
Citation: Ali, A.A.I.M.; Jamaludin, S.;

Imran, M.M.H.; Ayob, A.F.M.;

Ahmad, S.Z.A.S.; Akhbar, M.F.A.;

Suhrab, M.I.R.; Ramli, M.R.

Computer Vision and Image

Processing Approaches for Corrosion

Detection. J. Mar. Sci. Eng. 2023, 11,

1954. https://doi.org/10.3390/

jmse11101954

Academic Editor: Rafael Morales

Received: 2 July 2023

Accepted: 11 July 2023

Published: 10 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Review

Computer Vision and Image Processing Approaches for
Corrosion Detection
Ahmad Ali Imran Mohd Ali 1, Shahrizan Jamaludin 1,* , Md Mahadi Hasan Imran 1,
Ahmad Faisal Mohamad Ayob 1 , Sayyid Zainal Abidin Syed Ahmad 1 , Mohd Faizal Ali Akhbar 1,
Mohammed Ismail Russtam Suhrab 2 and Mohamad Riduan Ramli 3

1 Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu,
Kuala Terengganu 21030, Malaysia; imran_calibre@yahoo.com (A.A.I.M.A.)

2 Faculty of Maritime Studies, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Malaysia
3 Faculty of Marine Engineering, Malaysia Maritime Academy, Kuala Sungai Baru 78200, Malaysia
* Correspondence: shahrizanj@umt.edu.my

Abstract: Corrosion is an undesirable phenomenon resulting in material deterioration and degrada-
tion through electrochemical or chemical reactions with the surrounding environment. Additionally,
corrosion presents considerable threats in both the short and long term because of its ability to create
failures, leakages, and damage to materials, equipment, and environment. Despite swift technological
developments, it remains difficult to determine the degrees of corrosion due to the different textures
and the edgeless boundary of corrosion surfaces. Hence, there is a need to investigate the robust
corrosion detection algorithms that are suitable for all degrees of corrosion. Recently, many computer
vision and image processing algorithms have been developed for corrosion prediction, assessment,
and detection, such as filtering, texture, color, pixelation, image enhancement, wavelet transformation,
segmentation, classification, and clustering approaches. As a result, this paper reviews and discusses
the state-of-the-art computer vision and image processing methods that have been developed for
corrosion detection in various applications, industries, and academic research. The challenges for
corrosion detection using computer vision and image processing algorithms are also explored. Finally,
recommendations for future research are also detailed.

Keywords: computer vision; image processing; corrosion detection; degree of corrosion; corrosion
level

1. Introduction

Corrosion or rust is an undesirable phenomenon resulting in material deterioration
and degradation through electrochemical or chemical reactions with the surrounding
environment [1]. Additionally, corrosion presents considerable threats in both the short and
long term; this costs billions of dollars because of its ability to create failures, leakages, and
damage to materials, equipment, and environment. The drawbacks of corrosion, such as
expensive overdesign, costly maintenance, reduced efficiency, product contamination, plant
shutdown, production loss, nuclear hazards, and heat transfer reduction, have burdened a
lot of industries [2]. It also can threaten human health by damaging the respiratory tract,
digestive tract, skin, and eyes [3]. Human tissues can be destroyed and burned on contact,
and corrosion can cause permanent lung injury, blindness, scarring, and even death [4].

Computer vision involves developing algorithms and techniques that enable machines
to simulate or replicate human vision using machine learning. The machine or computer
has the ability to perceive and analyze patterns using visual inputs. It imitates the intricacy
of the human visual system and analyzes inputs based on attributes like color, size, texture,
and other factors. Computer vision is used for corrosion detection since it can locate and
classify the corroded area in images along with the other machine learning techniques.
Other examples of computer vision applications include face detection, car detection, and
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iris classification. Moreover, image processing refers to a technique that involves adjusting
various attributes and parameters of images in order to improve their quality, enhance
their appearance, and modify them in accordance with specific needs. There are numerous
techniques available to transform images. These digital images contain specific values and
positional elements, including visual elements, picture elements and pixels. Therefore,
image processing has practical applications in detecting corrosion because its techniques
are capable of segmenting, filtering, sharpening, and enhancing corroded areas in images.
Examples of image processing applications include illumination correction, noise reduction,
contrast enhancement, and image rescaling. The detection of corrosion through computer
vision and image processing involves five primary processes: image acquisition, image
pre-processing, image segmentation, feature extraction, and image classification.

Despite the fact that chemical and physical tests are highly efficient for corrosion detec-
tion, it remains difficult to implement these methods in confined spaces, narrow pipelines,
small spaces, dangerous areas, and large surface areas. Consequently, computer vision and
image processing approaches have been adopted to detect, assess, and predict corrosion
progression, deterioration, and degradation on equipment and materials. Both approaches
are inexpensive, reasonably accurate, fast, reliable, and can be implemented on large and
wide areas such as bridges, ships, buildings, etc. However, it is hard to detect and predict
corrosion in images captured in different environments, with different levels of quality, and
different parameters, using a single technique. One computer vision or image processing
technique is not enough to manage all types of corrosion images without considering the
harsh environment and other external factors. Hence, there is a need to investigate various
computer vision and image processing techniques such as color analysis, texture detection,
denoising, registration, edge and line detection, filtering, pixelation, clustering, classifica-
tion, segmentation, wavelet transformation, pattern recognition, morphological operation,
and image enhancement that can be integrated or combined for corrosion detection, as
well as the assessment and prediction of different corrosion conditions. Hence, this paper
reviews and investigates state-of-the-art computer vision and image processing solutions
in terms of prediction modelling and detection approaches that have been developed for
various corrosion applications, industries, and academic research. The challenges and
future recommendations for both approaches are also presented.

This paper is organized as follows. Section 2 presents the background of this study.
Section 3 discusses the corrosion prediction model for computer vision and image process-
ing. Section 4 reviews the corrosion detection approaches in terms of computer vision and
image processing. Section 5 presents and discusses the challenges in corrosion detection.
Section 6 presents the discussion and future recommendations. Finally, Section 7 details
the conclusion of this study.

2. Background

This section will explain the background of the corrosion, computer vision, image
processing, and corrosion detection processes of this study.

