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Abstract: In this study, deep neural network (DNN) and transfer learning (TL) techniques were
employed to predict the viscous resistance and wake distribution based on the positions of flow
control fins (FCFs) applied to containerships of various sizes. Both methods utilized data collected
through computational fluid dynamics (CFD) analysis. The position of the flow control fin (FCF) and
hull form information were utilized as input data, and the output data included viscous resistance
coefficients and components of propeller axial velocity. The base DNN model was trained and
validated using a source dataset from a 1000 TEU containership. The grid search cross-validation
technique was employed to optimize the hyperparameters of the base DNN model. Then, transfer
learning was applied to predict the viscous resistance and wake distribution for containerships of
varying sizes. To enhance the accuracy of feature prediction with a limited amount of data, learning
rate optimization was conducted. Transfer learning involves retraining and reconfiguring the base
DNN model, and the accuracy was verified based on the fine-tuning method of the learning model.
The results of this study can provide hull designers for containerships with performance evaluation
information by predicting wake distribution, without relying on CFD analysis.

Keywords: flow control fin (FCF); deep neural network (DNN); transfer learning (TL); containership;
viscous resistance coefficients; wake flow distributions

1. Introduction

The severity of environmental issues resulting from industrial development has be-
come a global concern, spanning various sectors, including the shipbuilding industry.
As a result, various related regulations are being formulated or strengthened. In 2018,
the International Maritime Organization (IMO) announced a strategy to reduce the total
greenhouse gas emissions from ships by 50% and the Carbon Intensity Indicator (CII) by
70% by the year 2050, compared to the levels in 2008. As one of the initial strategies, the
implementation of the EEXI (Energy Efficiency Existing Ship Index) and the CII (Carbon
Intensity Index) rating system is already in place. This represents a significant strengthen-
ing of energy efficiency regulations for existing ships. The efforts to meet EEXI compliance
and achieve higher CII ratings are tasks assigned to the existing ships. Among several
strategies for this purpose, one approach is to enhance resistance performance, and this can
be achieved through the application of energy-saving devices (ESDs). The application of
ESDs involves installing relatively small-scale devices that can lead to significant effects.
Because of this, ESDs are utilized in various ways, not only for existing ships but also for
the design of new ships.

Samsung Heavy Industries registered a patent in 2007 [1] for SAVER (Samsung Vi-
bration and Energy Reduction) Fins. These FCFs are designed to control the inflow fluid
dynamics above and below the propeller of ships, to improve pressure resistance and
reduce vibrations. Lee et al. [2] applied the SAVER Fins in combination with a rudder
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bulb to a 35 K DWT bulk carrier and confirmed a power-saving effect of 7.4% through
model tests and sea trials. Kim et al. [3] attached vertical plates to the stern of a 24 K tanker
and confirmed improvements in resistance performance and wake distribution through
computational fluid dynamics (CFD) analysis. Lee et al. [4] investigated the changes in
resistance performance and wake characteristics based on the position of FCF and the
angle with the streamline using CFD analysis, focusing on an 80 K bulk carrier. Recently,
Park et al. [5] demonstrated through model tests and CFD that FCF can reduce the total
resistance of a 6.5 K DWT tanker by 4.3%. Many studies have been conducted on FCF
design, and the effects of FCF are predominantly verified through model tests and CFD
simulations. Furthermore, research has advanced to predict or optimize the effects of FCF
using artificial intelligence techniques as a basis. A neural network was trained based
on hull form data and then used to predict the wake distribution [6]. Another example
is Kim and Moon [7], who used a neuro-fuzzy technique to predict wake distribution.
Wie and Kim [8] carried out an optimal FCF design for the Kriso 300 K VLCC using a
genetic algorithm (GA) and NLPQL (non-linear programming by quadratic Lagrangian).
Liu et al. [9] built an approximate fluid dynamics model for ships based on Kriging and
Co-Kriging models. This model has been successfully utilized for cost-effective resistance
optimization and flow field predictions. Feng et al. [10] employed a surrogate model based
on Support vector regression (SVR) to improve the resistance and wake field of offshore
aquaculture vessel hull form. Machine learning is being applied in various fields within
the shipbuilding industry, not just for appendage design like FCF. Su et al. [11] proposed a
real-time ship vertical acceleration prediction algorithm based on long short-term memory
(LSTM) and gated recurrent unit (GRU) models. Mittendorf et al. [12] used nonlinear
regression algorithms (random forests, extreme gradient boosting machines, and multilayer
perceptron) to predict the added wave resistance of ships in head-to-beam wave conditions.
Lin et al. [13] developed an efficient anti-rolling controller using the deep deterministic
policy gradient (DDPG) algorithm based on deep reinforcement learning (DRL).

In the previous paper by the authors of [14], optimal FCF design was performed for
a small containership using two strategies: neural network-based machine learning and
optimization techniques. The advantage of machine learning (ML) over CFD simulation is
the computational efficiency. In the previous study regarding the optimal design of FCF for
a 1000 TEU containership, the authors reported the enormous saving of computational time
spent for the multi-objective optimization based on genetic algorithm (GA). Specifically,
the entire GA required 20,000 simulations which would have taken approximately 10,000 h.
However, the DNN-based prediction took only 4.5 min.

