 ≤ ξ ≤ t

c+2t
)

1− (1+2t)2
(1−2ξ)2

σ+4t(1+t) σ
(

t
c+2t ≤ ξ ≤ 1

2

) (9)

Introduce dimensionless moment and axial force, i.e., m = M/MP and n = N/NP.
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If 0 ≤ ξ ≤ t
c+2t , i.e., σ

σ+2t ≤ |n| ≤ 1, then ξ =
(1−|n|)(σ+2t)

2(1+2t)
, substitute it into

Equations (8) and (9):

|m|+
[(

σ + 2t
)
|n|+ 2t− σ + 2

]
(|n| − 1)

(
σ + 2t

)
σ + 4t(1 + t)

= 0 (10)

Otherwise, if t
c+2t ≤ ξ ≤ 1, i.e., 0 ≤ |n| ≤ σ

σ+2t , then ξ = 1
2

[
1− |n|(σ+2t)

σ(1+2t)

]
, substitute

it into Equations (8) and (9):

|m|+
(
σ + 2t

)2

σ2 + 4σt(1 + t)
n2 = 1 (11)

Combine Equations (10) and (11), and the yield criterion [20] can be obtained:|m|+
(σ+2t)

2

σ2+4σt(1+t)
n2 = 1

(
0 ≤ |n| ≤ σ

σ+2t

)
|m|+ [(σ+2t)|n|+2t−σ+2](|n|−1)(σ+2t)

σ+4t(1+t) = 0
(

σ
σ+2t ≤ |n| ≤ 1

) (12)

When the sandwich beam reduces to a solid beam, namely, σ = 1, t = 0, then
Equation (12) can be rewritten as |m|+ n2 = 1 , which is the same as the yield criterion
of the solid beam. The yield surface of metal foam sandwich structures is illustrated in
Figure 3.
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3. Analytical Solutions
3.1. Solutions Based on the Membrane Factor Method

In order to obtain much more accurate solutions and reduce the difficulty to solve the
equation, the membrane factor method (MFM) was proposed and developed by Yu and
Strong [33–35] based on maximal normal stress yield criteria. In this method, the effects
of the bending moment and the axial force were both considered, and the axial force was
connected with the bending moment by the membrane factor. Thus, in this paper, the MFM
will be employed and developed to analyze the dynamic responses of MFSBs suffering
from repeated wedge mass impacts.

As shown in Figure 4, the MFSB is subjected to a low-velocity impact from a rigid
wedge striker. The length of the beam is 2L, the width is b, and the thickness of the metal
foam core is c. The mass of the wedge impactor is Gs, and the initial impact velocity is V0.
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ε
.
κ
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(
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2|n| ·

(
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)
+ 2− 2σ

]
4σt(1 + t) + σ2 =

|n|(σ + 2t) + 1− σ

2
c (15)

As for a fully clamped MFSB, based on the results of the repeated-impact tests con-
ducted by Guo [30], it can be assumed that the displacement of the sandwich beam is
almost linearly distributed, as displayed in Figure 5.
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From the geometrical compatibility equation, we obtain

.
ε
.
κ
=

W0

2
(16)

Combining Equations (14)–(16), the dimensionless deflection can be given by

W∗ =
W0

c + 2t
=


σ+2t

σ(1+2t) |n|
(

0 ≤ |n| ≤ σ
σ+2t

)
(σ+2t)|n|−σ+1

1+2t

(
σ

σ+2t ≤ |n| ≤ 1
) (17)
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Taking the interaction between the moment and the axial force, the energy dissipation
of the MFSB can be expressed as follows:

Jmn = MP
.
κ(m + n · NP

MP

.
ε
.
κ
) (18)

When only the moment is considered, the energy dissipation of the MFSB can be
written as follows:

Jm = MP
.
κ (19)

From Equations (18) and (19), the membrane force factor f n [34] can be obtained:

fn =
Jmn

Jm
= m + n · NP

MP

W
2

(20)

Due to the sandwich beam being symmetrical, half the beam can be taken as an
example to perform a force analysis, as presented in Figure 6.
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The moment equilibrium equation of the MFSB is

2M + N ·W0 −
P
2
· L = 0 (21)

It can be reduced to

P =
4M0

L

(
m + n · N0

M0
· W0

2

)
(22)

The initial static collapse load is assumed to be

Pi =
4M0

L
(23)

Then, the dimensionless reaction force can be expressed as

P∗ =
P
P i

= m + n · N0

M0
· W0

2
(24)

Then, from Equations (20) and (24), the dimensionless reaction force can be reduced to

P∗ = fn (25)

