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Abstract: This study proposes machine learning-based prediction models to estimate hull form
performance. The developed models can predict the residuary resistance coefficient (CR), wake
fraction (wTM), and thrust deduction fraction (t). The multi-layer perceptron and convolutional neural
network models, wherein the hull shape was considered as images, were evaluated. A prediction
model for the open-water characteristics of the propeller was also generated. The experimental data
used in the learning process were obtained from model test results conducted in the Korea Research
Institute of Ships and Ocean Engineering towing tank. The prediction results of the proposed models
showed good agreement with the model test values. According to the ITTC procedures, the service
speed and shaft revolution speed of a ship can be extrapolated from the values obtained from the
predictive models. The proposed models demonstrated sufficient accuracy when applied to the
sample hull forms based on data not used for training. Thus, they can be implemented in the
preliminary design phase of hull forms.

Keywords: machine learning; convolutional neural network; multi-layer perceptron; resistance;
propulsion; power prediction

1. Introduction

Recent environmental regulations, such as the energy efficiency design index of the
International Maritime Organization, demand the design of hydrodynamically efficient hull
forms. In particular, a crucial indicator of hydrodynamic efficiency is the power required
in calm waters, obtained from the resistance and propulsion characteristics and their
relationship with the propeller open water (POW) characteristics. Therefore, predicting
the performance characteristics, such as residuary resistance coefficient (CR), wake fraction
(wTM), thrust deduction fraction (t), and POW characteristics, is essential in the design
stage. Computational fluid dynamics (CFD), model tests, and data-driven methods have
been used to estimate these coefficients. Generally, model tests is used in the final design
stage of a hull form to accurately confirm the performance of the hull; however, these tests
require considerable cost and time. Recent advances in computing power have led to CFD
being actively used in the design review stage for optimal hull form alternatives. However,
implementing CFD is still slow because calculating multiple alternatives for optimization
requires days or weeks and is challenging to conduct without large computational resources.
In contrast, data-driven prediction models such as series charts, regression equations, and
machine learning models can be applied for hydrodynamic design (e.g., the determination
of the main parameters of hull forms) in the preliminary design stage, where the low
accuracy compared to that of CFD or model tests is not a significant aspect, because they
provide a fast feedback. In particular, the rapid advances in data analysis technologies,
such as deep neural networks (DNNs) and convolutional neural networks (CNNs), have
improved traditional regression methods. Thus, machine learning models considering hull
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shape itself have the potential to assist CFD in the hull form optimization process, although
this solution may not be a complete alternative.

The seminal study regarding the data-driven prediction of the performance charac-
teristics of hull forms was the standard series of experiments by Taylor [1] in the 1930s.
Subsequently, prediction methods based on experiments reanalyzing the Taylor series
chart have been introduced, such as the Gertler chart [2] and the Netherland ship model
basin (NSMB) Lap chart [3]. Guldhammer and Harvald [4] predicted the effective power
using a diagram developed by arranging the towing test results in groups according to the
length–displacement ratio ( L

