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Abstract: This paper focuses on the collision-free formation tracking of autonomous underwater
vehicles (AUVs) with compound disturbances in complex ocean environments. We propose a novel
finite-time extended state observer (FTESO)-based distributed dual closed-loop model predictive
control scheme. Initially, a fast FTESO is designed to accurately estimate both model uncertainties
and external disturbances for each subsystem. Subsequently, the outer-loop and inner-loop formation
controllers are developed by integrating disturbance compensation with distributed model predictive
control (DMPC) theory. With full consideration of the input and state constraints, we resolve the local
information-based DMPC optimization problem to obtain the control inputs for each AUV, thereby
preventing actuator saturation and collisions among AUVs. Moreover, to mitigate the increased
computation caused by the control structure, the Laguerre orthogonal function is applied to alleviate
the computational burden in time intervals. We also demonstrate the stability of the closed-loop
system by applying the terminal state constraint. Finally, based on a connected directed topology,
comparative simulations are performed under various control schemes to verify the robustness and
superior performance of the proposed scheme.

Keywords: multi-AUV system; formation tracking; finite-time extended state observer; distributed
model predictive control; Laguerre function

1. Introduction

Autonomous underwater vehicles (AUVs) have assumed indispensable roles in vari-
ous underwater operations, such as ocean exploration and hydrologic surveys [1]. They
can autonomously perform appropriate maneuvers to achieve predefined objectives. Com-
pared with the operational capability of a single AUV, collaborative AUVs can respond
more reliably and flexibly to complex missions and extended operational ranges, thereby
improving the efficiency and robustness of undersea operations. Given this backdrop,
numerous application cases about AUV coordinated formation have been triggered in both
civilian and industrial fields for decades [2,3]. Irrespective of the specific collaborative
missions undertaken by AUVs, the core challenge lies in ensuring motion stability of AUV
formations within complex underwater environments and the constraints of their own
models. To tackle this problem, several mainstream methodologies have been proposed
by engineers and academics. Studies by Chen et al. [4] and Zhen et al. [5] proposed AUV
formation control schemes combined with the virtual structure method. However, this
approach suffers from limited flexibility and applicability. Wang et al. [6] utilized the
leader–follower method to address the AUV formation tracking problem, but this approach
relies on the state of the leader, reducing the robustness and fault tolerance of the formation.
Conversely, leaderless formations have been proposed promisingly and have received
more considerable attention [7]. Munir et al. [8] proposed a new arbitrary-order distributed
control strategy based on the novel sliding surfaces of error dynamics, which addresses the
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cooperative tracking control of uncertain higher-order nonlinear systems. The strategies
to mitigate the chattering issue caused by sliding surfaces are discussed in [9]. Despite
the abundance of existing research, multiple-AUV formation tracking control remains a
significantly challenging project.

One of the main challenges is the various disturbances resulting from the underwater
environment and the motion model of the AUVs themselves [10]. On the one hand, un-
known disturbances such as waves, tides, and currents, are inevitable in practical marine
environments. On the other hand, AUVs exhibit highly nonlinear and coupled dynamics,
leading to model uncertainties. These uncertainties are often induced by modeling errors
and deviations in hydrodynamic coefficient measurement. According to the research by
Cui et al. [11], these external disturbances and model uncertainties that degrade the system
performance negatively are referred to as compound disturbances. In response to these
challenges, researchers have developed diverse schemes, such as disturbance observers [12],
fuzzy logic theory [13], and neural networks [14]. Among these, the extended state observer
(ESO) initially proposed by Han [15] is an attractive option to estimate compound distur-
bances, as it does not rely on an accurate model. Lei et al. [16] designed a high-gain ESO to
solve AUV horizontal trajectory tracking problems under the time-varying disturbances.
Although many ESOs have been established for different platforms, most only guarantee
asymptotic convergence of estimation errors, implying a potentially infinite convergence
time. Some research works also lack a rigorous analysis of convergence. Considering
the impact of severe underwater environments on estimation accuracy, the concept of
finite-time ESO proves more beneficial for improving control performance [17]. Wang
et al. [18] implemented a FTESO-based nonsingular terminal sliding mode controller to
address unmanned surface vehicle (USV) trajectory tracking in disturbed environments.
This approach ensured that the disturbance estimation errors converge within a finite time.
However, there remains room for improvement and optimization of the design structure to
further enhance observation performance.