Combine Equations (5), (6) and (20) and we have

fn = m +
2
(
σ + 2t

)
(1 + 2t)

σ + 4t(1 + t)
n ·W∗ (26)

(i) If 0 ≤ |n| ≤ σ
σ+2t , then 0 ≤W∗ ≤ 1

1+2t
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From Equation (17), we obtain

n =
σ(1 + 2t)

σ + 2t
W∗ (27)

Substitute Equation (27) into Equation (12) and we have

m= 1− σ(1 + 2t)2

4t(1 + t) + σ
W∗2 (28)

Substitute Equations (27) and (28) into Equation (26), and the membrane force factor
can be expressed as

fn = 1 +
σ(1 + 2t)2

σ + 4t(1 + t)
W∗2 (29)

(ii) If σ
σ+2t ≤ |n| ≤ 1, then 1

1+2t ≤W∗ ≤ 1
According to Equation (17), we obtain

n =
(1 + 2t)W∗ + σ− 1

σ + 2t
(30)

Substitute the above equation into Equation (26) and we have

m =
(1 + 2t)2

4t(1 + t) + σ
(1−W∗2) (31)

Substitute Equations (30) and (31) into Equation (26), and the membrane force factor
can be rewritten as

fn =
(1 + 2t)

[
(1 + 2t)(W∗2 + 1) + 2(σ− 1)W∗

]
σ + 4t(1 + t)

(32)

(iii) If the deflection of the beam increases to a specific value, the beam will become
like a string, which only suffers from axial force. At this moment, n = 1, m = 0, W∗ ≥ 1, and
from Equation (26), we have

fn =
2
(
σ + 2t

)
(1 + 2t)

σ + 4t(1 + t)
W∗ (33)

Combine Equations (29), (32) and (33), and the membrane force factor can be expressed
as

fn =


1 + σ(1+2t)2

σ+4t(1+t)W∗2
(

0 ≤W∗ ≤ 1
1+2t

)
(1+2t)[(1+2t)(W∗2+1)+2(σ−1)W∗]

σ+4t(1+t)

(
1

1+2t ≤W∗ ≤ 1
)

2(σ+2t)(1+2t)
σ+4t(1+t) W∗ (W∗ ≥ 1)

(34)

If only the moment works, the energy dissipation of the MFSB can be given by

Dm =
∫ θ

0
4MPdθ =

∫ W∗0

0

4MP
L

(c + 2t)dW∗ (35)

However, when both the moment and the axial force are considered, the energy
dissipation of the MFSB can be written as

Dmn =
∫ θ

0
4MP · fn · dθ =

∫ W∗0

0

4MP
L

(c + 2t) · fn · dW∗ = 4MP · c(1 + 2t)
∫ W∗0

0
fndW∗ (36)
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Assuming that the mass of impactor is Gs and the initial impact velocity is V0, then
the initial impact energy is

EK =
1
2

GsV2
0 (37)

Define dimensionless kinetic energy and plastic energy as

EK
∗ =

EK

4MP · c(1 + 2t)
(38a)

Dmn
∗ =

Dmn

4MP · c(1 + 2t)
(38b)

Combine Equations (36)–(38) and we have

Dmn
∗ =



σ(1+2t)2

3[σ+4t(1+t)]
W∗30 + W∗0 ,

(
0 ≤W∗ ≤ 1

1+2t

)
(1+2t)2

3[σ+4t(1+t)]
W∗30 + (1+2t)(σ−1)

σ+4t(1+t) W∗20 + (1+2t)2

σ+4t(1+t)W∗0

+ σ−1
3[σ+4t(1+t)](1+2t)

,
(

1
1+2t ≤W∗ ≤ 1

)
(1+2t)(σ+2t)

σ+4t(1+t)

(
W∗20 − 1

)
+ 4(1+2t)3

+4(3t2
+3t+1)(σ−1)

3[σ+4t(1+t)](1+2t)
, (W∗ ≥ 1)

(39)

Define W∗0 = δ, and introduce a, b, c, and d as coefficients of δ, namely

a1 = σ(1+2t)2

3[σ+4t(1+t)]
, a2 = (1+2t)2

3[σ+4t(1+t)]
, a3 = (1+2t)(σ+2t)

σ+4t(1+t)

b2 = (1+2t)(σ−1)
σ+4t(1+t) , c2 = (1+2t)2

σ+4t(1+t)

d2 = σ−1
3[σ+4t(1+t)](1+2t)

, d3 = 4(1+2t)3
+4(3t2

+3t+1)(σ−1)
3[σ+4t(1+t)](1+2t)

− (1+2t)(σ+2t)
σ+4t(1+t)