2.1. Corrosion

The strength of a metallic material, its operation, physical appearance, and mechanical
properties can be affected by corrosion. However, the degradation of metallic materials
is inevitable and they are susceptible to the surrounding environment [5]. The adjacent
environment can be classified into wet corrosion and dry corrosion categories. Wet corro-
sion happens because of the formation of reactive electrochemical cells in the presence of
liquid. Examples of wet corrosion include galvanic corrosion, erosion corrosion, and crevice
corrosion. Moreover, dry corrosion refers to the reaction of metallic material with oxygen
in the air, without the presence of liquid. Examples of dry corrosion include hydrogen
attacks, molten-salt, and oxidation. The most corrosive environments are coastal areas and
marine environments. The combination of sodium chloride (salt), oxygen, and moisture
can rapidly increase the corrosive level in both environments. Moreover, seawater is more
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corrosive because of its higher penetrating power and conductivity through the metallic
surface films. Furthermore, acid, polluted air, hot air, and hot water are more corrosive than
the normal environment. Recently, the high toxicity level in the wastewater of domestic
areas, urban sewage plants, and industrial plants has become a major concern as it can lead
to a corrosive environment due to the presence of dissolved and suspended compounds,
organic and inorganic chemicals, pathogenic and non-pathogenic compounds, etc. [6].

Other than environmental exposure, such as wet corrosion and dry corrosion, cor-
rosion can also be categorized in accordance with attack morphology. There are eight
categories of corrosion morphology, including general attack, erosion corrosion, intergran-
ular corrosion, stress-corrosion cracking, galvanic corrosion, pitting, crevice corrosion, and
selective leaching [7]. The uniform electrochemical reaction that occurs on the surface of
a material is known as a general attack. It can be contained and is predictable. Erosion
corrosion occurs due to the accelerated corrosion process resulting from the high velocity
of corrosive fluid on the metal surface. Abrasion and mechanical wears are also involved.
Intergranular corrosion is a specific form of corrosion that targets the boundaries between
grains in a material. It creates a small, corroded area. Corrosive mediums and tensile stress
can result in stress-corrosion cracking. A crack is produced from brass season cracking and
steel caustic embrittlement. Galvanic corrosion occurs because of the potential difference
between two submerged metals in a corrosive solution [8]. The metal with resistance to
corrosion acts as a cathode whereas the other metal acts as an anode. The anode metal
will corrode more than the cathode metal. Pitting is a type of corrosion that is highly
destructive and causes localized damage, resulting in the formation of holes in the metal
surface. Due to the accumulation of corrosion products, it can be challenging to identify
these areas of damage. Crevice corrosion is a localized corrosion with small amounts of
stagnant solution. It always attacks the holes, gaskets, and lap joints. Selective leaching is a
type of corrosion that occurs when a particular element from an alloy is extracted [9]. This
happens to aluminum, zinc, cobalt, chromium, and iron.

In relation to ship structures, the weakening caused by corrosion and fatigue can
decrease the durability of vessels and ships, leading to potential structural failures [10]. The
primary factors causing corrosion in ship structures include the single metal element (such
as the element at the ship’s hull), two different metals (such as those used for the metallic
coatings and rivets), and the concentration element (such as the presence of electrolytes
and metal). Moreover, ship structures can be categorized into atmospheric zones and
immersed zones of stiffeners and plates. The factors that can influence corrosion in the
atmospheric zone include pressure, humidity, temperature, ventilation, steel type, oxygen,
carbon dioxide, sulfur dioxide, sulphuric acid, and chloride concentrations. Additionally,
the main influencing factors for the immersed zone include salinity, temperature, pH value,
seawater velocity, seawater pressure, hydrogen sulfide concentrations, sulphuric acid, and
carbon dioxide. Therefore, it is essential to implement an effective maintenance strategy
that includes corrosion detection and maintenance activities. Corrosions on ship structures
are depicted in Figure 1.
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2.2. Computer Vision and Image Processing

Computer vision involves developing algorithms and techniques that enable machines
to simulate or replicate human vision using machine learning. The machine or computer
has the ability to perceive and analyze patterns using visual inputs. Images and videos
are the most common visual inputs for computer vision. Moreover, object detection and
object identification are the outputs of computer vision. Image processing is one of many
techniques used in computer vision. Other techniques, such as instance segmentation,
semantic segmentation, object racking, object detection, and image classification, are also
important and widely used in computer vision. Corrosion detection benefits from the use
of computer vision as it is capable of identifying and categorizing areas of corrosion within
images, along with other machine learning techniques such as the use of the convolutional
neural network (CNN) and the genetic algorithm. It is a non-destructive test and can be
operated from a distance. Other examples of computer vision applications include face
detection, car detection, and iris classification.

Image processing involves adjusting the various parameters and features of an image
to enhance and transform it for improved clarity and quality. The images can be trans-
formed using many techniques such as stretching, smoothing, sharpening, deblurring,
filtering, inpainting, restoration, compression, and segmentation. These digital images
comprise specific values and locations, which are represented by pixels, visual components,
and other picture elements. Each of the images consists of rows and columns of pixels.
The two-dimensional signal is processed in accordance with the given or specific task. The
inputs for image processing are images and videos, which are similar to computer vision.
Moreover, the outputs are the transformed input images and videos. Image processing
is considered to be a subset of computer vision since it is a technique used in computer
vision. Hence, corrosion detection utilizes image processing techniques since it can be used
to segment, filter, sharpen, and enhance the corroded area in images. Hence, corrosion
can be detected in the images using the aforementioned processes. Other examples of
image processing applications include illumination correction, noise reduction, contrast
enhancement, and image rescaling.

The main difference between computer vision and image processing can be understood
as follows. Image processing involves processing and manipulating raw images into new
images using different features. Moreover, computer vision involves extracting meaningful
information or data from the images. Computer vision will not enhance features in images,
but it will gain a high level of understanding from them. Machine learning techniques
allow machine vision to interpret images in the same way humans do. Furthermore, image
processing focuses on processing, whereas computer vision focuses on pattern recognition
and data understanding. Moreover, computer vision requires training with a significant
amount of data. Nevertheless, image processing does not require training and can be
implemented straight away.

2.3. Corrosion Detection Process

The computer vision and image processing processes for corrosion detection can be
divided into five main processes or elements: image acquisition, image pre-processing,
image segmentation, feature extraction, and image classification. The corrosion detection
process is illustrated in Figure 2.
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2.3.1. Image Acquisition

Image acquisition is a process that captures images from digital cameras, thermal
cameras, videos, computed tomography, etc. Images can be taken directly from cameras.
Moreover, to obtain the desired images from a video, they need to be extracted frame by
frame. A tomogram is an image produced by a tomograph which uses penetrating wave
and reconstruction algorithms to produce a cross-sectional image. Images can be captured
either automatically or manually [11].

2.3.2. Image Pre-Processing

The second process is image pre-processing. Pre-processing is used to enhance the
quality of raw images. Generally, raw images contains a great deal of unwanted background
noise. As a result, several pre-processing techniques can be applied, such as histogram
equalization, morphological operations, and median filters. These techniques can reduce
and eliminate noise, distortion, and interference in the raw images.