The objective of this current study is to extend such advantage of machine learning
to more containerships, not just for a single containership. This was completed by adopt-
ing transfer learning (TL) to generalize the existing deep neural network (DNN) for a
1000 TEU containership to predict the wake field prediction for various containerships.
It is well known that the TL is particularly effective when the data for the different tasks
are not enough. Initially, a deep neural network (DNN) model is employed to predict the
performance of a single containership with a substantial dataset available. The hyperpa-
rameters required for model configuration are optimized using grid search cross-validation.
Subsequently, based on the base DNN model, transfer learning (TL) is utilized to predict
performance for the remaining containerships with limited data of 150 datasets for two
containerships. In this study, a small number of hull forms are applied to transfer learning
to predict the fluid dynamic performance based on the FCF position. This can be utilized
as foundational research for expanding the applicability of fluid dynamic performance pre-
diction techniques to containerships of various sizes and even to different types of vessels.
Additionally, it is considered that the combination of transfer learning-based performance
prediction and appropriate optimization algorithms can be extended to the FCF design of
containerships of various sizes.

The paper organization is as follows: Section 2 presents the target ships and FCF speci-
fications and formulates the numerical methods to prepare for the data; Section 3 describes
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the theoretical background of deep neural networks and transfer learning, detailing the
specific processes applied in this study. Subsequently, Section 4 presents the performance
prediction results for containerships of various sizes. Finally, Section 5 discusses the main
conclusions and findings.

2. Problem Descriptions
2.1. Target Ship and Flow Control Fins

The base DNN used for predicting wake distribution and resistance is trained using
data from the author’s previous paper. A relatively substantial amount of data used for
training the DNN model comes from a 1000 TEU containership constructed by Daesun
Shipbuilding & Engineering Co., Ltd. This was associated with the presence of reliable
CFD data. A model with a scale ratio λ = 30.56 was selected for numerical simulation. The
data used for the transfer learning model consists of different sized vessels: 2500 TEU and
3600 TEU (KCS; KRISO Containership) containerships. For these ships, models with each
scale ratio of λ = 27.2 and λ = 31.6 were considered. The principal dimensions of target
hulls and propellers are given in Table 1. Figure 1 presents the three-dimensional views of
target hull forms and propellers.

Table 1. Principal particulars of 1000 TEU containership.

Class Designation Symbol (Unit) Full-Scale Ship

1000 TEU

Length bet. Perpendicular LPP (m) 137.5
Breadth B (m) 23.6

Draft T (m) 7.4
Block coefficient CB 0.595

Propeller diameter DIA (m) 5.5

2500 TEU

Length bet. Perpendicular LPP (m) 185.0
Breadth B (m) 32.26

Draft T (m) 10.0
Block coefficient CB 0.640

Propeller diameter DIA (m) 6.8

3600 TEU

Length bet. Perpendicular LPP (m) 230.0
Breadth B (m) 32.2

Draft T (m) 10.8
Block coefficient CB 0.651

Propeller diameter DIA (m) 7.9

The flow control fin (FCF) used in this study is rectangular in shape with two rounded
corners (see Figure 2). The dimensions of full-scale FCF were 1.30 m long, 0.37 m high, and
0.03 m thick. When normalized by the propeller diameter D, these correspond to 0.236D
(length) × 0.0673D (height) × 0.00545D (thickness). Generally, FCFs are attached in pair(s)
at the same locations on the port and starboard sides. The design variables for the FCF
are the longitudinal and vertical positions of the FCF, inclination angle, and hull form
information. Here, the position of the FCF is located at the midpoint of the baseline, and
the angle of inclination refers to the angle between the FCF baseline and the ship baseline.
The hull form information applies the derivatives representing the gradient of each tangent
at the midpoint of the FCF in the directions of the station, waterline, and buttock line. In
more detail, when the derivative is small in the station direction, it indicates that when
observing the hull form in the body plan, the shape resembles a V type. Similarly, when
the derivatives are small in the waterline and buttock line directions, they represent hull
form that changes smoothly in the half-breadth and shear plan, respectively.
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Figure 1. Three-dimensional volumetric views of target hulls and propellers: (a) 1000 TEU;
(b) 2500 TEU; (c) 3600 TEU.
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Figure 2. Geometry of FCF.

Indeed, even within the same type of vessel, differences in main particulars, hull form,
and the position of the FCF can result in variations in the characteristics of the propeller
inflow velocity distribution. Figure 3 illustrates the distribution of the viscous resistance
coefficient and the standard deviation of axial velocity distribution based on derivatives
in the waterline and buttock line directions. The orange symbols represent the viscosity
resistance coefficients and standard deviation for 1000 TEU, the green symbols for 2500 TEU,
and the blue symbols for 3600 TEU. Transfer learning was employed to predict values with
varying characteristics across different ship sizes.
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2.2. CFD Simulation to Obtain Training Data

In this study, 693 datasets were prepared by the CFD analysis to train, validate, and test
the base DNN model. Each set of data corresponded to a combination of design parameters,
including 11 longitudinal positions (3.0 ≤ x/St. ≤ 4.0, ∆x/St. = 0.1) × vertical positions
(0.135 ≤ z/T ≤ 0.405, ∆z/T = 0.0135) × 3 inclination angles (α = 19◦, 20◦, 21◦). Here,
St. refers to the station length, which is 1/20 of the length between perpendicular LPP.
Around 150 target datasets for 2500 TEU and 3600 TEU were obtained through CFD
analysis for transfer learning. The target datasets were randomly selected within the same
longitudinal and vertical position ranges as the source datasets. Similarly, the inclination
angles were also randomly specified.

It is necessary to emphasize the importance of automation in such preprocessing steps
as modeling and mesh generation, as it significantly enhances the overall computational ef-
ficiency for the entire set of 843 simulation cases. The processes including three-dimensional
modeling of hull forms with varying FCF positions, mesh generation, and creation of CFD
setups was carried out using OptHull® software, a professional hull form design software.
Then, the commercial CFD S/W STAR-CCM+ was configured and the numerical analysis
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was automatically controlled by an in-house JavaScript code. By using a 140 CPU (Intel
Xeon 2.6 GHz)-parallel computing cluster, approximately 419 h were required to complete
the preparation of data for the 843 simulations.

