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Abstract: While study of ocean dynamics usually involves modeling deep ocean variables, monitoring
and accurate forecasting of nearshore environments is also critical. However, sensor observations
often contain artifacts like long stretches of missing data and noise, typically after an extreme
event occurrence or some accidental damage to the sensors. Such data artifacts, if not handled
diligently prior to modeling, can significantly impact the reliability of any further predictive analysis.
Therefore, we present a framework that integrates data reconstruction of key sea state variables and
multi-step-ahead forecasting of current speed from the reconstructed time series for 19 depth levels
simultaneously. Using multivariate chained regressions, the reconstruction algorithm rigorously tests
from an ensemble of tree-based models (fed only with surface characteristics) to impute gaps in the
vertical profiles of the sea state variables down to 20 m deep. Subsequently, a deep encoder–decoder
model, comprising multi-head convolutional networks, extracts high-level features from each depth
level’s multivariate (reconstructed) input and feeds them to a deep long short-term memory network
for 24 h ahead forecasts of current speed profiles. In this work, we utilized Viking buoy data, and
demonstrated that with limited training data, we could explain an overall 80% variation in the current
speed profiles across the forecast period and the depth levels.

Keywords: nearshore monitoring; time series data reconstruction; vertical profile modeling; chained
multivariate multi-output regression; deep learning; encoder–decoder model; multivariate multi-
head CNN-LSTM network (CNN: convolutional neural network, LSTM: long short-term memory);
multi-step forecasting

1. Introduction

Understanding and effective modeling of the dynamics in marine (coastal and open
ocean/deep sea) ecosystems are critical to scientific research and ecosystem analysis. One
of the significant applications of ocean modeling is the long-term weather forecasting
associated with El Niño, which requires substantial historical data on the physical charac-
teristics of the oceans [1,2]. However, for short-term forecasts like predicting the currents
or changes in water density in estuaries or nearshore regions, detailed measurement of
surface/subsurface variables is required. Apart from scientific implications, blue research
also supports the data collection and information mining necessary for the development of
a new blue economy, which is focused on revitalizing the marine industrial activities. These
activities encompass ship building, communication cable laying, equipment deployment,
sustainable energy from waves, currents, seaside leisure tourism, fisheries, and aquaculture,
etc. [3]. Therefore, ocean observation data are being increasingly utilized for developing
intelligent solutions that can track, predict, manage, and adapt to changes in the marine
environment, in real or near-real time [4,5].
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Ocean observation data typically span five types: physical data, biological data, chem-
ical data, geological data, and socioeconomic data [6], commonly measured using buoys,
water column samplers, and floats. Using several platforms, like unmanned marine vehi-
cles, research vessels, etc., collaborative research efforts are directed towards democratizing
these datasets. The commonly used open-source ocean data sources are the National Cen-
ters for Environmental Information (NCEI), National Data Buoy Center (NDBC), Integrated
Ocean Observing Systems (IOOS), etc., in addition to the Gulf of Mexico Coastal Ocean
Observing System (GCOOS) and the Coastal CUBEnet, focused on providing Gulf of Mex-
ico (GoM)-specific data [7]. While these data sources house unfathomable volumes and a
variety of ocean observation data, efficient utilization of these datasets and the development
of sustainable data-driven solutions are impeded by a range of artifacts in the raw data. The
commonly noticed data artifacts are long contiguous and/or intermittent gaps and noise
present in the time series of the observed variables. Such a lack of complete observation
data mostly occurs from sensor malfunction during extreme wave conditions, especially if
the sensors are deployed in the coastal or shallower regions [8,9].

Here, we have attempted to address the artifact of missingness in ocean observation
data and provide a data-driven solution for the systematic utilization of the reconstructed
time series of multiple physical sea state variables, through a deep learning pipeline that
can potentially aid intelligent ocean readiness. To demonstrate the workflow, we have
leveraged the University of Southern Mississippi’s (USM) Viking buoy (WMO-42067)
data, moored 20 m below the sea surface in the nearshore regions of the northern GoM.
The sensors integrated in the buoy measured several meteorological and oceanographic
variables, and in this case study, we have first focused on the reconstruction of the vertical
profiles of water temperature (WTMP), salinity (SAL), and current speed (CS) from the
surface characteristics. And the second module of the pipeline involved a deep learning
model, developed from the reconstructed attributes to provide simultaneous one-day-
ahead forecasts of the CS for various depths in the water column. Notably, reliable current
monitoring is an important consideration in offshore and coastal design [10,11].

Temperature and salinity gradients are some of the significant drivers that shape the
ocean currents, which are critical to marine ecosystems since they redistribute heat, water,
nutrients, and oxygen in the ocean [12]. Temperature differences across the globe influence
global wind patterns, which, in turn, impact ocean currents. Such differences also drive a
vital component of ocean circulation known as thermohaline circulation, where ‘thermo’
refers to temperature, and ‘haline’, salinity [13]. Cold and salty water, being denser than
the warm and less salty water, sinks and flows along the ocean floor, forming deep ocean
currents. Eventually, these deep currents can rise to the surface in different parts of the
world, completing the circulation loop [14].