2.3.3. Image Segmentation

The third process is image segmentation, which plays a prominent role in corrosion
detection. The corroded regions in an image are detected and isolated in accordance with
similarities in discontinuity and criteria. Examples of segmentation techniques include
region-based, edge detection, threshold-based, clustering, pattern matching, and artificial
neural network (ANN) segmentation.

• Region-based: This segmentation technique locates connected pixels of similar colors
and intensities in an image. Normally, similar pixel regions are classified using some
predefined rules between adjacent pixels. The segmented regions are obtained from
the neighboring pixels and they are connected to the seed pixels. This technique works
better with high contrast images.

• Edge detection: This technique detects object boundaries by locating and identifying
points of brightness discontinuities or sharp changes in an image. These points are
also called the image edges. Widely used edge detection methods include Canny
edge, Prewitt edge, Sobel edge, and Laplacian edge methods. The aim of edge detec-
tion methods is to reduce the probability of detecting wrong edges in an image by
optimizing edge detection algorithms.
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• Threshold-based: This segmentation method converts color or grayscale images into
binary images based on a threshold value. The threshold value is obtained from
the original image’s pixel intensity. The pixels in the original images are converted
for easier image analyzation. This method separates the desired object from the
background pixels.

• Clustering: This technique partitions an image into clusters or groups by identifying
the relationship between adjacent pixels in an image. Then, groups of similar patterns
are clustered to explore during data analysis. The most used clustering methods are
the fuzzy c-means, k-means, improved k-means, and hierarchical methods.

• Pattern matching: Pattern matching, or template matching, is a technique that allows
template localization in images. The patterns in images are matched to each other in
terms of their special features by restricting the searching region. The corroded region
can be segmented by matching a predefined template with the small parts of an image.
Examples of pattern matching include Hamming distance and Harris corners.

• ANN segmentation: This method uses an encode–decoder structure for the segmenta-
tion of 3D images [12]. It works with the height, width, and channel number. The first
two dimensions represent the image resolution. Moreover, the third dimension repre-
sents the red, green, and blue channels. This segmentation technique uses machine
learning in its segmentation process.

2.3.4. Feature Extraction

Feature extraction is the fourth process, and it involves extracting corrosion charac-
teristics from the image that has been segmented [13,14]. Corrosion features are retrieved
to obtain the most significant information from an image. Examples of feature extraction
techniques include the Gabor filter, histogram of oriented gradients (HoG), and Laplacian
of Gaussian (LoG).

2.3.5. Image Classification

The final process is image classification, wherein the groups of pixels are labelled
and categorized in accordance with specific rules. This process will label an image based
on its visual content. The groups of pixels can be categorized with textural or spectral
characteristics. The three types of image classification used were supervised, unsupervised,
and object-based analysis.

3. Corrosion Prediction Model

This section will review the state-of-the-art corrosion prediction models used in computer
vision and image processing approaches. The corrosion prediction models are divided into
the knowledge-based model, probabilistic model, statistical model, and deterministic model.

3.1. Knowledge-Based Model

The knowledge-based model involves utilizing artificial intelligence techniques to
anticipate the advancement of corrosion based on images and videos. The learning process
is adopted by the algorithms used for the corrosion images. The knowledge of the algorithm
is continuously updated throughout the learning process. The learning process can be
categorized into supervised learning, unsupervised learning, and reinforcement learning.
Supervised learning is a learning process used by labeled corrosion images. These images
are labeled manually before being trained by the algorithm. Unsupervised learning is a
learning process used by unlabeled corrosion images. The algorithm will train itself to
explore the unlabeled images and predict the corroded area. Reinforcement learning is
a learning process that uses trial and error in an interactive corrosion environment. The
algorithm will create a sequence of decisions, based on the learning process, by providing
penalties or rewards for each solution concerning corrosion detection. The feedback of each
action will enable the algorithm to provide optimal results. Generally, the knowledge-based
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model will complement the other computer vision and image processing corrosion detection
approaches due to its high efficiency, low level of human error, and improved workflows.

Several studies [15,16] have used the knowledge-based model for automated sewer
inspections. The images and videos were captured with closed-circuit television (CCTV).
The CCTV was installed in sewers, and corrosion assessments were conducted from a
remote place. The data from the CCTV were analyzed in order to detect the corroded area.
However, not all images or videos were clear enough for corrosion detection. Consequently,
pre-processing techniques were applied, such as the support vector machine (SVM) [17]
for the pixel classification of corroded pipes. CNN [18,19] can also be used for corrosion
detection. This method pre-processed 47,000 sewer pipeline images and managed to classify
six types of defects. This method achieved 96.33% accuracy for defective sewer pipelines.
However, the classification of imbalanced CCTV data can occur in long-distance sewer
pipelines. Defective classifications in a 24.7 km sewer pipeline were investigated as only a
64.8% accuracy was obtained from the CCTV with regard to corrosion detection. However,
this method did not use pre-processing for imaging input enhancement. This proved
that pre-processing is an important step in computer vision and image processing-based
corrosion detection. Similar knowledge-based approaches [20–22] also used a combination
of CCTV and machine learning in their methodology for corrosion detection in pipelines.

3.2. Probabilistic Model

The probabilistic model is utilized for corrosion detection in scenarios where there is
inadequate historical data and real-time data are available. Corrosion is a time-dependent
and space-dependent process, thus, the probabilistic model must be able to ascertain the
uncertain nature of materials. This model requires expertise and an in-depth knowledge of
physics and mathematics to develop the sophisticated mathematical model. Consequently,
this model is quite difficult to develop. However, the probabilistic model can be replaced
by the fuzzy logic model if the available data are ambiguous and vague. The fuzzy logic
model also requires professional experience and expert judgments in order to determine
the rule set for corrosion detection.