2.2.1. Governing Equations

The STAR-CCM+ v.15.06 was used for the CFD analysis of the flow around the ship.
The governing equations consist of the continuity equation for mass conservation and the
Reynolds-averaged Navier–Stokes (RANS) equations for momentum and energy conserva-
tion. These equations are given in the following tensor notation:

∂Ui
∂xi

= 0 (1)

∂Ui
∂t

+ ρUl
∂Ui
∂xl

= − ∂p
∂xi

+
∂

∂xl

(
µ

∂Ui
∂xl
− ρuiul

)
+ ρgi (2)

where Ui = (U, V, W) is the velocity component in xi = (x, y, z) direction, while p, ρ, µ,
−uiul and gi are the static pressure, fluid density, absolute viscosity of fluid, Reynolds
stress, and gravitational acceleration in the xi-direction, respectively.

The Reynolds stress turbulent model, being excellent in resolving bilge vortex and
capable of high-accuracy prediction of flow around the ship [15], was employed in the
numerical analysis. The transport equation for the Reynolds stress is described as follows:

Du′iu
′
j

Dt
= Dij + Gij −

2
3

δijε + PS (3)

where δij is the Kronecker delta and Dij, Gij, and PS correspond to the diffusion, production,
and pressure strain terms which are expressed as follows:

Dij =
∂

∂xl

(
Ck

k2

ε

∂uiuj

∂xl
+ ν

∂uiuj

∂xl

)
(4)

Gij = −
(

uiul
∂Uj

∂xl
+ ujul

∂Uj

∂xl

)
(5)

PS = −C1
ε

k

(
uiuj −

2
3

δijk
)
− C2

(
Gij −

2
3

δijGk

)
(6)

Here, Ck, C1 and C2 are turbulent model constants. Additionally, k and ε, respectively,
represent turbulent kinetic energy and dissipation rate.

2.2.2. Computational Domain and Boundary Conditions

Figure 4 illustrates the computational domain, which is rectangular, set within the
range of −2.5LPP < x < LPP, 0 < y < 1.5LPP, and −1.5LPP < z < 0. Since the
computational domain is symmetric with respect to the center plane (y = 0), only half the
domain was considered. In addition, a double body simulation, in which the underwater
hull was mirrored with respect to the free surface (z = 0), was performed for all cases. This
approach allows the neglect of wave generation by the ship hull and the resulting wave-
making resistance. However, due to the deep submergence of the FCF, which prevents
its influence on the free surface, complex issues in analyzing the various effects of FCF
design on the flow field are avoided. The double body simulation significantly reduces the
computational time by omitting computationally intensive free-surface calculations, which
is crucial for this study encompassing various test cases. The boundary conditions for the
computational domain surfaces shown in Figure 4 are summarized in Table 2.
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Table 2. Boundary conditions for Figure 4.

Boundary Surface Type

Inlet Velocity inlet
Outlet Pressure outlet

Top, Bottom, Side, Centerplane Symmetry
Ship Wall

2.2.3. Uncertainty Analysis in CFD Verification Methodology

The validation of CFD analysis used to acquire 839 data points is unavoidable. In
this study, a double body analysis was conducted to reduce data collection time. As a
result, validation with model tests could not be carried out. Therefore, the verification
of the grid system used in the analysis was performed following the procedures and
guidelines recommended by ITTC [16]. To verify specific parameters used in the CFD
analysis, numerical error and uncertainty of the simulation are evaluated. A parameter
convergence study is performed by varying the ith input parameter4xG,i while keeping all
other parameters constant, using multiple solutions with systematic parameter refinement.
The input parameter is varied based on the refinement ratio defined in Equation (7).

rG = 4xG,2/4xG,1 = 4xG,3/4xG,2 = 4xG,m/4xG,m−1 =
√

2 (7)

At least three values of the input parameter are required for evaluating convergence,
and the convergence ratio is defined as Equation (8).

RG = εG,21/εG,32 (8)

Here, εG represents the difference in simulation solutions and is defined as the changes
between the medium–fine εG,21 = ŜG,2 − ŜG,1 and coarse–medium εG,32 = ŜG,3 − ŜG,1. The
convergence conditions are defined into three categories based on the convergence ratio
as follows.

(i) Monotonic convergence : 0 < RG < 1
(ii) Oscillatory convergence : RG < 0
(iii) Divergence : RG > 1

(9)
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In case (i), the generalized Richardson extrapolation (RE) method is employed to
estimate the numerical error and uncertainty. In case (ii), numerical uncertainty is estimated
using the following equation:

UG =
1
2
(SU − SL) (10)

Here, SU and SL represent the maximum and minimum values among the oscillating
trends in the analysis results. In case (iii), it is not possible to estimate numerical error and
uncertainty since the analysis results exhibit a diverging tendency.

Subsequently, detailed explanations for the numerical error (δ∗REG
) and uncertainty

(UG) calculated through the generalized RE method are based on the ITTC Recommended
Procedures and Guidelines for Uncertainty Analysis. In this study, the estimation results
for numerical error and uncertainty of the grid system used in data acquisition through
simulations are thoroughly described in Section 4.

3. Methodology

The present study can be divided into two main steps. Firstly, utilizing deep neural
networks, it predicts the viscous resistance coefficients and wake distributions for the
1000 TEU container vessel, which has a substantial dataset. Secondly, building upon the
results of the DNN training, it employs transfer learning to predict the viscous resistance
coefficients and wake distributions for the 2500 TEU and 3600 TEU container vessels, which
have relatively smaller datasets.