AUV formation navigation also presents significant technical challenges due to various
complex constraints. For instance, the AUV attitude has a certain desired range and
navigation velocities are inherently limited. These intrinsic input and state constraints
pose substantial challenges to control performance [19]. In practical applications, actuators
often have input saturation constraints due to physical structure limitations. This results
in a limitation of the actual active control force of the AUV. If a control signal exceeds
this boundary, it may lead to system instability. However, most previous work assumes
that the actuators can tolerate any level of control signals. To avoid actuator saturation, a
nonlinear auxiliary system for filtering saturation errors was proposed [20]. Additionally,
collisions between AUVs are undesirable during the formation configuration phase. Thus,
the ability to avoid collisions is vital for AUV formation control. A wealth of solutions
have been developed to this end, with Li and Wang [21] proposing a collision-free position
consensus algorithm for AUVs based on potential function. Moreover, Xu et al. [22]
presented an event-triggered algorithm based on deep reinforcement learning to avoid
AUV collisions. However, the above studies disregard the physical constraints of AUVs.
From the perspective of safe navigation, it is essential to integrate factors such as input,
state restrictions, and collision avoidance into the design scheme.

Model predictive control (MPC) has garnered considerable attention due to its ability
to simultaneously handle multiple composite constraints and offer superior dynamic
performance. This is widely applied to MIMO systems affected by model distortions
and complex constraints. Several MPC-based applications have been integrated into
AUV control systems. Zhang et al. [23] proposed an MPC-based AUV trajectory tracking
strategy under random disturbances. In [24], a robust model-predictive control scheme
based on the active disturbance rejection control approach was developed for the AUV
tracking task. The challenge of extending these systems to multi-AUV systems involves
coordinating the control behavior of each subsystem and ensuring the closed-loop stability
of the local MPC optimization problem under system constraints. This coordination aims to
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maximize the overall control performance. Hence, DMPC came into being. Zheng et al. [25]
proposed a DMPC method based on local state information for MAS formation tracking.
To the best of our knowledge, there are few studies that apply DMPC to multi-AUV
formations. Wei et al. [26] developed a Lyapunov-based distributed predictive controller
for AUV formation tracking, subject to current disturbances. The auxiliary controller was
utilized to establish stability constraints to ensure the closed-loop stability of the system.
However, this method only considers horizontal formations without uncertainties and
state constraints. Furthermore, many works that design predictive controllers result in
additional computational loads, which could impair the real-time execution capability
of the controller. Shen and Shi [27] managed to reduce the MPC computational burden
by decomposing the original AUV trajectory tracking optimization problem into smaller
subproblems and then solving them in a distributed manner. Despite these efforts, there has
been no research to address the heavy computation of DMPC applied to AUV formations.
In order to improve the dynamic response and control accuracy of AUV formation tracking
in three-dimensional (3-D) space, we adopt the Laguerre orthogonal function to reduce
the computational load. In response to these discussions, it is imperative to develop a safe
and efficient formation control scheme to solve the problems of disturbances, parameter
uncertainties, and complicated constraints.

Motivated by the above observations, this paper investigates the collision-free forma-
tion tracking of multi-AUVs with compound disturbances under complicated constraints.
A novel FTESO-based distributed dual closed-loop model predictive control scheme is
proposed. This method satisfies the formation constraints and collision avoidance re-
quirements while compensating for model uncertainties and external disturbances. We
incorporate the Laguerre function to alleviate the computational burden of the DMPC
optimization problem, also giving corresponding stability analysis. Based on the connected
directed topology, comparative simulations under different schemes demonstrate the effec-
tiveness and robustness of our proposed scheme. The main contributions of this paper are
as follows:

1. Compared with the FTESO-based controllers presented in works [16,28], the proposed
third-order fast FTESO can estimate the compound disturbances and their first deriva-
tives, which effectively suppress the amplification and fluctuation of the generalized
uncertainties. It has better estimation accuracy and convergence speed. Hence, the
active disturbance rejection capability of AUV formation is enhanced;

2. Unlike the existing DMPC schemes depicted in works [29,30], a dual closed-loop
structure is utilized to enhance the response speed of the DMPC system and the
controllability of the AUV speed. The outer-loop controller sets the desired velocity
and the inner-loop controller generates the driving force. By solving the constrained
quadratic programming (QP) problems, the risks of actuator saturation and collision
are reduced. The safety and robustness of formation tracking are improved;

3. In order to solve the issue of heavy computational burden in traditional predictive
control, the Laguerre orthogonal function is incorporated to reconstruct the input
matrices, which automatically trades off control performance and computational com-
plexity, thus avoiding possible formation deviation due to slow computational speed.
The stability of the closed-loop system is proved by exerting terminal state constraints.

The rest of this paper is organized as follows: Section 2 introduces some notations,
lemmas, and graph theory, and describes the AUV model and control objective. Section 3
presents the methodology, including the design of the FTESO and dual closed-loop DMPC
scheme, the application of the Laguerre function, and the corresponding stability analysis.
Sections 4 and 5, respectively, provide simulation results and conclusions.

2. Preliminaries
2.1. Notations and Lemmas

Notation. Rn represents the n-dimensional Euclidean space, and Rm×n denotes the set of
(m× n) real matrix. In, 0n, and 0p×q signify (n× n) identity matrix, (n× n), and (p× q)
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null matrices, respectively. ‖·‖ refers to the Euclidean vector norm and the induced matrix
norm, while the infinity norm is denoted by ‖·‖∞. λmin(·) represents the minimum eigen-
value of the specified matrix (·), with its maximum eigenvalue denoted as λmax(·). For sim-
plicity, some notations are defined as sigp(x) = sign(x)|x|p, |x|p =

[
|x1|p, |x2|p, . . . , |xn|p

]T ,
x = [x1, x2, . . . , xn]

T , p ∈ R. sign(·) symbolizes the signum function with sign(0) = 0.
Notably, sig0(x) = sign(x), sig0(x)|x|p = sigp(x).

Lemma 1 ([31]). Consider the system
.
x(t) = f (x(t)), x(0) = x0, f (0) = 0, x ∈ Rn, where

f : U→ Rn is a continuous function. Suppose that this system has a unique solution in
forward time for all initial conditions. If there exists a Lyapunov function V(x), with
V(x0) denoting its initial value, the following can be assumed: (1) The trajectory of this
system is finite-time uniformly ultimately bounded stable within the region of Q1 ={

x|V(x)α1−α2 < β2
γ1

}
, if

.
V(x) ≤ −β1V(x)α1 + β2V(x)α2 for α1 > α2, β1 > 0, β2 > 0,

γ1 ∈ (0, β1). The settling time for the states reaching the stable residual set is subject to

the constraint as T1 ≤ V(x0)
1−α1

(β1−γ1)(1−α1)
. (2) The trajectory of this system is fast finite-time

uniformly ultimately bounded stable within Q2 =
{

x|γ1V(x)α1−α2 + γ2V(x)1−α2 < β3

}
,

if
.

V(x) ≤ −β1V(x)α1 − β2V(x) + β3V(x)α2 for β3 > 0, γ2 ∈ (0, β2). The convergence time

T2 is bounded as T2 ≤
ln
[
(β2−γ2)V(x0)

1−α1 /(β1−γ1)+1
]

(β2−γ2)(1−α1)
.

2.2. Graph Theory

We introduce a directed topology graph G = {V, ε} to describe the information
interactions among the AUVs. Let the node set V = {V1, V2, · · · , VN} to represent the N
members in the formation, and an edge set ε ⊆ V×V to represent the communication from
the node Vi to the node Vj. A =

[
aij
]
⊂ RN×N is defined as an adjacency matrix, where

aij represents the connection weight and aij = 1 if (i, j) ∈ ε, while aij = 0 if (i, j) /∈ ε. It
is assumed that the ith vehicle could receive information from the virtual leader and its
neighbors Ni = {j ∈ V : (j, i) ∈ ε}. The graph is termed an undirected graph if bidirectional
communication links exist among all members of the formation. Otherwise, it is referred to
as a directed graph. A directed graph is considered strongly connected if a directed path
can connect any point in the formation to any other.