∇1/3 ) and prismatic coefficient of the model (ϕ = ∇
LBTβ , where

β is the midship section area coefficient). Holtrop and Mennen analyzed the model test
results and derived regression-based formulations for resistance and propulsion charac-
teristics from 1978 to 1984 [5–7]; these formulations are currently used to determine the
main parameters with some modified coefficients in numerous shipyards. Kim et al. [8]
defined several geometric variables of the hull form and developed regression equations
for the residuary resistance coefficient. The equations were developed by analyzing the
model test results of the Korea Research Institute of Ships and Ocean Engineering (KRISO).
Studies on applying machine learning schemes for performance prediction have also been
introduced. In particular, Kim et al. [9] expanded the regression model in [8] and applied it
to an ensemble model. Cho et al. [10] generated 1263 hull forms by modifying the KVLCC2
hull form and learned the three-dimensional (3D) coordinates of the cross-sections to fit
the resistance results computed from Holtrop and Mennen’s formula. They built a DNN
model. Bertram and Mesbahi [11] presented an artificial neural network (ANN) model
to predict calm sea resistance and power of fast monohulls using principal dimensions,
whereas Couser et al. [12] applied a neural network to interpolate the experimental results
of a catamaran series. Yang et al. [13] predicted the resistance of a 13,500 TEU container car-
rier under several draft conditions using a radial basis function neural network (RBFNN).
Moreover, Cepowski [14] introduced an ANN model to estimate the added resistance in
waves using the principal dimensions of a ship, and Liu and Papanikolaou developed semi-
empirical equations for added resistance estimation under various wave conditions [15–17].
Martić et al. [18,19] applied the ANN for the evaluation of added resistance of container
ships successfully. Their model was based on the LM (Levenberg–Marquardt) learning
algorithm with BR (Bayesian regularization). The prediction of the residuary resistance
coefficient of a trimaran model using ANN with the transverse and longitudinal posi-
tions of the side hulls, the longitudinal center of buoyancy, and the Froude number was
introduced by Yidiz [20]. A study on flow field estimation conducted by Ichinose and
Taniguchi [21] proposed a curved surface representation method suitable for a CNN to
predict the nominal wakefield. Optimizing hull shapes using surrogate models [22–24] has
also been introduced. However, some regression equations rely on outdated data, and the
accessibility to modern hull forms and model test data is limited.

In this study, the power prediction of a ship using only data regression models was
introduced. The relatively modern hull forms and the model test results were analyzed.
The regression model focused on the CNN model; however, MLP (Multi-Layer Perceptron)
model was also provided in case details of the hull geometry are not available. A hull
geometry representation method relying on images to apply CNN to predict the ship hydro-
dynamic characteristics is proposed. In this regard, the cross-sectional shape was converted
into an image with one channel and then used as an input for the prediction models. This
approach has the following advantages. Firstly, three dimensional geometric features can
be captured. Most of the previous studies using several variables as inputs are limited in
this aspect. The second is that the segmentation of ship type is not necessary because it
is already included in the hull geometry. The third is that this method, considering hull
geometry itself, can be used as a surrogate model in the hull form optimization process. The
last is that this approach combined with generative models such as VAE (Variational Auto
Encoder) or GAN (Generative Adversarial Networks) can be used in hull form generation.
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This paper is organized as follows. Section 2 shows how to construct regression models
and train datasets. In Section 3, learning results of each prediction model for resistance
and propulsion characteristics are shown. Section 4 presents the power prediction process
using the present network models and the results of the case studies, which are followed
by the conclusions and the future research works.

2. Methods

The final goal of this study is to estimate the required power of a ship using only
regression models. The MLP model estimates the resistance and propulsion characteristics
from the principal dimensions of a ship, whereas the CNN model needs the additional
input of hull geometry. Hull geometry representation for the CNN model and the method
for constructing each regression model are described in this section. Section 2.1 provides the
method to convert the hull geometry into images. The structure of the prediction models
is explained in Section 2.2. The details of the training data and the set-up of the network
model are provided in Section 2.3.

2.1. Hull Geometry Representation

The resistance and propulsion characteristics of a hull form are primarily related to
its geometry. Wave-making resistance is strongly related to the fore-body geometry of a
hull. Moreover, the after-body geometry affects the pressure resistance and propulsion
characteristics. CNN is widely used in image data recognition. Therefore, a CNN able to
capture the changing patterns of the hull geometry may be effective if the hull geometry can
be converted into images. In this study, an N×N pixel image was generated corresponding
to a cross-section of the hull form. In general, a hull surface consists of a longitudinal
array of two-dimensional cross-sectional information (y, z); the coordinates have different
values depending on the size of the ship. In this study, the cross-section geometry was
non-dimensionalized in terms of half breadth and draft to consider only geometric char-
acteristics. The maximum height of the cross-section was set to 1.1 times the draft. First,
the cross-section was converted to a binary pixel image where the hull surface was set
to 1 and the other area to 0, as shown in Figure 1. Bresenham’s line algorithm [25] was
used to obtain the pixels between two points on the hull surface. However, when binary
pixel images were used, precise results could not be expected because of the insufficient
information in the image. Therefore, a signed distance function (SDF) was adopted to add
additional information to the images. The SDF is the orthogonal distance of a given point
to the boundary of the hull and is determined by whether the given point is in the interior
of the hull. The function not only distinguishes the object’s boundary but also expresses
the region away from the boundary. Guo and Iorio [26] successfully applied SDF to create
a surrogate model for CFD. The pixel value is defined using Equation (1). The boundary of
the hull is expressed as 0; the inside has a positive value, and the outside has a negative
value. The minimum distance from the boundary was stored as a pixel value, and the
distance was normalized by the diagonal length of the image. Figure 2 illustrates the image
representation using the SDF.