Then, Equation (39) can be reduced to

Dmn
∗ =


a1δ3 + δ ,

(
0 ≤ δ ≤ 1

1+2t

)
a2δ3 + b2δ2 + c2δ + d2 ,

(
1

1+2t ≤ δ ≤ 1
)

b3δ2 + d3 , (δ ≥ 1)

(40)

Assume the impact number is i; then, according to the energy conservation theorem,
we have 

a1δi
3 + δi =

i
∑
0

E∗Kn ,
(

0 ≤ δi ≤ 1
1+2t

)
a2δi

3 + b2δi
2+c2δi+d2 =

i
∑
0

E∗Kn ,
(

1
1+2t ≤ δi−1 ≤ 1

)
a3δi

2 + d3 =
i

∑
0

E∗Kn , (δi ≥ 1)

(41)

The analytical expression of permanent deflection of MFSBs in the ith impact number
can be obtained from Equation (41), as follows:

(1) If 0 ≤ δi ≤ 1
1+2t

Assume that 
p1 = 1

a1
=

3[σ+4t(1+t)]
σ(1+2t)2

q1 = − i·E∗K0
a1

= − 3[σ+4t(1+t)]
σ(1+2t)2 ·

i
∑
0

E∗Kn

(42)

Equation (41) can be reduced

δi
3 + p1 · δi + q1= 0 (43)
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Define

∆1 =
q1

2

4
+

p1
3

27
(44)

Then, the expression of a dimensionless deflection can be given as

δi =
3

√
− q1

2
+
√

∆1 +
3

√
− q1

2
+
√

∆1 (45)

(2) If 1
1+2t ≤ δi−1 ≤ 1

Define 

ϕ = δi +
b2

3a2

p2 =
3a2c2−b2

2
3a2

2

q2 =
2b3

2−9a2b2c2+27a2
2d′2

27a3
2

d′2 = d2 −
i

∑
0

E∗Kn

(46)

Then, we have
ϕ3 + p2 · ϕ + q2= 0 (47)

∆2 =
q2

2

4
+

p2
3

27
(48)

ϕ = 3

√
− q2

2
+
√

∆2 +
3

√
− q2

2
+
√

∆2 (49)

Then, we can obtain the following:

δi =
3

√
− q2

2
+
√

∆2 +
3

√
− q2

2
+
√

∆2 −
b2

3a2
(50)

(3) If δi ≥ 1

δi
2 +

d3

a3
− 1

a3

i

∑
0

E∗Kn= 0 (51)

δi =

√√√√√ i
∑
0

E∗Kn − d3

b3
(52)

3.2. Solutions Based on Square Yield Surface

Similar to solid structures, the square yield surface can be employed to solve the plastic
responses of sandwich beams subjected to repeated-impact loadings, and the corresponding
bounds of solutions can be obtained.

As for circumscribing yield surface, |m| = |n| = 1, i.e., M = MP, N = NP
On the other hand, for inscribing yield surface, it is assumed that |N| = θ · NP and

|M| = θ ·MP, namely,
|m| = |n| = θ (53)

(i) If θ ≤ σ
σ+2t

Substituting Equation (53) into Equation (12), we obtain

θ +

(
σ + 2t

)2

4σt(1 + t) + σ2 θ2 = 1 (54)

Assume k0 =
(σ+2t)

2

4σt(1+t)+σ2



J. Mar. Sci. Eng. 2023, 11, 1974 12 of 24

Then, Equation (54) can be reduced to

θ =

√
1 + 4k0 − 1

2k0
(55)

Meanwhile, θ ≤ σ
σ+2t ; then, from Equation (55), we obtain

8t
(
1 + t

)
− σ2 ≤ 0 (56)

(ii) If θ ≥ σ
σ+2t

Substitute Equation (53) into Equation (12) and we obtain

θ2 +

[
(1− σ)

(
3σ + 8t

)(
σ + 2t

)2 + 1

]
θ −

[
2(1− σ)

σ + 2t
+ 1
]
= 0 (57)

Assume k1 =
(1−σ)(3σ+8t)

(σ+2t)
2 + 1, k2 = 2(1−σ)

σ+2t + 1

Then, Equation (57) can be reduced to

θ =

√
k2

1 + 4k2 − k1

2
(58)

And we obtain
8t
(
1 + t

)
− σ2 ≥ 0 (59)

Then, the square yield surface of sandwich structures can be obtained, as presented in
Figure 7.
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For a fully clamped sandwich beam, when only the plastic yield moment works, the
plastic energy dissipation rate can be expressed as

.
Dm = 4MP · θm (60)

While both the moment and the axial force are considered for the plastic energy
dissipation, the energy dissipation rate can be written as