The salinity gradients, on the other hand, can create a layer of rapidly changing
salinity, known as a halocline, that acts as a barrier, impeding the vertical mixing of water
masses and influencing the movement of ocean currents [13]. The presence of a halocline
can cause the upper and lower layers of water to move independently, leading to the
development of different current systems. Effectively, salinity also affects the density
of seawater. Higher salinity increases water density, making it denser and more prone
to sinking. Near the coastlines, salinity variations between the coastal water and the
open ocean influence the development of coastal currents, consequently affecting the near-
surface marine ecosystems [15]. These implications are not only critical from a marine
science perspective, but also majorly impact the ballasting designs of the undersea vehicles,
since it is critical to ensure that an underwater vehicle can remain neutrally buoyant
through varying depths [16]. Therefore, predictive analysis of currents is largely associated
with simultaneous modeling of the temperature and salinity profiles, in addition to other
environmental variables.

Traditionally, numerical ocean circulation models (based on physical schemes defined
by certain governing equations) are utilized for predicting vertical profiles of ocean sub-
surface temperature, salinity, and current [17]. Ocean models widely used in physical
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oceanography include the Regional Ocean Modeling System (ROMS) [18], Modular Ocean
Model (MOM) [19], HYbrid Coordinate Ocean Model (HYCOM) [20], etc. These models
are highly effective in global/regional modeling of ocean processes, and predictions of the
complex air-sea interactions are achieved by coupling different numerical models into an
integrated framework, e.g., the Coupled Ocean–Atmosphere–Wave–Sediment Transport
(COAST) system [21]. However, their usage is limited due to very high computational and
implementation complexities [22]. Therefore, for short-term predictions of physical sea
state characteristics, data-driven models have recently gained momentum.

Most of the machine learning-based studies aim at reconstruction of deep ocean
variables using satellite remote sensing data for spatially diverse predictions, combined
with Argo float data [23,24]. For example, Han et al. [25] used satellite remote sensing
observations of sea surface temperature (SST), sea surface height (SSH), and sea surface
salinity (SSS) to reconstruct the monthly ocean subsurface temperature (ST) to a depth
of 1800 m, using 12 discrete convolutional neural network (CNN) models. In addition to
sequential networks like bi-directional long short-term memory (Bi-LSTM) models [26],
other common machine learning methods used for efficient prediction of sea subsurface
vertical profiles (typically down to 1000 m deep) are the Extreme Gradient Boosting method
(XGBoost) [23], support vector machines [27], etc. However, many Argo floats suffer
from sensor drift, resulting in large errors, varying with different locations and yet to be
quantified [28]. Additionally, very few studies have measured the surface layer processes
in coastal regions, although the surface layer dynamics play an important role in the
momentum, heat, and energy exchanges across the air–sea interface [29].

Therefore, considering the above aspects, this study is aimed at the reconstruction of
three key physical sea state characteristics (WTMP, SAL, CS) in the nearshore areas, that
are only 20–30 m deep and are sites of active biogeochemical cycling. The reconstructed
data are further utilized for multi-step ahead forecasting of current speeds using data-
driven methods. From the literature, it has been identified that machine learning models
like support vector machines or tree-based ensemble learners are usually not efficient
for forecasting sea state variables at different depths and with longer lead times. Hence,
deep learning approaches are typically employed, using one-dimensional convolutional
layers to extract high-level features from the multivariate inputs that are passed onto
sequential learners like the LSTMs for multi-step ahead predictions [30,31]. Nevertheless,
such approaches mostly involve data aggregation from several individual models [25].
Therefore, to enable simultaneous, multivariate modeling of multi-level or hierarchical data
spanning various depth levels, we have utilized computationally efficient chained XGBoost
(interchangeably with XGB) regressors for data reconstruction. Subsequently, a single
deep multi-head CNN-LSTM encoder–decoder model was leveraged for one-day-ahead
CS predictions for each of the depth levels.

The data-driven models leveraged in this work allow stepwise analysis of the sea
state variables, and integration of discrete modules into a complete framework for expe-
dited forecasting of vertical current profiles from surface characteristics. For deep learning
model training, although the related literature [25–27,30,31] commonly leverages multiple
years of historical data and reports superior predictive performance, here, one of the core
objectives is to test the performance of data-driven models when trained with limited
data, i.e., on an experimental Viking buoy dataset, as discussed later. In summary, the
major contribution of the mentioned work is the development of an end-to-end pipeline
that addresses the challenges associated with data artifacts in nearshore ocean monitor-
ing as well as forecasts current speeds at multiple depth levels simultaneously, thereby
addressing the computational constraints associated with conventional numerical ocean
circulation models.
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2. Data and Methodology
2.1. Buoy Data

The Viking buoy (USM-R1, WMO-42067) is one of the observational buoys and
uncrewed systems operated by USM in the CUBEnet region [32] (Figure 1). It is a
meteorological–oceanographic buoy with a diameter of 2.2 m, and it transmits data every
15 min via an Iridium satellite uplink to a server at USM. The buoy is designed to accommo-
date the use of many instruments, e.g., wavemeter, weather sensor, automatic CTD profiler,
and the Acoustic Doppler Current Profiler (ADCP), etc., per the requirements (further
details provided in Supplementary Figure S1). For this case study, the sensors on board the
Viking buoy measured wave height (WVHT, m) and average wave period (APD, sec), wind
direction (WDIR, ◦C) and wind speed (WSPD, m/s), atmospheric temperature (ATMP, ◦C),
and pressure (PRES, hPa). Additionally, the buoy is equipped with a CTD profiler, capable
of recording water temperature (WTMP, ◦C) and salinity (SAL, PSU) measurements at
different programmable depths, and an Acoustic Doppler Current Profiler (ADCP) that
records current speed (CS, m/s) at various depths throughout the water column, i.e., up
to 20 m depth in this case. The period of available Viking data used in this study is from
September 2019 to August 2020.
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Figure 1. Map showing the Viking buoy location in the northern Gulf of Mexico within the
CUBEnet region.