2.3. AUV Model

As shown in Figure 1, it is convenient to describe the six-degree-of-freedom (DOF)
AUVs with two reference frames: an earth-fixed frame {E} and a body-fixed frame {B}.
This paper employs a fully actuated torpedo-type AUV, referenced from [32], based on the
control objectives. In addition, the AUV uses an ultra-short baseline acoustic positioning
system for underwater localization. Since this AUV can be regarded as a highly metacentric
stable vehicle with self-stable roll motion, the effect of roll is ignored (roll angle Φi = 0, roll
angular velocity pi = 0). The kinematics and dynamics of the ith AUV are described as
follows [33]:

.
ηi = J(ηi)vi (1)

Mi
.
vi + Ci(vi)vi + Di(vi)vi + gi(ηi) = τi + τic (2)

where i = 1, 2, . . . , N, ηi = [xi, yi, zi, θi, ψi]
T ∈ R5, and vi = [ui, vi, wi, qi, ri]

T ∈ R5 denote
the states of position, orientation, and velocity of the AUV, respectively. J(ηi) is a rotation
transformation matrix from the body-fixed frame to the earth-fixed frame, expressed as:

J(ηi) =


cos ψi cos θi − sin ψi cos ψi sin θi 0 0
sin ψi cos θi cos ψi sin ψi sin θi 0 0
− sin θi 0 cos θi 0 0

0 0 0 1 0
0 0 0 0 1/ cos θi

 (3)
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Mi represents the inertial matrix, which includes added mass. Ci(vi) and Di(vi) de-
note the Coriolis and centripetal and hydrodynamic damping matrix, respectively, while
gi(ηi) represents the restoring force and moment generated by gravity and buoyancy.
τi =

[
τiu, τiv, τiw, τiq, τir

]T represents the control input, and τic denotes the external distur-
bance. Detailed expressions of these matrices are available in [34].
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In practical engineering, we may not be able to obtain accurate hydrodynamic co-
efficients in the model, so the matrices in (2) are typically divided into two parts: the
nominal value part and the uncertainty part caused by linear shifts, i.e., Mi = M∗i + ∆Mi,
Ci(vi) = C∗i (vi) + ∆Ci(vi), Di(vi) = D∗i (vi) + ∆Di(vi), and gi(ηi) = g∗i (ηi) + ∆gi(ηi),
where (·)∗i denotes the nominal value that can be obtained from the computational fluid
dynamics (CFD) or experimental analysis. ∆(·)i symbolizes the difference between the real
value and the nominal value.

Accordingly, the ith AUV dynamic model (2) can be reformulated as:

M∗i
.
vi = −C∗i (vi)vi −D∗i (vi)vi − g∗i (ηi) + τi + τid (4)

where τid = τic − ∆Mi
.
vi − ∆Ci(vi)vi − ∆Di(vi)vi − ∆gi(ηi) is regarded as the compound

disturbance, which includes uncertainties and unknown external disturbance. Typically,
external disturbances are periodically varying and energy limited. The model uncertainties
are related to the actual states and physical properties of the AUV. Based on the constraints
of DMPC on the system state, in practice, we give the following reasonable assumption:

Assumption 1 ([11]). The ocean current disturbance term τic and the first time derivative
.
τic are bounded, and the model uncertainties ∆Mi, ∆Ci, ∆Di, and ∆gi are unknown and
bounded. Hence, the compound disturbance τid of the ith AUV is bounded and satisfies
‖τid‖ ≤ τid, where τid ∈ R+ represents the unknown upper bound.

It should be noted that the above assumption is untenable if there are no system state
constraints [35,36].