Gamma distribution [23] was used to investigate the cumulative deterioration of
materials. The reliability of the corrosion progression was analyzed using a decreasing
monotonic pattern. The number of counts was used to reconstruct a 2D image of the mate-
rials. The corrosion pattern can be analyzed using the reconstructed 2D image. Moreover,
the gamma process and copulas [24] of the spatio-temporal aspects of the image were
used to predict and detect the corrosion of the buried pipelines. The correlation length
model calibrated the temporal and spatial correlations of the probabilistic model. The
failure reliability can be estimated, and thus, corrosion progression can be detected. The
probabilistic model and finite element [25] were used to study the effect of fly ash, the
rebar diameter, and current density on the spatial variability of a concrete beam based on
X-ray images. Gumbel distribution parameters were obtained from the spatial probabilistic
corrosion model. The results showed that the uniform corrosions in images can be detected
with a high current density. Moreover, a low current density can detect non-uniform corro-
sion patterns such as large cracks and pits. The probabilistic prediction model managed
to derive the accurate Gumbel distribution parameters from the steel weight loss. The
Monte Carlo finite element [26] was used with the probabilistic framework to estimate the
corrosion-induced cracks in images. The corrosion was predicted and assessed with an
efficient computational approach and two machine learning models. The deterioration
prediction of the structural capacity was demonstrated with this method. The accurate
corrosion classification of the probabilistic model was further improved with linear pop-
ulation size reduction and image processing [27]. The automated pitting corrosion was
detected with multilevel thresholding for the metal surface extraction of corrosion images.
This method also managed to extract the corrosion features of multilevel color spaces, such
as grayscale and color channels.
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3.3. Statistical Model

The statistical model is a prediction method that uses statistical analysis to detect
and predict corrosion progression using historical data. Information can be obtained from
CCTV systems installed in various places such as gas pipelines, sewers, and others. A wide
range of statistical methods can be used to develop a prediction model, such as the Markov
chain, Bayesian inference, distribution fitting, polynomial regression, linear regression, etc.
The accuracy of the statistical model depends on the data quality and sufficient input.

The corrosion mechanism for marine material is difficult to understand because of
the diversity involved with corrosion morphology. As a result, the Markov chain with the
gray level co-occurrence method [28] were introduced in the seawater to detect corrosion
damages on Q420 steel. The extraction of the corrosion morphology from images was
achieved, and it was consistent with the electrochemical results. However, there were
discrepancies with regard to pit depths, interconnected corrosion holes, and irregular corro-
sion morphologies. Despite these issues, they can be overcome with Bayesian optimization
(see the image-based corrosion rating in [29]). Bayesian optimization was used to fine-tune
the corrosion classifiers. The corroded regions in the images were characterized with the
local texture features and high discriminatory power. Consequently, the cross-validation
error was minimized after the hyperparameters were fine-tuned. The other statistical
models, such as polynomial regression [30] and linear regression [31,32], can also be used
to develop the statistical prediction model for corrosion detection using corrosion images.

3.4. Deterministic Model

The deterministic model involves the examination of the relationships between the
parameters or variables of corroded materials through field experiments conducted with
the aid of images and videos. This prediction model is easier to develop compared with the
other models. Vast expertise or knowledge in corrosion is not crucial for the development
of the deterministic model. Nevertheless, this model cannot extract the realistic nature of
corrosion in the environment. Thus, the developed prediction model could be inaccurate in
terms of the extrapolated results [33].

Examples of deterministic models for corrosion detection using computer vision and
image processing approaches can be found in [34,35]. The structural health monitoring
(SHM) and digital twin models were used in [34] to increase the durability of infrastruc-
tural assets. Corrosion progression can be regularly revalidated in terms of the structure’s
reliability. The results showed that this method can improve the behavioral prediction of
metallic structures. Moreover, the texture descriptors with cellular automata [35] were used
when the training data were not sufficient. This method counterbalanced the formulation
with controlled deterministic chaos. According to the results, the proposed method outper-
formed the other approaches during the real-world detection process. Other deterministic
models in the literature can be explored in [36–38]. The comparisons of different corrosion
prediction models are illustrated in Table 1.

Table 1. Comparisons of different corrosion prediction models.

Prediction Model Description Application/Method

Knowledge-Based
• AI is used to predict corrosion

progression from images
and videos.

• Automated sewer inspection [15,16].
• Combination of machine learning

and CCTV [20–22].

Probabilistic

• This model is used when historical
and real-time data are insufficient.

• Requires expertise and an in-depth
knowledge of physics and
mathematics to develop
sophisticated mathematical models.

• Quite difficult to develop.

• Gamma distribution [23].
• Gamma process and copulas of

spatio-temporal aspects [24].
• Probabilistic model and finite

elements [25].
• Monte Carlo finite elements [26].
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Table 1. Cont.

Prediction Model Description Application/Method

Statistical

• Statistical analysis is used to predict
and detect the progression of
corrosion using historical data.

• Gathers data from CCTV systems
installed in various locations such as
gas pipelines, sewers, etc.

• Markov chain with gray level
co-occurrence method [28].

• Polynomial regression [30] and
linear regression [31,32].

Deterministic

• Field experiments involving images
and videos are used to examine the
connections between the
parameters/variables of
corroded materials.

• Easier to develop.
• Extrapolation accuracy.

• Structural health monitoring and
digital twin models [34].

• Texture descriptors with cellular
automata [35].

4. Corrosion Detection Approaches

This section will describe the state-of-the-art computer vision and image processing
corrosion detection approaches. There is no single corrosion detection technique that is
suited to all types of environments. The different corrosion detection techniques must be
used for different environmental conditions and other external factors.

4.1. Ground Penetrating Radar

Ground penetrating radar (GPR) uses electromagnetic reflection to penetrate the
surface of materials used for corrosion detection. A short, microscopic electromagnetic
energy pulse is transmitted to the surface in the frequency range of 500 MHz to 2.5 GHz.
The amplitude-time signal is recorded using the reflected waves of GPR antennae. The
advantages of GPR include fast scanning, being sensitive to embedded material in the
structure, good quality images of the structure, and greater depth penetration. However,
GPR data are quite difficult to interpret, therefore, they require expert knowledge and
skilled operators. The deep post-processing of captured images is also required. Moreover,
this method must be applied periodically, and it is not capable of monitoring corrosion
progression online. These shortcomings are caused by data analysis instead of equipment.
Thus, computer vision and image processing approaches can be used to accurately analyze
complicated GPR data.

Researchers in [39] employed a combination of GPR data, ANN, and image processing
to identify the degree of corrosion in reinforced steel concrete structures. Edge detection
and k-means clustering image processing techniques were used to investigate differences
between corrosion features. ANN was used to interpret and extract complicated features
data from GPR images. The images were taken in a short period of time to reduce the blurry
effect on GPR images. The results showed that k-means clustering managed to extract and
partition a corrosion image into multiple segments. The obtained semantic information
classified the area into no corrosion, low corrosion, middle corrosion, and high corrosion
categories. The accurate edges of multiple segments areas were detected with a Sobel edge
detector. Moreover, GPR was used with Fourier transform and a Gaussian filter [40] with
1 GHz frequency to monitor and predict the degree of corrosion. Reinforced steel structures,
such as floors, roofs, and concrete walls, were scanned and the obtained images were
pre-processed to detect noise and anomalies. The results were validated using simulation
and field data tests. This approach yielded the most accurate prediction with regard to
the degree of rebar corrosion, making it a superior technique for detecting and identifying
corrosion. Moreover, GPR can also be combined with other imaging techniques to further
improve corrosion detection accuracy. Acoustic scanning and GPR were deployed in [41]
for corrosion detection in straight and curved concrete bridge decks. A frequency range
of 0.5 to 5 KHz was used to reconstruct 2D images from the energy map. The results
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showed that by combining both deterioration and acoustic scanning maps, comprehensive
corrosion detection can be provided in the bridge decks.