2.2. Methodology Overview

As a broader objective of this work, we aimed to test the Viking buoy data quality
and its applicability to developing a forecast and alert system that could help the maritime
operations with preparedness and risk mitigation. For evaluating data quality, this work
focuses on extensive exploratory analysis of the raw data (Section 2.3), followed by k-fold
cross-validation-based chained regression analysis for credible reconstruction of the gaps in
the in situ data (Section 2.4). This ensured that the reconstructed vertical profiles of WTMP
and SAL could be further utilized for simultaneous prediction of CS at different depths.
Before proceeding with multi-step forecasting of current speed (Section 2.5) using the
reconstructed profiles, it was important to ensure that the variables had the same sampling
interval. And since WTMP and SAL were sampled every 6 h, whereas the CS time series
had a 15 min interval, the reconstructed CS profiles were resampled by taking the mean
across every 6 h for consistency in data processing and the final forecast operation. The CS
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forecasts were obtained for four time steps in the future, i.e., 1 day ahead, as illustrated in
the methodology diagram (Figure 2).
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viations are defined in the figure, and detailed architectures of the neural network models for current
speed prediction are provided in Section 2.5).

2.3. Data Preprocessing

The raw buoy time series mostly contained missing data points (after removal of the
placeholders) compared to the proportion of outlying values. Since many unrealistic CS
values were noticed, especially during August, which led to larger data gaps upon removal,
before further analysis, the multivariate time series was trimmed to retain data only up to
1 August 2020. Following descriptive statistics of each random variable, each of the time
series was inspected via STL (seasonal and trend decomposition using locally weighted
smoothing) decomposition, which separates the season, trend, and remainder components
from an input series. The anomalies were then iteratively identified and removed from the
remainder series based on the outcomes from a comparison of the Student’s t-test statistic
to a critical value [33]. Using the cubic spline method, each variable in the surface feature
set (WVHT, APD, WSPD, ATMP, PRES, CV, WTMP, SAL) were interpolated. The new data
points were smooth and continuous across each time series, since a cubic spline function
itself consists of multiple cubic piecewise polynomials, largely used for interpolating
univariate time series [34]. However, since the WDIR attribute was not associated with any
seasonality or cyclical patterns, the missing data points in WDIR were linearly interpolated.
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While formulating the methodology, at each stage, the data quality was carefully
monitored to identify the issues that could arise from a data-driven procedure or sen-
sor movements. To ensure consistency in data quality during the preprocessing stage,
the multivariate time series were visually inspected before and after STL decomposition
(Supplementary Figure S2) to ensure that only the outliers were removed, and not the
relevant anomalies (which were real data). Additionally, anomaly diagnostics of the surface
waves were inspected with respect to the normalized values of wind speed, temperature,
pressure, and relative humidity, and the cross-correlations were compared before and
after outlier removal. Since the detected anomalies corresponded with the extreme waves
(Supplementary Figure S3), none were eliminated, and further modeling/analysis was
performed on the same surface data following comparative analysis of the data quality
with respect to the nearest National Data Buoy Center buoy (Supplementary Figure S4).

2.4. Data Reconstruction Method

On inspecting the in situ vertical time series profiles of water temperature (WTMP),
salinity (SAL), and current velocities (CS), WTMP and SAL had 5% missingness, while large
contiguous segments of data were found missing in CS, which roughly comprised 20% of
the entire series (Figure 3). Although studies have shown that some statistical methods
can credibly impute datasets having up to 30% missingness [35], such methods do not
consider the temporal correlations (lagged dependencies), or seasonal patterns required
to model a time series. In such cases, autoregressive time series models could be used
for the reconstruction. Nevertheless, those parametric models depend on the estimation
of the lag, difference, and the size of the moving average window parameters that are
not updated (or skipped) for the missing portions [36,37], and, hence, are not suitable for
complex multivariate data. Therefore, hybrid models or data-driven algorithms are used
as tools to reconstruct and analyze incomplete time series [38]. Here, we have compared
the time series reconstruction efficacies of two boosted tree-based models, the Gradient
Boosting Regressor (GBR) and the Extreme Gradient Boosting (XGBoost) algorithms.