3.1. Deep Neural Network (DNN)

A deep neural network is a supervised learning technique that involves training and
predicting based on input and output data. The number of hidden layers and the number
of neurons in each layer connecting input and output data are determined according to
the designer’s needs. The weights between layers are initialized and then continuously
adjusted during the training process [17]. Figure 5 illustrates the general structure of a
DNN, where {x1, x2, . . . , xd } represents input data. The outputs of each neuron in the
first and second hidden layers are calculated using the following equations:

hl
i = f

(
bl +

n

∑
i=1

Wixi

)
(11)

hj+1
i = f

(
bj+1 +

m

∑
i=1

wj
i h

j
i

)
, j ≥ 1 (12)

Here, f represents the activation function, b stands for bias, W and w represent
the weights of neurons in the input layer and hidden layer, respectively. Furthermore,
x represents the normalized input value of the input layer, and h is the output of neurons
in the hidden layer. The final output of the last output layer is calculated in the same way
as the output of the hidden layer. The calculated output value of the DNN model is then
used to compute the loss function by comparing it with the actual values. Subsequently,
an optimization algorithm is used to minimize the loss function and adjust the values of
weights and biases. In this study, hyperparameters such as batch size, epochs, and learning
rate were determined using the grid search cross-validation method. Table 3 represents
the basic configuration of the hidden layers, activation function, and optimizer used for
applying the grid search.
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Table 3. Hyper-parameters of the ANN.

Layers Neurons Activation Function Optimizer

1st hidden layer 11

ReLU Adam
2nd hidden layer 22
3rd hidden layer 44
4th hidden layer 66
5th hidden layer 89

In this study, the DNN was employed to predict the axial velocity distribution in the pro-
peller plane based on the input design variables of the flow control fin (FCF). Thus, the input for
the DNN consisted of the design variables

[
x/st., z/T, AoA, (dy/dz)x, (dy/dx)z, (dz/dx)y

]
,

and the flow distribution became the outputs. Here, the angle of attack (AoA) was defined
as the angle between the local streamline for the baseline hull without the FCF and the
baseline of FCF. (dy/dz)x, (dy/dx)z, and (dz/dx)y represent the derivatives of the station
line (constant x), waterline (constant z), and buttock line (constant y), respectively. These
derivatives indicate the inclinations of the hull in each direction relative to the center point
where the FCF is attached. In order to enhance the training efficiency, it was essential
to align the dimensions of the neural network’s input and output as closely as possible
without compromising the detailed representation of the velocity distribution. To obtain
the Fourier series coefficients for the axial velocity distribution in the form of 73× 8 polar
array (Figure 6) of the propeller plane, harmonic analysis was performed. Specifically, the
circumferential distribution of the axial velocity Vx(ϕ) was expressed using a Fourier series
up to the 10th order for eight radial positions within the range 0.3R < r < 1.0R (∆r = 0.1R).

Vx(ϕ) = A(0) +
10

∑
i=1
{A(i)cos(iϕ) + B(i)sin(iϕ)} (13)

The symmetry of the wake flow distribution makes the sine coefficients B(i) = 0,
resulting in the utilization of the remaining 11× 8 cosine coefficients as the output of the
base DNN model. This Fourier analysis preprocessing was found to improve training
efficiency compared to cases without preprocessing. The 693 source datasets used for the
base DNN model were divided into 415 training sets, 139 validation sets, and 139 test sets.
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When individual data sizes significantly differ, the training often fails. To mitigate this, all
data were normalized using a min–max scaler to ensure sizes ranged from 0 to 1.
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3.2. Transfer Learning (TL)

The machine learning algorithms of the data-centric learning method assume that they
are trained by the same distribution of train and test datasets [18]. However, in real-world
applications, this assumption may not hold. When the dataset changes, machine learning
algorithms need to be retrained based on a substantial amount of newly collected training
data, which can be time-consuming and costly [19]. To address these issues, transfer
learning can be applied, allowing efficient learning with a small amount of new data.
Transfer learning involves transferring the weights of a pre-trained neural network model
to a new neural network for learning, thereby facilitating the construction of a model with
a small amount of newly applied data [20]. The main objective of this study is to apply
deep neural networks (DNN) and transfer learning (TL) for estimating viscous resistance
and wake distribution on various sizes of container ships using the position of flow control
fin and hull form information as input features. Figure 7 provides a brief overview of how
transfer learning is applied.
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First, the base DNN model is trained and validated using the source dataset (1000 TEU).
Then, a new model is reconfigured (retrained and validated) based on a subset of the target
dataset (2500 TEU and 3600 TEU), where the knowledge from the base DNN model is
transferred. The remaining part of the target dataset is used in the testing phase of the
reconfigured model.