4.2. Thermography

Recent advancements in solid-state technology have allowed an improved infrared
detector to be developed. This new infrared detector contributes to better resolutions and
higher accuracies being obtained during corrosion monitoring, detection, and prediction.
The cost of online monitoring with this type of sensor also has been considerably reduced.
However, thermal images obtained from the infrared sensor can be affected by low signal
strengths and noise. Consequently, image processing techniques and signal analysis are
proposed to overcome these problems, especially to enhance the thermal images’ quality.

Infrared thermography (found in [42–44]) is a common computer vision and image
processing technique for corrosion detection. This technique records the electromagnetic
energy emitted by metallic materials. Then, corrosion patterns can be located from the
thermal images. Other widely used thermography-based techniques include optical [45],
laser [46], induction [47], and microwave [48] techniques. Each of these techniques have
their own advantages and limitations in terms of energy, surface inspection, practicalities,
source, etc. Recently, a new thermography technique was introduced to improve corrosion
classification and detection. The photovoltaic (PV) electroluminescence module [49] was
developed to detect cracks and corrosion on pipelines. The electroluminescence (EL) images
were parsed from PV cells to machine learning algorithms such as CNN, random forest,
and SVM. EL images were pre-processed with regression fitting, convex hull, thresholding,
and filtering to create the planar index module. The results showed that CNN on EL images
outperformed the other machine learning algorithms for pipeline corrosion degradation.
Nevertheless, these methods required a proper sample for training, evaluation, and testing
in order to increase the accuracy of corrosion prediction.

4.3. Computed Tomography

Computed tomography is a computerized imaging technique which generates cross-
sectional images from radiation rays that are aimed and rotated around the object. The
cross-sectional images or slices are also called tomographic images. Geometry processing
generates 2D and 3D images of an object which contain important information such as
shape and dimension. Several slices are stacked together to reconstruct a 3D image for
corrosion detection. Computed tomography is a non-invasive technique in computer vision
and image processing.

The thermal spraying method [50] was developed in order to assess the corrosion
mechanism and coatings. X-rays and Raman spectroscopy were used to protect the steel of
anodic metals such as aluminum and zinc. This method was compared with electrochemical
experiments such as open circuit potential and electrochemical impedance spectroscopy
(EIS). The results showed that the corrosion resistance property was improved with X-ray
computed tomography. The corner steel bar in concrete can also be detected with X-rays [51].
Moreover, novel tomographic acoustic microimaging (TAMI) [52] presented an approach
to assess the depth of corrosion and pitted areas in images obtained from scanning acoustic
microscopy (SAM). These images were processed with binarization under the C-mode to
identify the corrosion pits under the rust. The results of the corrosion pit morphology were
validated with optical microscopy and the 2D and 3D surface methodology, which achieved
a 40% accuracy with regard to pit regions. Synchrotron radiation computed tomography
(SRCT) [53] was tested using electrochemical reaction visualizations, composite failure
analysis, and corrosion rate measurements. This tomography technique used a resolution
of less than 1 µm to create the 3D material microstructures. This technique was further
improved by adding a fourth temporal dimension to analyze the under-load material
response. The reconstructed 4D images managed to enhance the textural details of corrosion
detection. On the other hand, neutron tomography [54] was mobilized to provide the
details of the internal structure of heritage objects. Nevertheless, this technique can also be
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used for detecting the degree of degradation of heritage objects. The internal defects and
spatial distribution information were obtained using modern mathematical algorithms and
neutron attenuation coefficients. The 3D structural volume data and images were obtained,
which provided opportunities for the future implementation and improvement of corrosion
detection and prediction. Magnetic Resonance Imaging (MRI) can also be implemented for
corrosion analysis, as presented in [55–57].

4.4. Color Space Detection

Color space is the color representation described by mathematical models in an image.
The image pixels are defined using the characteristics of color spaces. The color space
segmentation is a technique wherein the meaningful object in an image corresponds with
the clusters of color features in image pixels. These image clusters share similar properties
with regard to color. However, there is no single-color space that fits with all kinds of
images [58]. Consequently, many experiments have been conducted to select the best color
space that suits specific conditions and environments. The well-known color spaces are
RGB (red, green, and blue), YUV (luminance and chroma), CMY (cyan, magenta, and
yellow), HSV (hue, saturation, and value), and XYZ (x, y, and z coordinates). An example
of corrosion detection using a RGB color space is illustrated in Figure 3.
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The HSV color space [59] can be used to locate corroded and non-corroded regions
based on the color and roughness of materials. In this work, HSV was used for the color
analysis of a corrosion-representative histogram. Moreover, the grayscale level was used
for roughness analysis. Then, the photographic images of components and structures
were applied using this image processing technique. This color space was combined with
artificial intelligence algorithms to improve the detection accuracy of the corrosion damage
assessment. HSI (hue, saturation, and intensity) [60] can also be applied for corrosion
detection. An image enhancement technique was used to improve the corrosion areas with
histogram equalization to obtain better contrast and brightness. The HSI was converted
using the RGB images. Nevertheless, robust corrosion detection can be developed by
extracting CbCr (blue chroma and red chroma) elements from the corrosion images [61].
The textures of corrosion can be distinguished, which can improve the computation and
measurement of ununiform corrosion. A novel color space based on the color shade
index (CSI) and rusty area ratio (RAR) was introduced in [62] to ensure electric energy
transmission by detecting the damper rust defect in a timely manner. The complex damper
images were acquired in grayscale and enhanced with Gaussian kernel, edge strength
mapping, and local difference processing. Then, the images were classified into severe
rust, medium rust, slight rust, and rust-free categories. The results showed effective
segmentation and rusted dampers were identified with 93% accuracy.
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4.5. Wavelet Domain

Wavelet domain is a zero-averaging fast decaying technique using both frequency
and spatial domains. It can be used to measure the corroded regions in an image. The
minimization of entropy is used for illumination component correction in the corrosion
image. Then, the wavelet transform is applied to the RGB channels to measure the entropy
and energy values. The feature vectors are extracted, thus allowing the accurate detection
of corroded regions. It is possible to recover noisy corrosion images without muddling or
blurring the details of the corrosion in the image.