2.4.1. Model Description

The GBR is a machine learning algorithm that performs supervised classification and
regression tasks. It is a tree-based model; however, unlike the Random Forest (RF) algo-
rithm, which is built on completely random subsets of data and features, the GBR trains
multiple models in a gradual, additive, and sequential manner by putting more weight
on instances with wrong predictions and high errors. Thus, the learning is focused on
improving the predictability for the instances that are hard to predict, and by stochastically
training each tree ensemble on a different subset of the training sample, the model gener-
alizability tends to improve. Since the GBR works on the gradient descent optimization
procedure, the hyperparameters include learning rate (the step size for descending the
gradient), shrinkage (reduction of the learning rate), and loss function (MSE), in addition to
the hypermeters used for RF modeling, like the number of trees per ensemble, the number
of observations in each leaf, tree complexity and depth, etc. Despite being largely imple-
mented for very high predictive accuracy [39,40], the GBR at times suffers from over-fitting;
hence, its more regularized variant, the XGBoost algorithm, is sometimes preferred due to
its better performance and generalizability [41]. In XGB, the regularization term controls
the complexity of the model, which helps us to avoid overfitting [42].

2.4.2. Model Training and Evaluation

Since the air–sea interaction at the surface drives the near-surface (and subsurface)
gradients in WTMP, SAL, and CS, the reconstruction procedure also required predicting
the outcome variable for a given depth level as a function of its patterns in the layers
above it. Therefore, using the GBR and XGBoost as the baseline regressors, two separate
regressor-chain models were executed (and compared) for reconstructing each variable’s
vertical profiles. A regressor chain is an extension of a multi-output regression model,
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where a sequence of dependent models is developed to match the number of outcome
variables to be predicted (Figure 4). The prediction from the first model is taken as part
of the input to the second model, and the process of output-to-input dependency repeats
along the chain of models [43].
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Figure 4. Schematic representation of chained multivariate multi-output regression, where [X1, X2,
. . ., Xm] represents the m input features, [Y1, Y2, . . ., Yn], the n output or dependent variables, and
Y1, . . ., Yn, the predicted outputs.

There were 19 distinct outcome variables (corresponding to the 19 depth levels) for
each predicted feature, while the same set of surface variables was used as the input for
each of the 6 regressor chains. In the current speed time series, all the observations between
10 March–20 April 2020 were found missing across all the depth levels from 3 m to 20 m.
Therefore, the remaining portion of the multivariate time series was used for predictive
analyses. Before model training, the input and the output feature sets were separately
normalized between 0 and 1, and through 5-fold (without shuffling) cross-validation,
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the hyperparameters of the regressor chains were fine-tuned. The same procedure was
followed for modeling the regressor chains for WTMP and SAL attributes as well, and
for each attribute, the last 7 days of data were used for testing the model performance.
Across all the models, the loss function was Mean Squared Error (MSE), the number of
trees—500, maximum depth—10, learning rate—0.1, shrinkage—0.3, and the remaining
hyperparameters were set to their defaults in the ensemble learning and XGBoost Python
(version, 3.9.10) modules. Thus, the chained regressions resulted in 19 complete time series
for CS, WTMP, and SAL features, and the test predictions were evaluated using the metrics,
Mean Absolute Percentage Error (MAPE, Equation (1)), and Root Mean Squared Error
(RMSE, Equation (2)).

MAPE =
1
N

N

∑
i=1
|yi − ŷi| × 100 (1)

RMSE =
√

MSE (2)

where ŷi is the predicted value of the target, yi is the ith observation in the sample space of
size, N.

2.5. Multi-Output Multi-Step Forecast

In this step, the reconstructed profiles of WTMP and SAL were utilized for multi-
step-ahead forecasting of the current speeds for each depth level, using two different deep
learning architectures. Due to the higher accuracy and adaptability gained in incrementally
learning complex non-linearities (i.e., the hierarchical feature representations) in large
multivariate datasets, hybrid deep learning frameworks are leveraged for simultaneously
predicting multiple outputs from parallel multivariate inputs. Here, two variants of the
CNN-LSTM hybrid network, typically used for sequential learning [44,45], are compared for
1-day-ahead forecasting of CS for all the 19 vertical layers, from an input feature set compris-
ing the corresponding WTMP and SAL values. The two hybrid deep learning architectures
are a CNN-LSTM encoder–decoder network and a multi-head CNN-LSTM network.

2.5.1. CNN Architecture

A convolutional neural network (CNN), or ConvNet, specializes in highly abstracted
features of objects from visual data, or any data that can be represented with a gridded
topology. A typical CNN architecture has three layers: a convolutional layer, a pooling
layer, and a fully connected (FC) layer. The convolution layer is the building block of
a CNN, since it helps extract various features from the input data by performing a dot
product between the kernel and the window of data, in a sliding manner, to obtain the
convolved output, which is fed to the pooling layer. The pooling layer reduces the feature
map dimension and extracts dominant features by summarizing the data for each slice
of operation, as per the pooling functions defined by the user in every pooling layer.
By flattening the pooling layer outputs into a single dimension, the learned features are
passed to the FC layer to get the predicted outputs. Different CNN architectures are built
with varying combinations and stacking of these layers and are based on the number of
dimensions along which the kernel slides; a CNN model could either be 1-dimensional
(Conv1D), 2-dimensional (Conv2D), or 3-dimensional (Conv3D). While the Conv2D- and
Conv3D-based architectures are prevalent in computer vision [46], the Conv1D models are
used for sequence learning like time series forecasting, which requires the kernel to slide
only along the 1-dimension, the time axis [47].