D(i, j) = min(i′ ,j′∈Z)
∣∣(i, j)− (i′, j′)

∣∣sign( f (i, j)) (1)

2.2. Model Construction
2.2.1. CNN Model

The developed prediction model based on the cross-sectional images is introduced in
this section. The principal dimensions of the ship are used as additional inputs to the hull
form images because the cross-sectional coordinates are non-dimensionalized. Therefore,
the model has multiple-inputs and a single-output structure. One of the inputs for the
hull-form geometry is (3D) voxel data, where two-dimensional (2D) cross-section images
are stacked in the longitudinal direction. If the cross-sectional image is created as [N × N],
and M stations are used for hull form definition, the input dimensions are [M× N × N].
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Moreover, the input data for the hull geometry are passed through a series of 3D CNN
layers to detect the changing sectional shape patterns. The main dimensions of the hull
form are also used as inputs. These hull form dimensions can be combined with the
latent vector obtained from the convolution layers and passed through several MLP neural
networks before the output layer, as illustrated in Figure 3. The final model is generated
by learning in a direction of reducing the difference between the predicted and ground
truth values (model test result) to a particular target value. Some schemes for preventing
overfitting, such as dropout and regularization, can be applied.

Figure 1. Binary pixel image representation.

Figure 2. SDF pixel image representation.
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Figure 3. Overall concept of the CNN model.

A block coefficient (CB) prediction model was constructed and tested to validate the
proposed approach considering the cross-sectional shapes of the hull. Because CB is defined
by the displacement volume ratio to LBT, this coefficient can be obtained by integrating
the dimensionless cross sections in the longitudinal direction. Hence, this model does not
require the principal dimensions as the second input. In this study, 80% of the hull form data
were used for training, and the rest were used for model assessment. Three convolution
layers and max-pooling were applied, and a fully connected layer with 256 nodes was
connected to CB. Figure 4 presents the CB prediction results obtained using this model.
R2 for the test data was 0.996, indicating excellent performance. From this case, it can be
indirectly confirmed that the CNN model using image-converted cross-sections can capture
the geometric characteristics of the hull form.

Figure 4. CB predicted by the CNN model.
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2.2.2. MLP Model

A model that uses only the principal dimensions of the ship is required if the cross-
sectional shapes are not available. In this model, the input values are connected to the
output through several fully connected layers, as shown in Figure 5. Each fully connected
layer has multiple nodes with weight and bias. These values can be adjusted to reduce
output errors during the learning process. This structure of the MLP model was also used
in the prediction model for the POW characteristics.

Figure 5. Overall concept of MLP model.

2.3. Training Data

Towing test results for resistance and self-propulsion of 217 ships were analyzed in
this study. All the experiments were conducted at Korea Research Institute of Ships and
Ocean Engineering (KRISO). The data included that of single-shaft commercial ships (bulk
carriers, tankers, container carriers, and gas carriers); only the design draft conditions were
considered. The outliers and missing values were excluded from the analysis. Figure 6
shows the distribution of the selected hull form variables. Length of the ships varies from
100 m to 400 m. To decrease the possibility of overfitting, holdout cross-validation and
k-fold validation for hyperparameter tuning were used, as shown in Figure 7. The final
regression models were created by using the training data and the validation data sets, and
the models were evaluated by applying them to the test data set. The data for training were
set to 80% on a hull basis, and the remaining data (20%) were used for testing. The input
variables of the principal dimensions and output values were normalized using the mean
values and standard deviations. Segmentation by ship type was not applied because the
cross-sectional shapes reflected the characteristics of each ship type. The network weights
were initialized by He uniform [27] and updated by RMSprop [28] to minimize the mean
squared error (MSE). The nonlinear activation function ReLU was used, and early stopping
was employed to determine the optimum number of epochs. Batch normalization was
not applied because this technique is typically employed with very deep neural networks
and does not perform well with the present models. During the hyperparameter tuning
step, the training dataset was divided into three folds, and the averaged validation score
was computed to assess a hyperparameter set. The numbers of nodes and layers were
determined using the grid search method, and the dropout rate and L2 regularization factor
were determined using Bayesian optimization [29].
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Figure 6. Hull form variable distributions.