3.3. Model Application Details

Figure 8 illustrates the structure of the algorithm for predicting viscous resistance and
wake distribution of new sizes of container ships using transfer learning. In this study, the
source dataset used for training and validation of the base DNN model consists of viscous
resistance and wake characteristics based on the flow control fin applied to a 1000 TEU
container ship. When training the DNN model, there are various hyperparameters that
the designer needs to set, including batch size, the number of epochs, and the learning
rate. The choice of batch size used in mini-batch gradient descent affects the learning speed
and the tracking of the global minimum point of the cost function. The number of epochs,
which indicates how many times the entire dataset is iterated over during training, can lead
to issues of overfitting and underfitting. Furthermore, selecting an appropriate optimizer
and the corresponding learning rate is crucial based on the learning model and dataset
used. To optimize these various hyperparameters, a grid search cross-validation method
was applied, which involves exploring the optimal parameters by combining multiple
settings specified by the designer. The loss function for optimizing the hyperparameters
was the mean square error (MSE). The base DNN model constructed with the optimal
hyperparameters was then used to evaluate the learning performance on the test dataset.
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Using the well-constructed base DNN model as a foundation, transfer learning was
applied to create a restructured DNN model for knowledge transfer to 2500 TEU and
3600 TEU (KCS) as target datasets. For the reconstruction of the model through transfer
learning, it is necessary to fine-tune the weights of the base DNN model using a smaller
learning rate compared to the original learning rate. To determine an appropriate learning
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rate for the small amount of target data, K-fold cross-validation was performed to assess
the general prediction performance with varying learning rates. Subsequently, the effect of
fixing the number of layers during the reconstruction of the DNN through transfer learning
was investigated. Exactly, the study adopted transfer learning with fine-tuning, which
involves adjusting or maintaining the weights of specific layers among the hidden layers of
the base DNN model. This was completed by training on various cases and comparing the
results for each case. In this study, the application of transfer learning using a small dataset
for container ships of different sizes demonstrates the potential for predicting resistance
and wake distribution based on FCF position with sufficient accuracy.

3.4. Accuracy Evaluation

The performance evaluation metrics used for the proposed model are as follows:

• Mean squared error (MSE); MSE estimates the standard deviation of the random
component in the data and is used to optimize the validation loss during model
training. It is defined as follows:

MSE =
∑n

i=1(yi − ŷi)
2

n
(14)

where yi is the true value of the ith sample, ŷi is the estimated output of the ith sample and
n is the number of samples.

• Mean absolute percentage error (MAPE); MAPE is used to compare the accuracy of
predictions and is defined as follows:

MAPE =
100
n

n

∑
I=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (15)

• Here, yi, ŷi, and n have the same meanings as mentioned in the previous descriptions.
A lower MAPE indicates better predictions.

• Coefficient of determination; the coefficient of determination, or R2, is defined to
demonstrate how well the model predicts the variability of the observed and unob-
served samples. The best possible value is 1, and it can also be negative, indicating
that the model cannot follow the true datasets. R2 is defined as follows:

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (16)

Here, y represents the mean of the actual samples, and the other variables have the
same meanings as explained earlier.

4. Results
4.1. Uncertainties Analysis in CFD Verification

In this study, CFD analyses were conducted on a total of three grid systems by in-
creasing and decreasing the grid size with a refinement ratio of

√
2. The total number of

cells and model-scale viscous resistance for each grid system corresponding to the three
different sizes of containerships are presented in Table 4. Due to the use of unstructured
grids in CFD analysis, the randomness in grid generation leads to a limitation in precisely
controlling the total number of cells.

The results of numerical error and uncertainty assessment for the three different
sizes of containerships are summarized in Table 5. Since all the convergence ratios are
between 0 and 1, it can be assumed that the model-scale viscous resistance (RVM) converges
monotonically. Therefore, numerical error and uncertainty were estimated using the
generalized Richardson extrapolation (RE) method. The results show that when performing
double body analysis for the three containerships, numerical uncertainty of Rvm can be
expected due to grid effects within 2% for all cases. Based on the uncertainty results,
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data collection for machine learning was carried out using the medium grid system for
all cases. The coarse grid system faced difficulties in generating a smooth flow control
fin due to its thin structure. The fine grid system had a high number of cells, leading to
extended analysis time. Consequently, the medium grid system was chosen to strike a
balance between accuracy and computational efficiency.

Table 4. Cell number of the grid system.

Class Fineness # of Grid Cells Rvm [N]

1000 TEU
Coarse 398,208 26.05

Medium 1,047,619 26.19
Fine 2,923,468 26.31

2500 TEU
Coarse 400,585 27.35

Medium 1,080,754 27.55
Fine 3,074,301 27.72

3600 TEU
Coarse 391,605 33.99

Medium 913,245 34.09
Fine 2,533,138 34.27

Table 5. Results of numerical error and uncertainty analysis for RVM.

Class rG εG,21 εG,32 RG δ*
REG

UG UG
(
%ŜG,2

)
1000 TEU

√
2 −0.127 −0.138 0.919 −0.127 0.359 1.37

2500 TEU
√

2 −0.176 −0.195 0.903 −0.176 0.489 1.77
3600 TEU

√
2 −0.178 −0.106 0.907 −0.178 0.496 1.46

The subscript “G” refers to grid size.

4.2. Prediction Results Using Source Dataset (the Base DNN Model)

The results of the grid search cross-validation for hyperparameter optimization of the
DNN model using a total of 690 source data (1000 TEU) are presented in Figure 9. The mean
squared error (MSE) was used to assess the prediction accuracy for each hyperparameter. In
this study, three hyperparameters were optimized, and the optimal values for each parame-
ter are as follows; (1) batch size: (4, 8, 16, 32, 64, 128), (2) epochs: (100, 500, 1000, 2000, 3000)
and (3) learning rate: (0.001, 0.005, 0.01, 0.05, 0.1). The final hyperparameters determined
for the base DNN model were chosen based on the consideration of a small mean squared
error value while considering the training speed. The training hyperparameters for the base
DNN model were set as follows: batch size = 64, epochs = 2000, and learning rate = 0.01.
Using this combination of selected hyperparameters, the model was trained for a total of
18,000 iterations on the 1000 TEU containership dataset. The prediction accuracy of the
base DNN training model is quantified by an MSE of approximately 0.0008, as shown in
Figure 10. The peak of the loss typically occurs during mini-batch training with split data.