2.5.2. LSTM Architecture

The long short-term memory (LSTM) model is a preferred variant of the recurrent
neural network (RNN) architecture mostly used for time series forecasting. It processes
sequence data by looping over time steps and learning the long-term dependencies better
than an RNN, while also overcoming the vanishing and exploding gradient problems [48].
The building blocks of an LSTM network are the memory blocks called cells, and three
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gated operations (forget, input, and output) are used to define the current and hidden
cell states at each time step. On vertically stacking the LSTM cell sequences, information
flow across the depth of the network is triggered via the intermediate activation functions
connections, until the dense layer assimilates all of that to make the final prediction. A
typical LSTM cell structure and computation of the cell states for multi-step wave height
forecasting from buoy data is illustrated in [49].

2.5.3. CNN-LSTM Architecture

In a hybrid CNN-LSTM model (Figure 5), the outputs of the CNN layers are passed to
the LSTM layers, followed by a dense layer at the output to support sequence prediction.
Thus, the LSTM layers can be supported with informative high-level features learned by the
CNN layers, instead of directly learning the temporal patterns from raw data. In this work,
the hybrid CNN-LSTM models were built using the TimeDistributed and RepeatVector
layers of the Keras deep learning Python (3.9.10) API [50]. The TimeDistributed layer is a
wrapper that allows us to apply a layer to every temporal slice of an input while building
models with one-to-many or many-to-many architectures. Further, a RepeatVector layer is
used to repeat the inputs n times, where n is the number of time steps to be predicted for
each output, or simply the forecast range.
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neural network for predicting the output variable Y, ‘s’ time steps ahead. The multivariate input is
shown as a matrix of ‘m’ features from past ‘n’ time steps (window size). Data transmission between
layers is represented with bold arrows.

2.5.4. Forecast Model Architecture and Configuration

CNN-LSTM encoder–decoder network (Model-1): In this model, the ConvNet layers
acted as the encoder, and the LSTM layers as the decoder of the encoder–decoder network.
An encoder–decoder architecture is typically used for variable-length sequence-to-sequence
(seq2seq) learning [51,52]. The encoder takes a variable-length sequence as input and
transforms it into latent representations, summarized as a fixed-length vector. The decoder
then interprets and maps the encoded state to a variable-length output sequence. Thus,
in this case, the encoder was fed with a 3-dimensional input (CS, WTMP, SAL) from each
depth level to forecast the 1-day-ahead CS values. And given the 6 h sampling interval
of the input data, this implied 4 time steps forecasted for each of the 19 CS time series.
As shown in Figure 6, the encoder component of the model consisted of two subsequent
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Conv1D layers with 128, 64 filters, and kernels of sizes 9, 11, respectively. The second
Conv1D layer was followed by a max pooling layer, the output of which was flattened
and provided as the input to a RepeatVector layer. This ensured that the output context
vector was repeated four times (n = 4, the range for 1-day-ahead forecast) and provided
as input to the decoder part, an LSTM layer with 128 units. Finally, the TimeDistributed
wrapper applied on an FC dense layer was added to separate the LSTM layer’s output for
each of the 4 time steps in the forecast range, resulting in an output dimension, 4 × 19. The
Rectified Linear Unit (relu) activation function was used to activate the neurons in all the
network layers.
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Figure 6. Architecture of the convolutional–long short-term memory (CNN-LSTM) encoder–decoder
network (Model-1).

Multi-head CNN-LSTM network (Model-2): This model (Figure 7) exploits multiple
Conv1D layers to extract a separate set of convolved features for each variable in the
multivariate time series input. Each separate CNN is an independent ‘head’, which are
successively flattened, concatenated, and then reshaped to match the input shape of the
LSTM layer [53]. Since this architecture leverages multiple CNN heads, unlike a common
multi-channel structure, it is hypothesized to offer better forecast accuracy and explainabil-
ity by more successfully extracting the informative features specific to each input series.
The CNN head for each time series had two Conv1D layers with 48, 32 filters, and kernels
of sizes 7, 11, respectively. The CNN configuration was the same for all the 19 depth levels,
so that the same number of features are obtained for every input to the CNN. The flat-
tened outputs of the CNN heads were concatenated and passed as input to a 2-layer-deep
LSTM stack with 64 and 32 units, respectively. The two LSTM layers were connected by a
RepeatVector layer with n = 4, for the 4 steps ahead. Finally, with a 20% drop out of the
second LSTM layer outputs, the final forecasted values were obtained after being passed
through a dense layer with 19 output neurons. Like Model-1, relu activation was used for
all the ConvNet and the LSTM layers.
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2.5.5. Data Preparation

The CS, WTMP, and SAL time series from each depth level were structured as a
multi-index pivot table (Figure 8) representing the multivariate parallel time series input to
the multi-output forecast models. This hierarchical data representation ensured that the
interrelationships between a variety of input features (or predictors) from different depth
levels were accounted for while forecasting the vertical profiles of CS. For model training,
we used approximately 9 months’ worth of data from the available period from September
2019 until June 2020, and the remaining time series comprised the test set. Before feeding
the data to the models, the train and test feature sets were normalized and transformed
using a scale of [0, 1] to overcome the potential bias in the predictions caused by the
differences in the scales of input features. Further, to enable temporal feature learning,
28 lagged variables (i.e., data from the past 7 days) were included for each input feature,
such that for each time step the input matrix dimensions were 28 × 57 (3 variables from
19 depth levels).