Figure 7. Holdout cross-validation.

3. Prediction Results Regarding the Ship Hydrodynamic Characteristics

As mentioned previously, the coefficients related to the resistance, self-propulsion, and
propeller open-water characteristics should be predicted to compute the required power
of a ship. Three prediction models were developed. One model was for the residuary
resistance coefficient (CR), another considered the wake fraction and thrust deduction
fraction (wTM, t), and the third focused on the POW characteristics (KTM and KQM).

3.1. Residuary Resistance Coefficient
3.1.1. CNN Model

The hull cross-sections for inputs were obtained from after-perpendicular (AP) to
forward-perpendicular (FP); hence, information regarding the bulbous bow was needed.
Therefore, length of the bulbous bow was used as the input for the principal dimensions.
Moreover, the Froude number (Fr) was used because the speed of the ship is the most
important factor affecting CR. The total input values of the principal dimensions for CR

were selected as L
B , L

T , B
T , L
∇1/3 , Fr, and Lbulb

L . A total of 23 stations were used for the input of
cross-sections, where the smallest interval was 0.025L, and the largest was 0.1L. The image
size of a cross-section was 96× 96, with a resolution of approximately 1%. The number of
Fr− CR set was 2011.

The final model obtained from the hyperparameter tuning has [12-8-8] 3D convolution
layers for the image sequence (23× 96× 96), [64] fully connected layers for the principal
dimensions and [32-32] fully-connected layers for the concatenated data, as illustrated in
Figure 8. The size of the convolution kernel was (3× 3× 3), and a stride with dimensions
(2× 2× 2) was applied at the first convolution layer.

Figure 9 presents the results for CR × 103 predicted using the proposed CNN model.
The hollow symbols indicate the training data results, and the solid symbols indicate those
of the test data. The horizontal axis represents the predicted value from the regression
model, and the vertical axis represents the ground truth (model test results). The coefficient
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of determination (R2) for the training data was calculated as 0.985, while the R2 for the test
data was 0.928. A good correlation was confirmed between the estimated and ground-truth
values. In contrast to calculating the errors for individual data, the error for one hull form
was calculated by dividing the integrated value of the absolute error in the speed range by
the integrated true value, as shown in Equation (2), because the error for one hull form in
the speed range is also important. The average error of CR for the entire dataset was 4.13%,
and that of the total resistance of the model (RTM) was 0.95%.

errship(%) =

∫
Fr

∣∣∣Valpred −Valtrue

∣∣∣dFr∫
Fr ValtruedFr

× 100 (2)

Figure 8. Structure of the CNN model for CR.
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Figure 9. CR predicted results from the CNN model.

3.1.2. MLP Model

In this model, only the principal dimensions were used as inputs (Figure 5). The
selected dimensions were L

B , L
T , B

T , L
∇1/3 , Fr, Lbulb

L , and LCB. LCB was added to the inputs of
the CNN model to consider the volume distribution of the hull. Three fully connected
layers [128-64-32] were used. Figure 10 presents the predicted results. A larger deviation
than the CNN model was confirmed. The R2 values for the training and test data were 0.910
and 0.814, respectively. The average error of CR was 8.69%, and that of RTM was 1.97%.
These errors are approximately two times that of the CNN model. However, it is confirmed
that several principal dimensions largely determined the resistance characteristics of a
hull form.