The wavelet image coefficient [63] on the grid metal frame was studied to determine
the atmospheric corrosion characteristics. This metal frame was used for power trans-
mission in Chongqing. The structural materials were investigated in terms of corrosion
product, quantity, and morphology using the wavelet transform algorithm. The images of
the detection results were evaluated using the on-site samples which were consistent with
the actual corrosion progression. Moreover, wavelet analysis [64] was used to determine
the effect of nitrogen for pitting corrosion. The standard deviations of the partial signal
and energy distribution were used to measure the energy of the low frequency signal. The
hybrid wavelet packet transform [65] was combined with the support vector classifier
for carbon-steel pipeline corrosion detection. The corrosion grades were predicted and
determined using fast Fourier transform. This technique was evaluated with the linear
polarization resistance (LPR) laboratory test to determine its prediction accuracy. The
results showed that the proposed technique was effective for the detection and assessment
of corrosion. The similar 2D-wavelet filtering technique can be used for damage detection
in structures [66].

4.6. Classification with SVM

SVM is an image classification technique wherein two separate zones can be parti-
tioned from a vector space. It is a powerful machine learning technique, especially for
image segmentation and pattern recognition. SVM is a supervised learning technique used
for regression, classification, and outlier detections. This technique is highly effective in
dimensional spaces. SVM transforms the corrosion image using a kernel trick, and then, it
locates the optimal corrosion boundaries between all possible outputs. Both colors of the
corroded region, and the degree of corrosion, can be analyzed using SVM.

The applications of SVM for corrosion detection can be observed in water pipelines [67],
underwater pipelines [68], steel bars [69], bridge cables [70], equipment [71], aircraft
structures [72], wind turbine blades [73], and many more. SVM can also be improved using
other methods to obtain a better accuracy for corrosion detection and assessment, such as
HOG [74], scale-invariant feature transform (SIFT) [75], and speeded up robust features
(SURF) [76]. The corroded and non-corroded regions can be distinguished from colors [77]
and textures [78] using SVM.

4.7. Damage Analysis with NDE and SOM

NDE (non-destructive evaluation) is a method that is used to detect the texture changes
in a corrosion image. This method is also known as non-destructive testing (NDT) and
non-destructive inspection (NDI). NDE enables the assessment of the characteristics of a
component, material, or structure without damaging the subject itself. Moreover, the SOM
(self-organizing map) is used to classify the corroded regions in the segmented NDE images.
SOM is an unsupervised learning technique for the classification of similar patterns and
features within the same class. The local parameters are modified using a group of neurons
instead of the sample training of class membership. The texture variations of corrosion
images can be classified using NDE and SOM.

NDE and SOM were used in [79] to investigate deteriorations caused by rebar corrosion
and corrosion-induced cracks. The electromagnetic wave radar of the NDE assessed the
cover thickness of the specimens, which were 30 mm and 60 mm. The internal damage and
corrosion rate were judged during the maintenance inspection. The electrolytic corrosion
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experiment was conducted to evaluate the developed NDE and SOM techniques. According
to the results, this technique managed to detect the internal crack region and rebar corrosion
of concrete structures. Moreover, the SOM-based neural network [80] was used with ant
colony optimization to identify the prestressed steel mechanism and corrosion evolution
analysis. Additionally, the acoustic emission of NDE was used to characterize the signals
from the prestressed steel. Four acoustic emission sources were used to identify four
damaged areas on the prestressed steel strands. This showed that this technique was
another alternative for corrosion analysis and detection.

4.8. Texture Analysis

Texture analysis (as depicted in Figure 4) is one of many image processing techniques
that can be used for corrosion detection. Computer vision also uses this technique for the
object classification of computer image analysis. This technique calculates the edge bound-
aries of various textured corroded areas in the images. The enhancement of classification
accuracy is possible via texture analysis, which effectively reduces errors when detecting
isolated data. A fundamental aspect of this technique is that the corroded materials will
increase the surface roughness over time. It can be measured using the surface pit depths,
which provide shadow lengths that are produced from a single incident light source. Then,
reconstructing a pseudo 3D material exterior allows for the average corrosion rate to be
obtained. The corroded area is segmented from the edge pixels in the image. These edge
pixels lie on a corroded region boundary with different grayscale values. The difference
between the edge pixels and neighboring pixels is calculated to determine an accurate
corroded boundary. The intensity characteristic is used to measure discontinuities between
grayscale values in the image. Examples of the texture analysis technique in literature can
be observed in [81–84]. The texture analysis technique can accurately detect, recognize, and
classify corroded regions in images. The identification of both corroded and non-corroded
areas is possible.
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Furthermore, the texture analysis approach can be a combination of any existing seg-
mentation methods, including region-based, thresholding-based, edge detection, clustering,
etc. Hence, we propose a combination of edge detection and thresholding-based methods
by using the active contour segmentation method. Active contour has been proven to be
accurate for segmenting objects with uneven, blurry, and weak boundaries [85–88]. Thus,
this method will be modified to accommodate weak corrosion boundaries by formulating
an initial contour, curve restrainer, and stopping function. Then, the thresholding of pixel
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property method will be used to lead the modified active contour to segment the accu-
rate corrosion regions. The preliminary results of the proposed method are illustrated in
Figure 5. From this figure, it can be observed that the active contour can be used to segment
corrosion boundaries on ship structure images. Nevertheless, more analysis in terms of
recognition accuracy and segmentation accuracy needs to be undertaken in order to analyze
the accuracy and efficiency of the proposed method. Moreover, Table 2 represents the other
corrosion detection approaches in the computer vision and image processing literature.
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Table 2. Summary of corrosion detection approaches in computer vision and image processing.

Detection Approach Description Limitation

Rossouw and Doorsamy [89]

• Historical data and machine learning to
predict downstream test post on ship.

• Survival, regression, and classification
analysis for evaluation.

• Detect and estimate maintenance time of
corrosion progress.

• Effective corrosion control via mechanism
for external corrosion prevention.

• Various AI techniques can augment
the intricacy of the model.

Vu and Dong [90]
• Assess corrosion effect on bulk carrier.
• Identify and mitigate the effects of

corrosion on a ship’s hull.

• Sensitivity of a model used in
maintenance planning can be
adversely affected by the absence of
historical data.

• Unexpected corrosion behavior can
still happen.
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Table 2. Cont.