The prediction accuracy for the test dataset not used during training was evaluated to
validate the learning level of the base DNN model. Table 6 presents the evaluation metrics
for the test dataset of the source data, which is the 1000 TEU containership. MSE and MAPE
indicate higher prediction accuracy as their values become smaller, and an R2 value closer
to 1 signifies that the test dataset not used in training is being well predicted. The DNN
model can accurately predict viscous resistance and wake distribution in the propeller
plane, as evidenced by the high level of accuracy. Figure 11 displays the predicted viscous
resistance results for the two above-mentioned test cases. The average error of the viscous
resistance coefficient of model CVM is significantly small, being 0.00009× 10−0, which is
less than 0.005% of the target value. Figure 12 compares the true data obtained from CFD
analysis with the results predicted by the DNN. The true wake distribution is given on the
left, and the predicted data are shown on the right. The true data for the circumferential
distribution of the axial velocity component are depicted as black dashed lines, while the
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predicted data are represented by red symbols and solid lines. As observed in Figure 12,
the true and predicted data closely match with high accuracy. In addition, the predicted
nominal wake fractions wM are different from the true values only by less than 0.001, which
corresponds to 0.39% error. Here, the nominal wake fraction is computed as follows:

Circumferential mean velocity of each component, Vmean is the averaged value of the
velocity at the corresponding radius and can be calculated as:

Vmean =
1

2π

∫ 2π

0
Vi(ϕ)dϕ (17)

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 13 of 23 
 

 

The results of numerical error and uncertainty assessment for the three different sizes 
of containerships are summarized in Table 5. Since all the convergence ratios are between 
0 and 1, it can be assumed that the model-scale viscous resistance (𝑅௏ெ) converges mono-
tonically. Therefore, numerical error and uncertainty were estimated using the general-
ized Richardson extrapolation (RE) method. The results show that when performing dou-
ble body analysis for the three containerships, numerical uncertainty of Rvm can be ex-
pected due to grid effects within 2% for all cases. Based on the uncertainty results, data 
collection for machine learning was carried out using the medium grid system for all 
cases. The coarse grid system faced difficulties in generating a smooth flow control fin due 
to its thin structure. The fine grid system had a high number of cells, leading to extended 
analysis time. Consequently, the medium grid system was chosen to strike a balance be-
tween accuracy and computational efficiency. 

Table 5. Results of numerical error and uncertainty analysis for 𝑅௏ெ. 

Class 𝒓𝑮 𝜺𝑮,𝟐𝟏 𝜺𝑮,𝟑𝟐 𝑹𝑮 𝜹𝑹𝑬𝑮∗  𝑼𝑮 𝑼𝑮൫%𝑺෡𝑮,𝟐൯ 
1000 TEU √2 −0.127 −0.138 0.919 −0.127 0.359 1.37 
2500 TEU √2 −0.176 −0.195 0.903 −0.176 0.489 1.77 
3600 TEU √2 −0.178 −0.106 0.907 −0.178 0.496 1.46 

The subscript “G” refers to grid size. 

4.2. Prediction Results Using Source Dataset (the Base DNN Model) 
The results of the grid search cross-validation for hyperparameter optimization of the 

DNN model using a total of 690 source data (1000 TEU) are presented in Figure 9. The 
mean squared error (MSE) was used to assess the prediction accuracy for each hyperpa-
rameter. In this study, three hyperparameters were optimized, and the optimal values for 
each parameter are as follows; (1) batch size: (4,8,16,32,64,128), (2) epochs: 
(100,500,1000,2000,3000) and (3) learning rate: (0.001,0.005,0.01,0.05,0.1). The final hy-
perparameters determined for the base DNN model were chosen based on the considera-
tion of a small mean squared error value while considering the training speed. The train-
ing hyperparameters for the base DNN model were set as follows: batch size = 64, epochs 
= 2000, and learning rate = 0.01. Using this combination of selected hyperparameters, the 
model was trained for a total of 18,000 iterations on the 1000 TEU containership dataset. 
The prediction accuracy of the base DNN training model is quantified by an MSE of ap-
proximately 0.0008, as shown in Figure 10. The peak of the loss typically occurs during 
mini-batch training with split data. 

  

 
Figure 9. Grid search results for DNN model using source dataset. Figure 9. Grid search results for DNN model using source dataset.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 14 of 23 
 

 

 
Figure 10. Loss for the base DNN models. 

The prediction accuracy for the test dataset not used during training was evaluated 
to validate the learning level of the base DNN model. Table 6 presents the evaluation met-
rics for the test dataset of the source data, which is the 1000 TEU containership. MSE and 
MAPE indicate higher prediction accuracy as their values become smaller, and an 𝑅ଶ 
value closer to 1 signifies that the test dataset not used in training is being well predicted. 
The DNN model can accurately predict viscous resistance and wake distribution in the 
propeller plane, as evidenced by the high level of accuracy. Figure 11 displays the pre-
dicted viscous resistance results for the two above-mentioned test cases. The average error 
of the viscous resistance coefficient of model 𝐶௏ெ  is significantly small, being 0.00009 ൈ 10ି଴, which is less than 0.005% of the target value. Figure 12 compares the true 
data obtained from CFD analysis with the results predicted by the DNN. The true wake 
distribution is given on the left, and the predicted data are shown on the right. The true 
data for the circumferential distribution of the axial velocity component are depicted as 
black dashed lines, while the predicted data are represented by red symbols and solid 
lines. As observed in Figure 12, the true and predicted data closely match with high accu-
racy. In addition, the predicted nominal wake fractions 𝑤ெ are different from the true 
values only by less than 0.001, which corresponds to 0.39% error. Here, the nominal wake 
fraction is computed as follows: 