.
Dmn = 4MP ·

(
1 +

NP
MP

W
2

)
θm (61)
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Integrate the above equation and we can obtain

Dmn =
∫ θm

0
4MP ·

(
1 +

NP
MP

W
2

)
θmdθ =

∫ W∗

0
4MP · c(1 + 2t) ·

(
1 +

NP
MP

W
2

)
dW∗ (62)

Based on energy conservation Dmn = EK0, we obtain

E∗K0 =
(σ + 2t)(1 + 2t)

σ + 4t(1 + t)
W∗2 + W∗ (63)

Solve Equation (63), and the dimensionless deflection of the MFSB based on circum-
scribing the yield surface can be derived as

W∗0c =
σ + 4t(1 + t)

2(σ + 2t)(1 + 2t)

[√
1 +

4(σ + 2t)(1 + 2t)
σ + 4t(1 + t)

E∗K0 − 1

]
(64)

Similarly, the dimensionless deflection of the MFSB based on inscribing yield surface
can be given as

W∗0i =
σ + 4t(1 + t)

2(σ + 2t)(1 + 2t)

[√
1 +

4(σ + 2t)(1 + 2t)
σ + 4t(1 + t)

E∗K0
θ
− 1

]
(65)

As for repeated impacts, employing the principle of energy and deformation accumu-
lation, the dimensionless deflection for the ith impact can be derived as follows:

W∗0ci =
σ + 4t(1 + t)

2(σ + 2t)(1 + 2t)

[√
1 +

4(σ + 2t)(1 + 2t)
σ + 4t(1 + t)

iE∗K0 − 1

]
(66a)

W∗0ii =
σ + 4t(1 + t)

2(σ + 2t)(1 + 2t)

[√
1 +

4(σ + 2t)(1 + 2t)
σ + 4t(1 + t)

iE∗K0
θ
− 1

]
(66b)

4. Results and Discussion
4.1. Validation of Theoretical Model

In order to verify the accuracy of the theoretical model, the permanent deflections
predicted by the theoretical method are compared with those of repeated-impact tests [30]
and numerical simulations [31].

The metal foam sandwich beam was composed of a front face sheet, a back face
sheet, and an aluminum foam core. Epoxy resin was used to glue the face sheets and the
core. The material of the face sheets was mild steel, and the core material was closed-cell
aluminum foam with a density of 0.5 g/cm3. The thicknesses of the face sheets and the
core were t = 1 mm and c = 10 mm, respectively. The total length and the span length of the
MFSB were LB = 250 mm and LS = 150 mm, respectively, and the width of the beam was
B = 30 mm. The impactor mass was 7.884 kg, and the impact velocity was 2.12 m/s, i.e.,
the impact energy was 17.8 J. The apparatus used for repeated-impact tests is presented in
Figure 8.

Dynamic responses of MFSBs obtained from repeated-impact tests are illustrated in
Table 1, comprising permanent deflections, rebound energy, and absorbed energy.

The numerical model is created by ABAQUS. In the numerical model, the length of
the sandwich beam is 150 mm, the width of the beam is 30 mm, and the thickness of the
core and the face sheet is 10 mm and 1 mm, respectively. The width of the wedge impactor
is 40 mm, the included angle of the wedge is 60◦, and the fillet radius is 1.5 mm. In the
numerical model, the face sheet is specified as an elastic/plastic material, and the elastic
part is defined by the following parameters: Young’s modulus and Poisson’s ratio, and the
hardening behavior is defined using the true plastic stress–strain curve. As for the metal
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foam core, the material model is defined as crushable foam. As for aluminum foam, the
elastic and plastic Poisson’s ratios are 0.3 and 0, respectively, and the plastic stress ratio
is 1.73. The plastic stress–strain curves of mild steel and aluminum foam obtained from
material tests are presented in Figure 9.

Table 1. Dynamic responses of MFSBs in repeated-impact tests.

Impact
Number

Permanent Deflection
(mm)

Rebound Energy
(J)

Absorbed Energy
(J)