2.5.6. Model Training and Evaluation

Model training was performed on the transformed train set, out of which the last
10% data series was used for validation. The input feature maps of both the models were
obtained from the sliding convolutional operations that were max-pooled and provided
as flattened inputs to the LSTM layers. With a batch size of 16, both the models were
trained for 500 epochs, which implied that during each epoch, the model parameters were
updated after every 16 training samples were processed. During backpropagation, the
model weights were optimized by minimizing the MSE loss function at a learning rate
of 0.001 using the stochastic Adam optimizer [54]. Both the models utilized the walk
forward validation approach, which is known to prevent overfitting and widely used
for multi-step forecasting [55,56]. To regularize the training process, the performances
of both the networks on the validation set were monitored, and further training was
stopped if the validation loss failed to lower after 10 consecutive epochs. After the models
were trained, forecasts were obtained for the test set, and the forecasted values inverse
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transformed to the original scale. Comparative analysis of the forecast ability of the hybrid
models was then performed based on three performance metrics, RMSE, MAPE, and the
coefficient of determination (R2, Equation (3)). Finally, the statistical and the time series
features were derived for the raw test data and the forecasted time series for comparative
assessment. The time series features, described in Hyndman et al. [57], were calculated on
tiled (non-overlapping) windows of size 4 (i.e., on 1 day’s data).
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R2 = 1− ∑(yi − ŷi)
2

∑(yi − y)2 (3)

where ŷi is the predicted value of the target, yi is the ith observation in the sample space of
size, N, and y is the mean of y.

3. Results and Discussion
3.1. Reconstruction Performance

Comparison of the GBR and XGB model performance in reconstructing the three
variables revealed that both the models had minimal differences in the case of SAL and
WTMP, whereas XGB performed remarkably better than the GBR in CS data reconstruction.
In addition to being faster than gradient boosting, due to its ability to robustly deal with
sparse learning data, XGB has reportedly been most effective in prior data reconstruction
studies [41,58]. Also, per overall comparison, the XGBoost model yielded lower errors, with
a maximum RMSE of 0.066 PSU, 0.124 ◦C, and 0.134 m/s, and highest MAPE estimates of
0.083%, 0.729%, and 5.245% for SAL, WTMP, and CS, respectively (Figure 9). These results
showed that the CS reconstruction performance was remarkably lower than that of WTMP
and SAL. Such results were expected given the higher proportion of gaps in the raw CS
time series. We also noticed that SAL reconstruction performance was better than that of
WTMP, although both had the same proportion of missing data. This difference could be
attributed to the higher variability inherent in the raw WTMP data, as identified from the
comparative analysis of the summary statistics (variance and coefficient of variation) of the
raw profile data (Figure 10). Further, relatively higher skewness and kurtosis in WTMP
also implied that the observed data points had more extreme values and a heavy tailed
distribution, compared to that of SAL. And, although the XGB performance seemed largely
consistent across the depth layers, slightly higher errors were noticed for the deeper layers,
especially in case of CS.
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Figure 9. Heatmaps of the performance metrics, MAPE, and RMSE of the two chained regression
models, for the three features—current speed: CS (m/s), salinity: SAL (PSU), and water temperature:
WTMP (◦C).
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Figure 10. Normalized summary statistics of raw data for all depth levels of salinity (SAL), water
temperature (WTMP), and current speed (CS). Lowest to highest values are shaded on a white to
blue color scale; hence, the darker the shade, the higher the values in the table.



J. Mar. Sci. Eng. 2023, 11, 1964 14 of 25

Visual assessment of the mean actual and reconstructed time series further demon-
strated that the vertical profile patterns could be correctly modeled by the XGB algorithm
for the three variables (Figure 11). The salinities of the coastal waters were in the range
from 30.1 to 35.4 PSU, and linearly increasing by a mean 0.5 PSU with every layer deeper
down to 19 m below the surface. At 20 m deep, a sharp 2 PSU increase in salinity was
observed, which was also correctly modelled by the XGB algorithm. At 19 m deep, such
breakpoints in the vertical profiles of WTMP and CS were also observed. Nevertheless,
unlike SAL, down to 19 m from the surface, WTMP and CS profiles had low anomalies
and almost uniform variation, ranging from 21.2–21.6 ◦C, and 0.9–0.13 m/s, respectively.
Beyond that depth level, WTMP plunged by 1.7 ◦C, while CS rose from 0.12–0.27 m/s.
Similar patterns in the vertical profiles of SAL and WTMP can be found in Lobus et al. [59].
Such drastic changes in the vertical profiles possibly imply the presence of a pycnocline at
around 18–19 m deep, resulting in the mixing up of SAL and WTMP along the gradient
indicated by the spike in CS at that depth. Additionally, since the mooring depth was 20 m,
these changes in the bottom layer could represent a salinity barrier later due to transport
from the deeper offshore area [60]. Hence, we could infer that the abrupt distributional
shift in CS data along with large contiguous data gaps could have resulted in the under-
estimation of CS for the last two depth levels (Figure 11). The complete reconstructed CS
time series at various depth levels are illustrated with the actual data, clearly identifying
the underestimated portions in the time series (Figure 12). In Figure 13, the importance
of each input feature and for each depth level is represented using the gain scores. In
tree-based models, gain implies the relative contribution of the corresponding feature to the
model calculated by taking each feature’s contribution for each tree in the model. A higher
value of this metric when compared to another feature implies it is more important for
generating a prediction [42]. The feature-importance scores demonstrated the importance
of utilizing a chained regression approach for vertical profile data reconstruction, since,
beyond the surface layer, for every variable, the previously predicted outcome was found to
be highly significant for the next prediction. As expected, diminishing feature importance
of the surface characteristics was noticed beyond 9 m deep, especially in SAL and CS. It
was interesting to note that at the depth levels 18, 19, and 20 m, the relative importance
of the surface characteristics abruptly increased, whereas that of the previous layer’s CS
predictions dropped. These results further corroborated our earlier inference of the possible
presence of a pycnocline and mixing along the water column at that depth.