Detection Approach Description Limitation

Canca and Kokkulunk [91]

• Explore the current corrosion maintenance
employed in maritime sector.

• Monitor very low sulphur fuel oil (VLSFO)
characteristics to lower critical risk.

• Provide detection and corrective action for
corrosion caused by sulphur emissions.

• Only for Sulphur 2020 amendment.

Bouzaffour et al. [92]

• Detect corrosion of steel in a marine
environment.

• Sensor detects corrosion region by
calculating the difference between concrete
moisture degree and steel layer.

• Supervise and manage the steel’s mass loss
by detecting corrosion status.

• Inaccurate sensor network for
physic-based model.

Yarveisy et al. [93]

• Pit depth prediction that requires
immediate maintenance.

• Degradation process from real-time data is
used, considering peaks over threshold.

• Assess and detect corrosion failures with
high performance.

• Multiple sections are not
implemented in the same workflow.

• Requires parameterization and
fine-tuning for assessing corrosion
failure of multiple sections.

Kim et al. [94]

• Predict corrosion damages on ship
structures.

• Determine RUL and corrosion damage
over time.

• Requires fine-tuning for each
onshore, offshore, and nearshore
ship structure.

Cheliotis et al. [95]

• Detect particular fault indicators, like air
temperature and pressure, that could prove
beneficial in the formulation of a
corrosion model.

• Occurrence failures exhibit reliability,
safety, and energy efficiency.

• The occurrence of corrosion and
fouling within the turbo-charger
and nozzle ring of the vessel
is assessed.

Makridis et al. [96]

• Machine learning and time-series
anomaly detection.

• Detect and predict corrosion on specific
parts of a ship engine.

• Accuracy may suffer as sensors are
placed in certain areas of the vessel.

• Need fine-tuning and
parameterization for different parts
of vessel.

Kim et al. [97]

• Historical and real-time data for
employment of generalized extreme
value distribution.

• Adapt to defect depth distribution and
high reliability.

• Even with the assistance of
historical data, the estimation of
parameters using real-time data is
highly delicate.

• Unavailability of historical data can
reduce model’s accuracy.

Anyfantis [98] • Specific location can be determined.
• Not feasible to closely monitor areas

of a ship’s hull that are prone
to corrosion.

Jimenez et al. [99]
• Initiate solution for hull corrosion.
• Breakdowns and failures can be reduced

with predictive maintenance.

• The complexity involved in
implementing it could cause
significant disruptions within the
shipping industry.

5. Challenges in Corrosion Detection

The implementation of machine vision and image processing approaches for corrosion
detection, assessment, and prediction is fraught with challenges. In terms of sewage pipes,
it is critical to address the challenges of assessing and maintaining corrosion in situ. The
sewage pipes contain many bacteria and other microorganisms that settle inside the pipes
which can pose health threats to the corrosion inspectors because of practical reasons.
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Machine vision and image processing approaches could be considered for corrosion inspec-
tion in sewage pipes because of their NDT and remote inspection. The roles of corrosion
inspectors can be further reduced, with minimal exposure and physical contact with the
health hazards.

The other concern for computer vision and image processing approaches for corrosion
detection is the availability or readiness of the imaging equipment technology. The informa-
tion of the structure’s condition cannot be provided using a camera or video camera. This
equipment and its technology are not able to penetrate the material itself, thus the degree of
corrosion cannot be identified. The information and condition of the outer material can be
analyzed, although the inner side would be totally ignored. Only a general understanding
of the corroded area can be provided instead of individual flaws. This approach also
has an invasive installation process, as the equipment is not water-resistant and is not
durable enough to be operated during the underwater and inner pipe corrosion inspections.
Dewatering is required, thus, the operation can be interrupted. Operation interruptions
will affect production and runtime, which can reduce productivity. Moreover, there is a
significant problem in terms of replacing the infrared detectors and sensors in small spaces
and confined spaces such as in the ship engine room and wastewater pipeline. The detectors
and sensors might stop working and break down due to longevity and durability issues.

In terms of ship structures and pipelines, the main concern is how to reach these
structures in order to capture images documenting their physical condition [100]. The most
affected areas on the ship, such as the engine room and ship hull, are dangerous and difficult
to reach [101]. Moreover, the oil and gas pipelines are isolated and located underwater.
The wastewater pipelines are also too small for humans to reach. Consequently, robotic
vehicles and drones can be used to reach those places. However, the cost of this equipment
is not cheap, and it might require a significant number of robotic vehicles and cameras to
be installed on those structures.

Moreover, the ultrasound and GPR can be employed for concrete corrosion detection.
Both types of equipment can be considered as being part of the machine vision and image
processing approaches. The boundary layer depth and concrete flaws can be detected
microbiologically. However, the sensors used in both methods can be constrained by sound
coupling, inaccurate predictive models, and moisture level. Hence, there is a need to
address these problems as the aggregate location of corrosion cannot be accurately detected,
and thus, it can produce a false corrosion segmentation.

The combination of digital CCTV with infrared scanning, sonar, and radar can also be
used for corrosion inspection and detection. These imaging techniques can be enhanced
using multiple-angles, fisheye lenses, and higher-resolution cameras. These methods can
be employed in small spaces, confined spaces, and out-of-reach areas. Thus, the presence
of a corrosion inspector is minimized. Nevertheless, these methods are error-prone as they
need to be mounted on a robot crawler which is reliant on the operator’s expertise. On the
other hand, advances in robotic technology, machine learning, and LiDAR (light detection
and ranging) sensors can help operators to minimize these issues.

LiDAR with point cloud can be used for corrosion detection on the ship hull. This
imaging method can estimate the corroded areas by using an integrated 2D camera and
RGB values on the ship structures. However, this technique relies heavily on the reflected
data of the material surface. Consequently, some corrosion progresses on the material
surface cannot be detected, especially on blurry areas, weak boundaries, and disoriented
surfaces. This method is best suited for use with geometrical deviation surfaces.

Computed tomography with nuclear sources or gamma rays is another method for
corrosion detection. This technique uses a radioactive source, such as cobalt and cesium, to
develop and reconstruct a 3D image profile of an object or material. Radioactive sources can
penetrate thick materials or insulation for corrosion detection. Nevertheless, radioactive
particles are very dangerous and must be handled and prepared by a competent person with
adequate certifications. This competent person must also have a fundamental knowledge
of computer vision, image processing, and artificial intelligence. Moreover, specialized
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training is required before the person can be employed, which can increase upskilling costs
and training costs.