1 3.85 0.41 17.39
2 6.86 0.53 17.27
3 9.46 0.68 17.12
4 11.78 1.03 16.77
5 13.85 1.41 16.39
6 15.61 1.50 16.30
7 17.04 1.69 16.11
8 18.35 2.12 15.68
9 19.30 2.28 15.52
10 20.05 2.60 15.20
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As for the mesh, the width of the refined area is 60 mm, and the mesh sizes of refined
and non-refined areas are 1 mm and 2.5 mm, respectively. The mesh sizes of the beam
along the direction of thickness and width are 1 mm and 1.5 mm, respectively. The mesh
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convergence was analyzed in our previous study [31], and the mesh size for face sheets and
foam core in the present numerical model was satisfied with convergence requirements.
The wedge impactor is defined as a discrete rigid body, and a quadrilateral shell element
(R3D4) is chosen. Meanwhile, a core layer and face sheets adopt linear reduction integral
hexahedral element (C3DR8) and quadrilateral shell element (S4R), respectively. The
finite-element model of numerical simulations is illustrated in Figure 10.
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The rebound effect of the MFSB is considered to be a form of the energy-absorption
coefficient obtained from impact tests. Ek and Eir are defined as initial impact energy and
rebound energy, respectively. Meanwhile, V0 and Vir are defined as initial impact velocity
and rebound velocity, respectively. When considering the influence of rebound of the
impactor, the elastic energy should be subtracted from the total energy, that is, the plastic
dissipation energy of the MFSB can be expressed as

Dmn =
i

∑
1
(EK − Eir) =

i

∑
1

1
2

m
(

V2
0 −V2

ir

)
(67)

The relationship between absorbed energy and the impact number (N) can be obtained
from repeated-impact tests [30], as presented in Table 1. Meanwhile, the expression of the
energy-absorption coefficient in the form of an impact number (N) can be obtained, as
illustrated in Equation (69).

EK − Eir
EK

= 0.997− 0.014N (68)

As for mild steel, the yield stress in the theoretical model is assumed to be the average
value between the initial yield stress and the ultimate strength, as follows:

σf =
σy + σu

2
(69)

For the metal foam core, the yield stress can be assumed to be equal to plateau stress,
i.e.,

σc = σp (70)

In the theoretical model, the material properties and geometric parameters are the
same as in the impact tests. Meanwhile, the boundary condition, impact mass, and impact
velocity also stay the same as in the impact tests. In the repeated-impact tests, the impact
mass is 7.884 kg, the impact velocity is 2.12 m/s, and the impact energy is 17.8 J. The
geometric parameters and material properties as well as the dimensionless parameters of
the MFSB are presented in Table 2.
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Table 2. Parameters employed in repeated-impact tests and theoretical model.

Parameter Symbol Unit Value

Geometric
Parameters

Beam Length 2L mm 150
Face Thickness t mm 1
Core Thickness c mm 10

Beam Width B mm 30

Material
Properties

Face Density u1 kg/mm3 7.8 × 10−6

Core Density u2 kg/mm3 5.0 × 10−7

Line Density of the Beam u kg/mm 2.06 × 10−6

Face Yield Stress σf GPa 0.25
Core Yield Stress σc GPa 0.01

Face Young’s Moduli Ef GPa 201
Core Young’s Moduli Ec GPa 0.42
Fully Plastic Moment MP kg.mm2/ms2 3.00

Fully Plastic Axial Force NP kg.mm/ms2 0.60

Energy

Beam Mass GB kg 9.27 × 10−3

Impactor Mass GS kg 7.884
Mass Ratio G* = GS/GS / 850

Impact Velocity V m/s 2.12
Impact Energy EK0 J 17.8

Dimensionless
parameters

Yield Stress σ / 0.04
Thickness t / 0.10

Thickness to length c / 0.133
Kinetic energy EK0* / 0.25664

The correlation curves between dimensionless deflections with the impact number
obtained from the membrane factor method, the square yield surface, the repeated-impact
tests, and numerical simulations are illustrated in Table 3 and Figure 11. It can be observed
that the dimensionless deflections predicted by the membrane factor method are very close
to those of the impact tests and numerical simulations, and the discrepancies between the
above three different methods are very small, which all lie between the results of inscribing
and circumscribing yield surface. When the impact number is small, the differences in
dimensionless deflections between different methods are relatively small. As the impact
number increases, however, the discrepancy between dimensionless deflections obtained by
the membrane force method, the square yield surface, repeated-impact tests, and numerical
simulations increase gradually.

Table 3. Dimensionless permanent deflections of MFSB.