3.2. Multi-Step Forecast Performance

Our results on the multi-step forecast of CS demonstrated an overall better perfor-
mance achieved by the multi-head CNN-LSTM network (Model-2), although for some
depth layers Model-1 scored better (Figure 14a). On average, Model-2 was able to achieve
0.7% less MAPE, and the RMSE was lower by 0.001; hence, it was chosen for further
analysis. The minimum MAPE scores for Model-1 and Model-2 were 5.15% and 3.7%,
while the maximum MAPE scores were 12.28% and 11.96%, respectively. Regarding the
mean goodness of fit scores (Figure 14b), Model-2 could explain approximately 80% of the
proportion of variation in the test data across all the depth levels. The forecasted time series
for each step size are compared with the test data from different depth levels in Figure 15,
illustrating the gradual increase in error (or underestimation) as the step size increased,
which is usually noticed with multi-step sequential networks [60].

The forecast model’s performance was found to be consistent with our previous
inferences (observed in the reconstruction results). From the resultant R2 estimates, we
could again associate the change points along the water column with that of the mean
CS profiles (refer Figure 11). As the water depth increased, the forecast error seemed to
suddenly spike at 6 m and 18 m, implying abrupt changes in the physical properties along
the water column at those depth levels. Therefore, although an overall data summary is
illustrated in Figure 9, to further examine the validity of our findings from the forecast
analysis, we have compared the statistical and the time series features of the actual test
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data and each of the multi-step-ahead forecasts (Figures 16 and 17). We noticed a striking
similarity in the vertical patterns of the test data statistics, and the forecasted metrics.
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Figure 11. Time averaged actual and predicted vertical profiles of salinity: SAL (PSU), water temper-
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The descriptive features were the mean, standard deviation (sd), median, median abso-
lute deviation (mad), minimum (min), maximum (max), range, skewness (skew), and kur-
tosis. The time series features were trend, stability, linearity, curvature, entropy, the largest
shift in Kulback–Leibler divergence between two consecutive windows (max_kl_shift), the
time index of the max_kl_shift (time_kl_shift), and the first autocorrelation coefficient of
the time series (x_acf1). The descriptive statistics (Figure 16) revealed that in the test data,
not only the overall magnitude, but also the variance in the current speed significantly
increased from 6 m deep downwards until 10 m, subsequently following a declining trend
down to 18 m deep. Therefore, the mean, maximum (max), median, standard deviation (sd),
median absolute deviation (mad), and range followed similar patterns, that was reversed
in case of the minimum observed CS values. Consequently, as the water depth increased
beyond 5 m, we found that the test data had a more skewed distribution with higher kurto-
sis. These differences in the physical properties of CS values could also be confirmed from
the profiles of the time series features (Figure 17)—stability, linearity, curvature, and the
maximum Kulback–Leibler shift (max_kl_shift), which denoted the variance or divergence
between two consecutive time windows. Finally, vertical profiles of the statistical and time
series properties of the forecasted values from each step size (S1, S2, S3, S4, representing
6, 12, 18, 24 h ahead lead times, respectively) were found to exactly follow that of the raw
test data (albeit with slight differences among them, as observed in the forecasted metric
comparison). Hence, we could infer that while the proposed model optimally learned the
data properties at each depth level, increased error for the depth levels denoting break
points in the vertical current profile also implied the model’s sensitivity to the distributional
shift in the unseen test data.
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Figure 13. Importance scores of the XGB predictors for the chained predictions of salinity: SAL, water
temperature: WTMP, and current speed: CS (top–bottom), respectively.

Per the literature, several deep learning-based studies on forecasting vertical profiles
of such physical ocean properties have reported very high model performance scores, and
for deeper ocean conditions [25,26]. Such studies generally rely on a considerable amount
of historical data for model training, such that the model can learn the inherent trends
and seasonalities of the sequential data better, along with the complex high-level features,
resulting in better model performance and generalization. For example, in Kar et al. [47],
we have presented that with 10 years of training data, we could forecast wave heights
from the same Viking buoy data (only surface characteristics), 72 h in advance, with ~97%
mean R2. However, here, we had 10 months of training data, and our proposed model
(Model-2) could still demonstrate excellent predictive ability, with a 7.2% mean MAPE,
and 0.0195 mean RMSE, for 24 h ahead forecasts. Hence, given the limited length of the
time series in our case study, we believe the satisfactory forecast performance could be
attributed to the model architecture.