Figure 10. CR predicted results from the MLP model.
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3.2. Wake and Thrust Deduction Fractions
3.2.1. CNN Model

The model structure for the wake and thrust deduction fraction coefficients related
to propulsion characteristics was essentially the same as that for the residuary resistance
coefficient. However, assuming that the contribution of the frontal shape of the hull was
small, only 12 afterbody cross-sections were used as the input in the analysis, and the
length of bulbous bow was not considered as input of the principal dimensions. The block
coefficients of the afterbody (CBA) and the propeller diameter ( DP

T ) were added instead.
Figure 11 illustrates the structure of the model. The model had [8-8-4] 3D convolution layers
and [64] fully-connected layers for the principal dimensions and [64-32] fully-connected
layers for the concatenated data. The convolution kernel size and stride setting were the
same as those in the CR model. The output layer had a dimension of two for the wake
fraction (wTM) and thrust deduction fraction (t). Figure 12 shows the results. The R2

values of the test data for wTM and t were computed as 0.863 and 0.550, respectively. The
average errors for all the data were 3.08% and 3.85% for each item. Some discrepancies
were observed between the regression and true values for t. However, this error level is
considered to be not excessive because t is used in terms of 1− t when computing the
required power of a ship.

Figure 11. Structure of the CNN model for wTM and t.
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Figure 12. wTM (left) and t (right) predicted results from the CNN model.

3.2.2. MLP Model

In this model, the same inputs for the principal dimensions as those used in the CNN
model were used. Figure 13 presents the predicted results. No significant loss in accuracy
of the MLP model was observed compared to the CR case. The R2 values of the test data
for wTM and t were computed as 0.748 and 0.409, respectively. The results confirmed that
cross-sectional information could improve the prediction performance of the propulsion
coefficients for the test data.

Figure 13. wTM (left) and t (right) predicted results from the MLP model.

3.3. POW Characteristics

The Maritime Research Institute Netherlands (MARIN) B-series and the National
Maritime Research Institute (NMRI) MAU series are widely used POW regression models.
In this study, MLP models for predicting KTM and KQM were developed. Because the
propeller has a relatively standard shape and its shape can be easily reproduced by a few
key parameters, even a simple MLP model can show a precise prediction. In this study,
only one fully connected layer was used. The POW results of 483 propellers were used
for learning, and these propellers had only NACA and KH (KRISO-developed) section
shapes. Fixed pitch propellers with seven blades or less and a hub ratio of less than 0.22
were used for the analysis. These types of propellers are generally used in commercial
ships. The input variables were the advance ratio (J), number of blades (Z), expanded
blade area ratio (aE), pitch ratio at 0.7R (p0.7R), and mean pitch ratio (pmean). The number
of nodes in the fully connected layers was 48. Outstanding results were confirmed, as
shown in Figure 14. The R2 of the test data for KTM was 0.995, and for KQM was 0.992. The
average error, as defined in Equation (2), was approximately 3% for both coefficients. As
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the B-series regression showed an error of approximately 6% for the same data, improved
prediction errors were obtained.

Figure 14. KTM (left) and 10KQM (right) predicted results from the MLP model.

3.4. Summary of the Final Models

Table 1 shows the summary of input variables and network layers for each regression
model finally obtained by hyperparameter tuning.

Table 1. Model structures and input data.

Residuary Wake & Thrust Deduction POW
Resistance Coeff. Fraction Characteristics

CNN MLP CNN MLP MLP

Hull geom.
23 stations w/ 12 stations w/
96 × 96 image - 96 × 96 image - -
(23 × 96 × 96) (12 × 96 × 96)

Input var.
L
B , B

T , L
T , L
∇1/3 , Fr J, Z, AE

Lbulb
L LCB CBA, DP

T CBA, DP
T p0.7R, pmean

CNN layer [12-8-8] w/ - [8-8-4] w/ - -
kernel size 3 kernel size 3

MLP layer [64] [128-64 [64] [128-64 [48]for input var. -32] -32]

MLP layer [32-32] - [64-32] - -for concat.