Impact Number MFM Circumscribing Inscribing Numerical [31] Test [30]

1 0.268 0.236 0.405 0.332 0.321
2 0.530 0.425 0.703 0.613 0.572
3 0.781 0.586 0.947 0.845 0.788
4 1.014 0.728 1.157 1.035 0.982
5 1.208 0.856 1.344 1.195 1.154
6 1.374 0.972 1.513 1.333 1.301
7 1.520 1.080 1.667 1.456 1.420
8 1.652 1.179 1.809 1.567 1.529
9 1.773 1.272 1.941 1.669 1.608
10 1.886 1.359 2.065 1.765 1.671

Some assumptions have been made in the theoretical model, resulting in differences
between the results of the theoretical analysis and those of the impact tests. On the one
hand, the influence of friction has not been considered in the theoretical model, which
would consume energy in the impact tests. On the other hand, in the theoretical model,
the yield stress of the face sheet is assumed to be the average value of the initial yield
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stress and ultimate stress. While in the impact tests, the yield stress of the face sheet
would change as the strain increases. Thus, when the deflection is small, the yield stress
of the theoretical model would be larger than impact tests, but it would be smaller when
the deflection is larger. Therefore, when the impact number is small, the permanent
deflections obtained by the membrane factor method are smaller than those of impact tests
and numerical simulations. By contrast, when the impact number is larger, the permanent
deflections predicted by the membrane factor method are larger than those of impact tests
and numerical simulations. The deformation profiles of the MFSB for the first, fifth, and
tenth impact are presented in Figure 12. The deformation profiles obtained from MFM lie
between those of circumscribing yield surface and inscribing yield surface, which are very
close to those of impact tests and numerical simulations.
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Based on the above comparisons and analyses, it is confirmed that the predictions of
the membrane factor method agree well with those of the corresponding impact tests and
numerical simulations, indicating that the theoretical method proposed in this paper has
high accuracy in analyzing the plastic responses of MFSBs suffering from repeated impacts.

4.2. Dynamic Responses of MFSBs

The correlation between dimensionless permanent deflections and the impact number
is shown in Figure 13. As the impact number increases, the dimensionless deflection
increases gradually, while the increment decreases. Meanwhile, the deflections derived
from the MFM are between the upper and lower solutions obtained by the method based
on the square yield surface. When a deflection is smaller than the total thickness of the
sandwich beam (W∗ ≤ 1), both the moment and the membrane force work and consume
energy. Therefore, the results obtained by the MFM are much closer to those of the inscribing
yield surface. When deflection exceeds the total thickness of the sandwich beams (W∗ > 1),
the sandwich beams are in the membrane state and behave like a stretched plastic sting,
and only the membrane force works. Thus, the impact number increases, and the results
obtained by the MFM become much closer to those of circumscribing yield surface. The
correlation between the dimensionless impact force and the impact number is shown in
Figure 14. The dimensionless impact force predicted by the membrane factor method
is between the upper and lower solutions based on the square yield surface. The initial
collapse force solved by the membrane factor method is equal to that of the method based on
circumscribing the yield surface. With the increase in the impact number, the dimensionless
impact force predicted by the membrane factor method approaches the result obtained by
the circumscribing yield surface.



J. Mar. Sci. Eng. 2023, 11, 1974 18 of 24
J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 18 of 25 
 

 

(a) First impact 

(b) Fifth impact 

(c) Tenth impact 

Figure 12. Deformation profile of the MFSB for different impact numbers. 

Based on the above comparisons and analyses, it is confirmed that the predictions of 
the membrane factor method agree well with those of the corresponding impact tests and 
numerical simulations, indicating that the theoretical method proposed in this paper has 
high accuracy in analyzing the plastic responses of MFSBs suffering from repeated im-
pacts. 

4.2. Dynamic Responses of MFSBs 
The correlation between dimensionless permanent deflections and the impact num-

ber is shown in Figure 13. As the impact number increases, the dimensionless deflection 
increases gradually, while the increment decreases. Meanwhile, the deflections derived 
from the MFM are between the upper and lower solutions obtained by the method based 
on the square yield surface. When a deflection is smaller than the total thickness of the 

sandwich beam (
* 1W ≤ ), both the moment and the membrane force work and consume 

energy. Therefore, the results obtained by the MFM are much closer to those of the in-
scribing yield surface. When deflection exceeds the total thickness of the sandwich beams 

(
* 1W >  ), the sandwich beams are in the membrane state and behave like a stretched 

Figure 12. Deformation profile of the MFSB for different impact numbers.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 19 of 25 
 

 

plastic sting, and only the membrane force works. Thus, the impact number increases, and 
the results obtained by the MFM become much closer to those of circumscribing yield 
surface. The correlation between the dimensionless impact force and the impact number 
is shown in Figure 14. The dimensionless impact force predicted by the membrane factor 
method is between the upper and lower solutions based on the square yield surface. The 
initial collapse force solved by the membrane factor method is equal to that of the method 
based on circumscribing the yield surface. With the increase in the impact number, the 
dimensionless impact force predicted by the membrane factor method approaches the re-
sult obtained by the circumscribing yield surface. 

 
Figure 13. Dimensionless permanent deflection vs. impact number. 

 
Figure 14. Dimensionless impact force vs. impact number. 