To enhance the predictive power of a machine learning model, constrained with lim-
ited training data, it is often beneficial to feed the model with informative (additional)
features. Therefore, in the absence of sufficient historical features, we leveraged multiple
CNN models for each of the multivariate inputs, such that independent convolved features
from each time series could aid the LSTM forecast ability. Prior works [61,62] on sequential
deep learning from limited training data have leveraged convolutional models for data
augmentation and enhancing the input feature set of the LSTM network for various other
applications. For example, Widiputra et al. [60] have trained a multi-head CNN-LSTM net-
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work on 242 days of past data for financial time series forecasting, and reported 0.017 mean
RMSE. Thus, we base these results off of two key modeling perspectives: training data
length and model architecture.
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Figure 14. (a) Comparison of the hybrid deep forecast model performance metrics—mean RMSE,
and MAPE across the 24 h forecast horizon, and (b) R2 estimates from Model-2, for each depth level
and step size (S1–S4 representing 6–24 h ahead lead times) in the vertical profile.

Finally, it is crucial to note that the neural networks applied were trained on the data
from the northern Gulf of Mexico, which is subjected to the intense freshening by the
Mississippi water, resulting in the strong subsurface barrier layer, which makes it different
from the southern Gulf and adjacent Atlantic. Hence, when applying them to other basins,
learning should be repeated, and models need to be trained as per the water characteristics
in those locations. Previously, current speed forecasts have been performed for different
regions using both simple and complex neural network prediction models. For example,
with a single-hidden-layer feed-forward backpropagation network, for a 12 h ahead forecast,
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the resultant mean RMSE was 0.15 m/s [63], and deep bi-directional LSTMs have been
beneficial in achieving RMSEs of less than 0.021 when compared for multi-step forecasts
across multiple locations [64]. Immas et al. [65] have reported that deep LSTM models
and transformer models (which are more complex networks) have comparable forecast
performances, resulting in an averaged normalized RMSE of 0.10 and 0.11, respectively.
And in this case study, we could achieve a 0.0195 mean RMSE with a limited dataset of just
10 months, suggesting excellent predictive ability and the progressiveness of the proposed
multi-head CNN-LSTM model. Prior research also corroborates the superior predictive
ability of CNN-LSTM-based models on limited datasets [66]. Additionally, other types of
neural network architectures could also be examined for similar forecast applications in
different regions [67,68].
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4. Conclusions

In this work, we demonstrated a case study on dealing with common sensor data
artifacts that can potentially impact the efficacy and accuracy of subsequent predictive
modeling. By utilizing the Viking buoy data, which contains several sensors to measure
both surface and vertical casts of sea state characteristics, we demonstrated a framework
to efficiently handle contiguous gaps in time series profile data of multiple sea physical
variables from the surface characteristics. We then utilized the reconstructed data to forecast
24 h ahead CS for all the depth levels. For accurate time series data reconstruction, we
proposed an XGB-chained regressor model, and a multi-head CNN-LSTM hybrid model
for simultaneous multi-step forecasting of the current speed vertical profiles. Despite the
highly dynamic nearshore conditions, and limited experimental data, we could reconstruct
CS time series and forecast the profiles 24 h ahead with just 5% and 7% mean error
values, respectively. In future, we intend to test the generalization ability of the proposed
framework with data from a diverse set of buoys deployed in the CUBEnet region for
longer time periods.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jmse11101964/s1, Figure S1: Available instruments on the Viking
buoy are shown in the image (source: http://www.multi-electronique.com/buoy.html), which are
integrated and deployed per user requirement. The list of specific instrument measurements includes
conductivity and temperature, oceanographic pH, biogeochemical, acoustic doppler current profiler
(ACDP), radiometer, fluorometer, water salinity, water temperature and wavemeter (wave height and
period), global positioning, weather (temperature, wind, humidity, rain, atmospheric pressure) wind,
light, oceanographic pC02, radar reflector, automatic CTD profiler (for observing conductivity and
temperature from depth). The buoy comes with its own software, designed to help the researcher
interpret information from the buoy. This information is sent to a land station via cellular modem
or satellite or a combination of cellular and Internet, at user-defined time intervals. Here, Iridium
satellite uplink was leveraged to receive data every 15 min. For easier deployment using a small
boat, the buoy uses only one anchor. Details provided here are sourced from http://www.multi-
electronique.com/files/Buoy_specification.pdf; Figure S2: Illustration of the anomalies present in
raw current speed data (top), identified using the seasonal and trend decomposition using Loess
(locally weighted smoothing) anomaly diagnostic method, and comparison with outlier removed
time series for each depth level (bottom). The anomalies identified in the raw data represented sensor
noise that amplified with increase in water depth, which were removed to obtain current speeds
within a realistic range of 0.6m/s; Figure S3: Wave anomaly diagnostics plotted (L) with respect to the
normalized values of wind speed, temperature, pressure and relative humidity, and the correlations
between each pair of the surface characteristics are illustrated (R); Figure S4: Comparison of Viking
meteorological and wave data with respect to the nearest NDBC buoy data from station 42012.
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