4. Power Prediction
4.1. Performance Prediction Method

The coefficients of resistance, self-propulsion, and POW characteristics were estimated
using the developed regression models. The power required by a full-scale ship can be cal-
culated using an the ITTC 1978 performance prediction method based on two-dimensional
extrapolation [30], as shown in Figure 15. Because the regression models estimate the
performance coefficients at the model scale, extrapolation to the full scale was required.
The two-dimensional extrapolation method was used in KRISO, as shown in Equation (3).
The bilge keel area (SBK) was assumed as 0.9% of the wetted surface area (SBH). SBH can be
used as a known value or obtained from the regression result (Equation (4)). CA can also
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be used as a known value or computed using a simple regression formula such as Equa-
tion (5). CFS is the frictional resistance coefficient of the ship according to the ITTC-1957
model-ship correlation line, as shown in Equation (6), while CAA, which denotes the air or
wind resistance coefficient, can be obtained from Equation (7) using the projected area of
the ship above the waterline to the transverse plane.

CTS =
SBH + SBK

SBH
[CFS + CA] + CR + CAA (3)

SBH = −0.00000017∇2 + 0.131902474∇+ 2307.018044 (4)

CA = 0.000008121L2 − 0.005691L + 0.683357299 (5)

CFS =
0.075

(log10Rn− 2)2 (6)

CAA = 0.8
ρA AT
ρSSBH

(7)

Figure 15. Overall concept of the power prediction for the full scale ship.

The wake fraction at full scale was extrapolated using the thrust deduction fraction
and frictional resistance coefficients, as shown in Equation (8).

wTS = (t + 0.04) + (wTM − t− 0.04)
CFS + CA

CFM
(8)

The POW characteristics of full-scale propellers are generally obtained using the ITTC
extrapolation method. However, following this approach requires detailed information
on the propeller blade section shape. If we assumed that such detailed information is
not available, it was simply converted to a 1% increase in KT and a 1% decrease in KQ
of the model scale value in this study. The load of the full-scale propeller was computed
as follows: (

KT

J2

)
S
=

SBH

2D2
P

CTS
(1− t)(1− wTS)2 . (9)

The advance ratio (JTS) and torque coefficient (KQTS) of the propeller can be obtained
from the POW curve using the thrust coefficient identity. The brake power (PB) can be
computed using Equation (10), where the relative rotative efficiency (ηR) and the transmis-
sion efficiency (ηT) were assumed as 1.0 and 0.99, respectively. nS represents the propeller
frequency of the revolution at the self-propulsion point.

PB = 2πρSD5
Pn3

S
KQTS

ηRηT
· 10−3 (10)
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4.2. Case Study

This section presents the results of applying the regression models and power pre-
diction process for four cases of commercial ships. In particular, the data of a 176 m bulk
carrier, a 206.55 m container carrier, 165 m LPG carrier, and a 320 m tanker were selected
from test data not used to develop the model. The main parameters and the input values
of the ships are listed in Table 2. Figure 16 presents a comparison of the required power
and service speed between the regression models and the model test extrapolation. The
brake power in the figure includes a sea margin of 15%. The service speed can be obtained
for the corresponding normal continuous rating (NCR) power from the graph. The service
speed differences between the proposed model and the model test are listed in Table 3. The
absolute error of each model ranged from 0.7% to 3.0%. The overall shape of the power
curve from the CNN model was the best among the present methods. The ratios of the
integral of the absolute error of each method to the integral of the model test power curve
for the corresponding speed range calculated using Equation (1) are listed in Table 4. The
results confirmed that the CNN model presented the smaller error for the three cases. The
error of the CNN model was larger than that of the MLP model in the case of the tanker;
however, it was just 2.7%. The error in the shaft revolution speed at the NCR power without
sea margin for all models was less than 7%.

Table 2. Main parameters of the tested ships.