Data complexity remains a critical issue in the implementation of computer vision and
image processing approaches in corrosion studies. The low and medium quality of images
and videos can produce false corrosion detection results. Noise, distortion, and attenuation
also pose critical challenges for object detection and classification. Consequently, some
data from images must be reconstructed and converted into frequency domains or time
domains in order to obtain the relevant information. Then, the relevant and significant
features can be extracted for corrosion detection, assessment, prediction, and analysis. Big
data and advanced data processing can improve the accuracy and efficiency of corrosion
detection, and thus, it can further reduce the incidence of unexpected detection failures.

6. Discussion and Future Recommendation

Computer vision and image processing techniques can be considered as a major topic,
not only in corrosion detection and maintenance, but also in the manufacturing, aeronau-
tical, power and energy, food and beverage, wastewater management, and construction
industries. Most of the papers that were published concerned the topics of the corrosion
prediction model, corrosion detection, and corrosion maintenance, and were considered
to be computer vision and image processing studies. Complex methodologies, such as in
prediction modelling, is one of the most pressing issues and is a frequent topic of research
in computer vision and image processing.

Computer vision and image processing approaches can provide good insight into
the condition of materials. These approaches are convenient to industry, researchers, and
academia, as the corrosion can be detected, assessed, analyzed, and maintained from a
distance with remote monitoring. The exposed components, materials, and equipment
are not taken out of operation, thus, productivity is not affected. Moreover, the lining
deterioration, deformation characteristics, and visible internal damage can be located
with these approaches. The use of high-resolution images can provide a comprehensive
assessment of the corroded area. Automated analysis is conducted on the nodes or edges,
and thus, it can reduce the data transmission cost and increase the corrosion detection speed.
Digital measurements of a corroded area can be obtained much faster than conventional
methods. Immediate results can also be obtained as zooming in on images is possible, and
thus, more details for the corrosion analysis can be obtained.

IR4.0 (Industrial Revolution 4.0) helps the industry, researchers, and academia to
use more advanced technologies for corrosion detection, such as the advanced sensor,
data analytics, signal processing, machine learning, big data, and the internet of things
(IoT). The computer vision approach certainly needs imaging equipment to monitor or
capture the suspected corroded area. Advanced sensors with a 5G network can comple-
ment the computer vision approach for more accurate and efficient corrosion detection.
Advanced and intelligent sensors, such as gas sensors [102,103], temperature and humidity
sensors [104,105], and pH sensors [106,107], have been developed, and they can intelli-
gently capture and analyze the important corrosion parameters at the site. These sensors
are well equipped with machine learning, which can improve the accuracy and efficiency
of their sensing and analyzing capabilities. Machine learning, particularly deep learning,
has provided a great opportunity for corrosion prediction, assessment, and detection in
terms of the applicability of processing images and video data. The use and integration
of the current equipment with IR4.0 technology are fully recommended for corrosion de-
tection [108]. The future integration between LiDAR and infrared technology in remote
sensing can provide more details and information for corrosion detection, assessment, and
maintenance. Remote sensing imagery contains spatial, temporal, spectral, geometric, and
radiometric resolutions which can be used to extract more information from the respective
corrosion images. Hence, considering recent advances in IR4.0, a high level of computer
vision, image processing, and artificial intelligence can be achieved for corrosion detection,
assessment, and prediction.
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In addition, the combination of computer vision, micro-indentation mapping, pH
profiling, scanning electron microscopy, and neutron tomography can be used as a novel
methodology for microbiological corrosion detection. So far, there is no standard evaluation
approach for microbiological corrosion [109]. Microbiological corrosion is common in
sewage pipes where acids are formed from chemical compounds and acidophilic bacterial
colonies. The computer vision and image processing techniques can complement chemical
approaches for microbiological corrosion assessment, detection, and maintenance [110].

Furthermore, crucial elements to develop the computer vision and image processing
prediction models include the level of knowledge or expertise, availability of real-time
data and historical data, computational power, and prediction or detection accuracy. In the
case of insufficient data from images and videos, corrosion prediction and detection can be
implemented using the probabilistic model. This prediction model is suitable for predicting
the failure states of materials with higher accuracy. Nevertheless, the probabilistic model
requires a high level of modelling expertise and computational expense. In cases of data
abundance, the knowledge-based and statistical models can perform better in terms of
computational power, accuracy, and expertise level. It is also recommended to use fuzzy
logic for prediction modelling if the data are not available, ambiguous, and/or vague.
Fuzzy logic can utilize engineering judgments and expert opinions when developing the
corrosion prediction model.

The poor quality of corrosion images, because of the presence of noise, interference,
distortion, illumination, and image stabilization, is the main concern for computer vision
and image processing techniques. Automated image acquisition is highly recommended
when pre-processing techniques are all embedded in the imaging equipment, thus, it can
produce a high-quality image. On the other hand, most of the developed computer vision
and image processing techniques were implemented on simple curves and flat surfaces. It
is recommended to include other complex structures and geometry, as observed on heavy
machines, ship hulls, bridges, etc. Furthermore, the trend analysis can be implemented to
predict corrosion progression or growths on materials. The prediction model can be used
to predict maintenance in order to invent an automated corrosion maintenance system.

7. Conclusions

Corrosion continues to be the biggest concern faced by researchers, academics, and in-
dustries in this field, affecting ship builders, wastewater pipelines, and oil and gas pipelines.
In this paper, state-of-the-art computer vision and image processing approaches have been
assessed and summarized in relation to corrosion prediction models and corrosion de-
tection approaches. The fundamental advantages and limitations of these methods and
approaches have also been discussed. Most of the examined techniques have provided
considerable quantitative and qualitative data regarding the detection and advancement
of corrosion from images and videos. As a result, it is possible to evaluate the current
state of corrosion and forecast its future condition. Moreover, it is impossible to obtain
all necessary information from a single computer vision or image processing technique.
As a result, multiple approaches or techniques are suggested to be used when testing the
different environmental conditions or parameters for corrosion detection, assessment, and
prediction. Furthermore, this paper has presented challenges and future recommendations
for computer vision and image processing approaches in corrosion detection, assessment,
and prediction, which could contribute toward a clearer direction for more pragmatic
research. On-time monitoring with computer vision and image processing approaches
are crucial from safety, economic, and health perspectives. These approaches can also be
implemented with IoT, big data, wireless networks, laser scanning, ultrasonic scanning, and
advanced sensor networks. The findings of this review have the potential to introduce new
and supplementary insights into computer vision and image processing approaches for
corrosion prediction, detection, and assessment. Further studies are necessary to capitalize
on and maximize the potential of the recent advancements in IR4.0 technology, includ-
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ing advanced sensors and artificial intelligence, to improve future corrosion prediction,
detection, and assessment.
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