Circumferential mean velocity of each component, 𝑉௠௘௔௡ is the averaged value of the 
velocity at the corresponding radius and can be calculated as: 𝑉௠௘௔௡ =  12𝜋 න 𝑉௜(𝜑)𝑑𝜑ଶగ

଴  (17) 

Total nominal mean velocity is obtained from the value of circumferential axial mean 
velocity between radius of propeller hub, 𝑅௛௨௕ and radius of the propeller, 𝑅 at the pro-
peller plane and computed as follows: 𝑉 ௢௧,௠௘௔௡ =  2𝜋 ׬ 𝑉௠௘௔௡ ∙ 𝑟 𝑑𝑟ோோ೓ೠ್𝜋 ∙ (𝑅ଶ − 𝑅௛௨௕ଶ )  (18) 

This further leads to the calculation of the nominal wake fraction 𝑤ெ as follows: 𝑤ே = 1 − 𝑉஺𝑉 = 1 − 𝑉 ௢௧,௠௘௔௡ (19) 

The DNN model is capable of accurately predicting not only wake distribution but 
also viscosity resistance. The neural network that serves as the basis for transfer learning 
on a small amount of data requires sufficient prediction accuracy. Given the results above, 

Figure 10. Loss for the base DNN models.



J. Mar. Sci. Eng. 2023, 11, 1898 15 of 23

Table 6. MSE, MAPE, and R2 values for the base DNN model.

MSE MAPE (%) R2

0.00081 7.16 0.98
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Total nominal mean velocity is obtained from the value of circumferential axial mean
velocity between radius of propeller hub, Rhub and radius of the propeller, R at the propeller
plane and computed as follows:

VTot,mean =
2π
∫ R

Rhub
Vmean·r dr

π·
(

R2 − R2
hub
) (18)

This further leads to the calculation of the nominal wake fraction wM as follows:

wN = 1− VA
V

= 1−VTot,mean (19)

The DNN model is capable of accurately predicting not only wake distribution but
also viscosity resistance. The neural network that serves as the basis for transfer learning
on a small amount of data requires sufficient prediction accuracy. Given the results above,
it can be concluded that the base DNN model can effectively capture the design variables
of the FCF and establish a strong association with both the viscous resistance coefficient
and wake distribution, demonstrating high accuracy in its predictions.

4.3. Prediction Results Using Target Dataset (DNN-TL Model)

The DNN-TL model is reconstructed and retrained based on the weights of the previ-
ously trained DNN model, using only the target dataset. Since the size of the target dataset
is considerably smaller (150 datasets) compared to the source dataset, a smaller learning
rate is necessary to ensure training accuracy. Therefore, it is necessary to find the optimal
learning rate value for the training dataset of the DNN-TL model. The optimization was
performed with learning rates (0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01), and the
comparison of MSE values for each value is shown in Figure 13. In this study, the optimal
learning rate value for predicting the viscous resistance and wake distribution of the target
dataset (2500 TEU and 3600 TEU) is determined to be 0.0005. Based on this, the parameters
of the DNN-TL model were constructed. To verify the prediction of viscous resistance
and wake distribution based on transfer learning, different configurations were tested:
DNN-TL models with 1, 4, and 5 fixed layers, as well as a DNN-TL model without any
fixed layers (Table 7). Fine-tuning was performed on each of these configurations, and their
performances were compared. In the DNN-TL model, the weights of neurons are initialized
based on the previously trained base model, and the model is retrained and reconstructed
using the training dataset from the target dataset.
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Table 7. Fine-tuning for DNN-TL.

1st Hidden
Layer

2nd Hidden
Layer

3rd Hidden
Layer

4th Hidden
Layer

5th Hidden
Layer

All fixed layer Fixed Fixed Fixed Fixed Fixed
Fixed 4 layer Fixed Fixed Fixed Fixed Train
Fixed 1 layer Fixed Train Train Train Train

No fixed layer Train Train Train Train Train

The prediction accuracy based on the fine-tuning of hidden layer weights was evalu-
ated to verify the level of learning. Figure 14 compares the predicted viscous resistance
coefficients of the model ship for each fine-tuning condition. The black-filled bar chart
represents the true values obtained from CFD analysis, while the red dashed-filled bars
represent the predicted results from each fine-tuning condition. The viscosity resistance
performance was compared using one test dataset for each of the 2500 TEU and 3600 TEU
containerships. Figures 15 and 16 illustrate the comparison of predicted results for har-
monic wake distribution and circumferential distribution of axial velocity components
for both 2500 TEU and 3600 TEU. The left figure shows the harmonic wake distribution
obtained from CFD analysis, and the middle part displays the predicted wake distribution
from each fine-tuning condition. In the case where the weights of all five hidden layers are
fixed (the all fixed layer case), there is an error of 18% specifically in the viscosity resistance
coefficient (CVM) for the 3600 TEU containership. The accuracy of predicting the axial
velocity distribution in the propeller plane is also quite low, and it can be observed that it
is trying to follow the wake distribution characteristics of the 1000 TEU used in the base
DNN model. In the case of “Fixed 4 layer”, where only the weights of the last layer among
the layers were trained, CVM for 2500 TEU and 3600 TEU show errors of 0.38% and −3.6%,
respectively. This indicates an improvement in prediction accuracy compared to the “All
fixed layer” case. In Figures 15b and 16b, compared to the “All fixed layer”, there is an
attempt to capture the characteristics of each hull form. This indicates that the weights
of the last hidden layer among the hidden layers play a role in conveying a certain level
of knowledge about the target datasets (2500 TEU and 3600 TEU). The prediction results
for the fixed 1 layer, where only the weights of the first hidden layer are not retrained,
and the no fixed layer, where all layers are retrained, show a quite similar trend. The
CVM prediction results for both 2500 TEU and 3600 TEU exhibit errors within 0.5%. When
observing the wake distribution and axial velocity components figures, it is evident that
the characteristics of each linear component are sufficiently captured. Furthermore, the
errors in the nominal wake fraction wM between the TL predictions and the true values
are 0.0 for the 2500 TEU (Figure 15c) and 0.001 (Figure 16c), which amounts to 0% and
0.43%, respectively. This exemplifies the accuracy of the present TL prediction in wake
field prediction.