The correlations between the dimensionless impact force and dimensionless deflec-
tion are presented in Figure 15. As for the results obtained from the square yield surface, 
the dimensionless impact force increases linearly with the increase in dimensionless de-
flection. Meanwhile, the results derived from the MFM lie between those of the inscribing 

and circumscribing yield surface. When 
* 1W ≥  , the slopes of the membrane factor 

method solutions are equal to those of the square yield surface solutions. The correlation 
between dimensionless deflection and dimensionless impact energy is displayed in Figure 
16. The results obtained from the MFM are between the solutions of the upper and lower 
yield surfaces, and as impact energy increases, the results of the MFM become closer to 
those of the circumscribing yield surface. 

Figure 13. Dimensionless permanent deflection vs. impact number.



J. Mar. Sci. Eng. 2023, 11, 1974 19 of 24

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 19 of 25 
 

 

plastic sting, and only the membrane force works. Thus, the impact number increases, and 
the results obtained by the MFM become much closer to those of circumscribing yield 
surface. The correlation between the dimensionless impact force and the impact number 
is shown in Figure 14. The dimensionless impact force predicted by the membrane factor 
method is between the upper and lower solutions based on the square yield surface. The 
initial collapse force solved by the membrane factor method is equal to that of the method 
based on circumscribing the yield surface. With the increase in the impact number, the 
dimensionless impact force predicted by the membrane factor method approaches the re-
sult obtained by the circumscribing yield surface. 

 
Figure 13. Dimensionless permanent deflection vs. impact number. 

 
Figure 14. Dimensionless impact force vs. impact number. 

The correlations between the dimensionless impact force and dimensionless deflec-
tion are presented in Figure 15. As for the results obtained from the square yield surface, 
the dimensionless impact force increases linearly with the increase in dimensionless de-
flection. Meanwhile, the results derived from the MFM lie between those of the inscribing 

and circumscribing yield surface. When 
* 1W ≥  , the slopes of the membrane factor 

method solutions are equal to those of the square yield surface solutions. The correlation 
between dimensionless deflection and dimensionless impact energy is displayed in Figure 
16. The results obtained from the MFM are between the solutions of the upper and lower 
yield surfaces, and as impact energy increases, the results of the MFM become closer to 
those of the circumscribing yield surface. 

Figure 14. Dimensionless impact force vs. impact number.

The correlations between the dimensionless impact force and dimensionless deflection
are presented in Figure 15. As for the results obtained from the square yield surface, the
dimensionless impact force increases linearly with the increase in dimensionless deflection.
Meanwhile, the results derived from the MFM lie between those of the inscribing and
circumscribing yield surface. When W∗ ≥ 1, the slopes of the membrane factor method
solutions are equal to those of the square yield surface solutions. The correlation between
dimensionless deflection and dimensionless impact energy is displayed in Figure 16. The
results obtained from the MFM are between the solutions of the upper and lower yield
surfaces, and as impact energy increases, the results of the MFM become closer to those of
the circumscribing yield surface.
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Through the above analysis, it can be seen that the results of the membrane factor
method are within the upper and lower limits obtained by the square yield. When the
impact number is small, the deflection obtained by the membrane factor method is close to
the result of the inscribing yield surface solution. However, when the impact number is
large, the deflection value obtained by the membrane factor method is close to the result of
the circumscribing yield surface solution.

4.3. Effect of Core Strength

The core strength ratio (CSR) is defined as variation that can be used to study the
effect of core strength on the dynamic responses of MFSBs, and seven cases are selected,
as illustrated in Table 4, namely, CSR-0.01, CSR-0.05, CSR-0.1, CSR-0.2, CSR-0.3, CSR-0.5,
and CSR-1. Most of the geometric parameters and energy parameters remain the same,
as listed in Table 1, and only some parameters related to core yield strength are changed
accordingly.

The effect of core strength on the dynamic responses of MFSBs is shown in Figure 15.
Core strength has a significant effect on the permanent deflections of MFSBs. It can be seen
from Figure 17a, as for different CSRs, that the trends of the W*-N curves are almost the
same, i.e., W* increases gradually with the increasing impact number while the increment
slope decreases. As the impact number increases, the total energy absorbed by the MFSB
increases, and the deformation of the MFSB accumulates gradually, resulting in the effect
of the core strength ratio becoming more significant with the increase in impact number.
The relationship between dimensionless deflection and core strength ratio is presented
in Figure 17b. It can be seen, both for different impact numbers, that the dimensionless
permanent deflection decreases with the increase in the core strength ratio in exponential
form. Meanwhile, the core strength ratio is smaller, and the effect on dimensionless
deflection is much more significant. When the geometric parameters and impact energy as
well as face strength remain unchanged, if the core strength ratio increases, both MP and NP
increase, meaning the load-carrying capacity of the MFSB improves, resulting in a decrease
in the dimensionless permanent deflection with the increase in the core strength ratio.