Bulk Container LPGC Tanker

L (m) 176.00 206.55 165.00 320.00
B (m) 30.0 30.6 28.0 60.0
T (m) 9.5 10.2 10.4 21.0

LCB (%) +2.4 −1.5 +0.75 +3.5
Hull CB (-) 0.798 0.650 0.75 0.825

Scale ratio (-) 24.4 30.0 26.0 39.6
Lbulb (m) 4.3 6.2 5.7 6.5
SBH (m2) 7362.1 8165.0 6750.7 28,873.0
AT (m2) 574.4 900.4 524.8 1200.0

DP (m) 6.1 7.5 6.5 9.9
Z (-) 4 5 4 4

Propeller aE (-) 0.486 0.710 0.525 0.485
p0.7R (-) 0.768 0.971 0.897 0.743
pmean (-) 0.755 0.943 0.850 0.727

Table 3. Absolute error in the service speed.

Model Bulk Container LPGC Tanker

MLP 1.43% 1.38% 2.97% 0.31%
CNN 0.64% 0.69% 0.71% 1.12%

Exp 14.02 kts. 21.71 kts. 16.82 kts. 16.11 kts.

Table 4. Power prediction errors for each model.

Model Bulk Container LPGC Tanker

MLP 5.5% 4.9% 9.3% 1.2%
CNN 3.5% 1.9% 2.6% 2.7%
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Bulk carrier Container carrier

LPG carrier Tanker

Figure 16. Power prediction results.

5. Concluding Remarks

This study introduced a power prediction method using regression models. In par-
ticular, regression models for the resistance, propulsion, and POW characteristics were
obtained using an ANN. The model test results from the KRISO towing tank were used in
the learning process. To consider the hull geometry, an image-based hull form representa-
tion method was suggested. The findings of this study can be summarized as follows:

• Development of MLP models for CR, wTM, and t
• Development of CNN models for CR, wTM, and t

– Image-based hull form representation using a signed distance function

• Development of MLP models for KTM and KQM
• Development of power prediction method using the developed regression models

The results for CR and wTM showed good agreement with the model test; however,
the estimated t was relatively poor compared with the other coefficients. Additional input
variables related to the propeller performance, such as p0.7R, might be required. The results
confirmed that a simple MLP model can estimate the POW characteristics accurately. The
CNN model showed less than a 1.5% difference in service speed from the model test
extrapolation for the four selected hull forms in the test dataset. The trend of the CNN
model was closest to the power curve shape of the experimental value. As expected, the
MLP model showed less accuracy than the CNN model; however, this model can be used
when the details of the hull geometry are unknown. The relatively low accuracy in the
high-speed regions may be due to insufficient data around these regions, as shown in
Figure 9.
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The methods presented in this paper are feasible for the preliminary design stage. In
particular, the CNN model can rapidly reduce the number of design alternatives for the
optimal hull form design before using CFD because this model can capture the changing
pattern of the cross-sections. However, data-driven prediction models, such as the present
models, should be used with caution when applied to a completely new hull shape not
included in the data used for learning. Furthermore, securing more model test data for
improving the estimation models and nominal wakefield estimation using the present
CNN approach will be part of future research work.
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Nomenclature
The following abbreviations are used in this manuscript:

L L indicates LPP (Length between perpendiculars)
B Breadth
T Draught
CB Block coefficient
CBA Block coefficient of after body
LCB Longitudinal center of buoyancy
∇ Displacement volume
Lbulb Bulbous bow length
DP Propeller diameter
Z Number of propeller blades
aE Expanded blade area ratio
p0.7R Pitch ratio at 0.7R
pmean Mean pitch ratio
SBH Wetted surface area of bare hull
SBK Bilge keel area
AT Projected area of ship above the water line to the transverse plane
ρA Mass density of air
ρW Mass density of water
Fr Froude number
Rn Reynolds number
J Propeller advance ratio
CR Residuary resistance coefficient
wT Wake fraction
t Thrust deduction fraction
KT Thrust coefficient
KQ Torque coefficient
RT Total resistance
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CT Total resistance coefficient
CF Frictional resistance coefficient
CA Incremental resistance coefficient for model ship correlation
CAA Air or wind resistance coefficient
PB Brake power
ηR Relative rotative efficiency
ηT Transmission efficiency
n Propeller frequency of revolution
Symbols for subscript M: model, S: ship
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