Table 8 presents the prediction accuracy metrics for the test dataset that was not used
in the training process under each fine-tuning condition. MSE and MAPE are metrics where
lower values indicate higher accuracy in predictions. R2, on the other hand, is a measure
of how well the model explains the variance in the data. A higher R2 value, closer to 1,
indicates a better predictive performance. Generally, when R2 > 0.67, it is considered to
have a reasonably good predictive accuracy, while 0.33 < R2 < 0.67 indicates moderate
predictive performance, and 0.16 < R2 < 0.32 suggests poor predictive performance [21].
The R2 score for the “All fixed layer” case is −4.163, indicating no prediction capability
on the test dataset. Conversely, when the first hidden layer is fixed, it exhibits the highest
scores across all accuracy metrics. It is considered that the weights of the first layer in
the previously trained base DNN model were tailored to capture the characteristics of the
viscous resistance coefficient on the containership and the axial velocity on the propeller
plane. The remaining hidden layers seem to have been designed to understand the fluid
characteristics by hull form. To assess the level of prediction accuracy in this study, the
performance was compared to accuracy metrics from other literature that used transfer
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learning for predictions. Solis and Calvo-Valverde [22] applied DNN and TL to time series
prediction, and their optimal prediction model achieved an MAPE value of approximately
9%. Zhou et al. [23] predicted the dynamic behavior of a gas turbine engine using transfer
learning, and in their optimal prediction model, they achieved MSE and R2 values of
0.00466 and 0.881, respectively. The MSE, MAPE, and R2 values in this paper all fall within
a similar range, indicating that the prediction model applied with transfer learning is at a
satisfactory level of accuracy.
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Table 8. MSE, MAPE, and R2 values for each fine-tuning condition.

MSE MAPE (%) R2

All fixed layer 0.3083 182.4 −4.163
Fixed 4 layer 0.0307 24.88 0.499
Fixed 1 layer 0.0086 13.89 0.854

No fixed layer 0.0185 18.40 0.703

Figure 17 compares the predicted radial profiles of axial velocity components from
the four tuning cases with their true values. The green circles represent the predictions
from the “All fixed layer” condition, the black squares are from the case where the first four
layers were fixed (fixed 4 layer), the blue triangles represent the condition where only the
first layer was fixed (fixed 1 layer), and the red “X” symbols depict the predictions from
the “No fixed layer” condition. In the case of “All fixed layer”, significant discrepancies
are observed between the predicted values and the true values across all radii. On the
other hand, for the “Fixed 1 layer” and “No fixed layer” cases, it can be observed that the
predicted values closely follow the trends of the true values.
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Figure 15. Evaluation of prediction accuracy by harmonic wake distribution and axial wake distribu-
tion for 2500 TEU between each fine-tuning condition: (a) all fixed; (b) fixed 4 layer; (c) fixed 1 layer;
(d) no fixed layer.
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tion for 3600 TEU between each fine-tuning condition: (a) all fixed; (b) fixed 4 layer; (c) fixed 1 layer;
(d) no fixed layer.
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5. Conclusions

This paper proposes a novel methodology for predicting the resistance performance
and wake distribution of flow control fins (FCFs) on containerships of various sizes using
deep neural networks (DNN) through transfer learning. The main contribution of this paper
lies in introducing DNN to predict the outcomes in a shorter time compared to traditional
computational fluid dynamics (CFD) simulations, which are used to assess the performance
based on the locations of FCFs on containerships of different sizes. Another novel aspect
is the utilization of transfer learning (TL) to enhance the efficiency of training using a
limited amount of data. Firstly, a base DNN model is constructed based on a relatively
large source dataset of 690 cases (1000 TEU). Then, transfer learning is applied to predict
the performance of smaller target datasets (2500 TEU and 3600 TEU) using the base DNN
model as a foundation. Furthermore, fine-tuning between layers in the transfer learning
process is employed to identify the conditions that yield the highest learning accuracy.

As a result, the first layer of the base DNN model was fixed, and the rest of the layers
were retrained and reconfigured conditions showed higher scores in accuracy metrics.
When evaluated using the test dataset that was not involved in the transfer learning training,
the MSE, MAPE, and R2 were found to be 0.0086, 13.89%, and 0.854, respectively, indicating
the highest accuracy. Additionally, in terms of the viscous resistance coefficient (CVM),
the accuracy was within 0.5%. This study demonstrates the procedure in which machine
learning techniques, particularly transfer learning, can contribute to the advancement of
computational design technology. The machine learning methodologies developed in this
study can be utilized to design and optimize the FCFs for similar vessels with different
sizes in the class of feeder containerships under 4000 TEUs.

The current application of transfer learning-based predictive capabilities is not limited
to specific case studies. By adopting the optimization techniques, it could be extended to
the optimal design of FCFs’ positions for various types of containerships, which will be the
topic of future study. However, predicting the performance of FCF applied to a full-scale
vessel requires conducting high Reynolds number simulations, and currently, performing
simulations at the full-scale is a challenging issue in fluid performance research. Predicting
the viscous resistance and axial velocity performance at the propeller plane for a full-scale
vessel with FCF application remains a significant challenge.
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