Table 4. Core strength ratio cases (unit system: kg/mm/ms).

Case σc σf CSR

CSR-0.01 0.0025 0.25 0.01
CSR-0.05 0.0125 0.25 0.05
CSR-0.1 0.025 0.25 0.1
CSR-0.2 0.050 0.25 0.2
CSR-0.3 0.075 0.25 0.3
CSR-0.5 0.125 0.25 0.5
CSR-1 0.250 0.25 1
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In conclusion, the dimensionless permanent deflection of the MFSB is sensitive to
the core strength ratio, and as the impact number increases, the dimensionless permanent
deflection decreases gradually. Meanwhile, the influence of core strength becomes more
significant as the impact number increases.

4.4. Effect of Face Thickness

In order to determine the effect of face thickness on the dynamic responses of MFSB,
nine cases are selected, as illustrated in Table 5, and the face thickness ratio (FTR) is
defined as the variation. Most of the geometric parameters and energy parameters remain
the same as those listed in Table 1; only some parameters related to face thickness are
changed accordingly.

Table 5. Face thickness ratio cases (unit system: kg/mm/ms).

Case t c CSR

FTR-0.01 0.1 10 0.01
FTR-0.02 0.2 10 0.02
FTR-0.05 0.5 10 0.05
FTR-0.08 0.8 10 0.08
FTR-0.1 1.0 10 0.1
FTR-0.12 1.2 10 0.12
FTR-0.15 1.5 10 0.15
FTR-0.18 1.8 10 0.18
FTR-0.2 2.0 10 0.2

The effect of the face thickness ratio on the dynamic responses of the MFSB is shown in
Figure 16. From Figure 18a, it can be observed that the dimensionless permanent deflection
increases with impact number, while the increment decreases, and for different cases, the
trends are very similar. Meanwhile, discrepancies between each case grow as the impact
number increases. The correlation between dimensionless deflection and the face thickness
ratio is displayed in Figure 18b. As the face thickness ratio increases, the dimensionless
permanent deflection decreases gradually in exponential form. Meanwhile, when the face
thickness ratio becomes smaller, the effect of face thickness becomes more significant. When
the face thickness increases, the load-carrying capacity of the MFSB increases; thus, once
subjected to identical impact energy, the permanent deflection decreases.
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5. Conclusions

In this paper, a theoretical model based on a perfect rigid-plasticity assumption is
established, and the membrane factor method is employed to derive the dynamic plastic
responses of MFSBs under repeated mass impact. Meanwhile, the rebound effect of MFSBs
is taken into account based on the results of impact tests. In addition, the yield criterion
based on the square yield surface is employed to obtain upper and lower bounds for
plastic responses. In addition, the results obtained from the membrane factor method are
compared with those from impact tests and numerical simulations to verify the accuracy
of the proposed theoretical model. In addition, the effects of core strength ratio and face
thickness ratio on the deflection responses of MFSBs are analyzed based on the MFM. Thus,
the following conclusions can be drawn:

(1) The dimensionless permanent deflections derived from the membrane factor
method agree well with those of repeated-impact tests and numerical simulations, in-
dicating that the proposed method is of high accuracy for predicting the plastic responses
of MFSBs suffering from repeated impacts.

(2) The process of solving the equation based on the square yield surface is much
simpler, but the result of the membrane factor method is more accurate, which is within
the bound solution range of the square yield surface.

(3) The dimensionless permanent deflection of MFSBs is sensitive to the core strength
ratio, and as the core strength ratio increases, the dimensionless permanent deflection
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decreases gradually in exponential form. Meanwhile, the influence of core strength becomes
more significant as the impact number increases.

(4) The face thickness ratio has a visible effect on the dimensionless permanent deflec-
tion of MFSBs, which is more significant in the case of small face thickness ratios. As the
face thickness ratio increases, the dimensionless permanent deflection decreases gradually
in exponential form. Meanwhile, the influence of the face thickness ratio becomes more
significant as the impact number increases.

Though the proposed theoretical method based on the MFM can predict the plastic
responses of MFSBs subjected to repeated impacts with high accuracy, the corresponding
theoretical model for metal foam sandwich plates (MFSPs) has not been established due to
the complex structural forms and force states of the MFSPs. Thus, future investigations
must establish the theoretical model of MFSPs suffering from repeated impacts and employ
the MFM to obtain accurate solutions for plastic responses.
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