2.4. Control Objective

In this paper, the control objective is to develop a control scheme that enables AUV
formation to track a reference trajectory while maintaining a predefined configuration. Ini-
tially, a FTESO is designed to compensate for external disturbances and model uncertainties
of the AUV formation, so that the estimation errors converge to the origin. Subsequently, a
dual closed-loop DMPC controller is designed. In this structure, the outer-loop controller
enables the ith AUV to track the reference trajectory ηr by generating the desired velocity,
resulting in the convergence of position tracking errors. The inner-loop controller is used to
achieve the convergence of velocity tracking errors. The desired formation is implemented
by setting the corresponding formation configuration vector ri f and the relative distance
vector rij. The task must adhere to various constraints and ensure collision avoidance.
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Because the navigation trajectory has a limited range and the speed is continuous without
abrupt changes, we adopt the following reasonable assumptions to avoid singularities in
the reference trajectory:

Assumption 2. The reference trajectory ηr = [xr, yr, zr, θr, ψr]
T and its derivatives are

smooth and bounded, i.e., ‖ηr‖∞ ≤ ηr,
∥∥ .

ηr
∥∥

∞ ≤ ηr1, and
∥∥ ..

ηr
∥∥

∞ ≤ ηr2 with positive
numbers ηr, ηr1, and ηr2.

3. Methodology

This section develops the FTESO-based distributed dual closed-loop model predictive
control scheme for the AUV formation to perform trajectory tracking. A novel FTESO is
designed to compensate the compound disturbances. Based on the model information
reconstructed by FTESO, the DMPC optimization problems are formulated for the outer
and inner loops under constraints such as actuator saturation and collision avoidance,
respectively. The Laguerre function is applied to alleviate the computational load. The
block diagram of proposed control scheme is depicted in Figure 2.
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3.1. FTESO Design and Convergence Analysis

The AUV model is fundamental to controller design, but obtaining an accurate model
in practice is challenging. Considering the superiority and effectiveness of the ESO tech-
nique in estimating and compensating for synthetic uncertainty, a novel fast FTESO is
designed to simultaneously reconstruct the external disturbance and model uncertainties
of multiple AUVs.

First, define the auxiliary velocity variable as ωi(vi) = M∗i vi +
∫

vi, the derivative of
ωi(vi) with respect to time can be obtained from (4)

ωi(vi) = vi − C∗i (vi)vi −D∗i (vi)vi − g∗i (ηi) + τi + τid. (5)

For simplicity, denote Gi(ηi, vi) = vi − C∗i (vi)vi − D∗i (vi)vi − g∗i (ηi). Then, a new
variable is defined as zi1 = ωi(vi), and the order of the system is extended by additional
state variables, zi2 and zi3, defined as zi2 = τid and zi3 =

.
zi2 with

.
zi3 = σi. It should be

noted that the compound disturbances zi2 are assumed to be bounded and continuously dif-
ferentiable, and the components of its second derivative satisfies

∣∣σip
∣∣ ≤ σi, p = 1, 2, . . . , 5.

where σi is an unknown positive constant. Afterward, the dynamic model of the ith AUV
can be extended as follows: 

.
zi1 = Gi(ηi, vi) + τi + zi2.
zi2 = zi3.
zi3 = σi.

(6)
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Denote ẑi1, ẑi2, and ẑi3 as the observation values of states zi1, zi2, and zi3 in the above
extended system, and ei1 = ẑi1 − zi1, ei2 = ẑi2 − zi2, and ei3 = ẑi3 − zi3 as the observation
errors of the velocity, the compound disturbances, and its first derivatives, respectively.
Then, a third-order fast FTESO is proposed as follows:

.
ẑi1 = ẑi2 − βi1(sigαi1(ei1) + ei1) + Gi(ηi, vi) + τi.
ẑi2 = ẑi3 − βi2(sigαi2(ei1) + 2sigαi1(ei1) + ei1).
ẑi3 = −βi3(sigαi3(ei1) + 2sigαi2(ei1) + sigαi1(ei1))

(7)

where the observer gains satisfy βik > 0, k = 1, 2, 3, αi1 ∈ (2/3, 1) and αi2 = 2αi1 − 1, and
αi3 = 3αi1 − 2. Although the actual value of zik is probably unavailable, its observed value
ẑik can be obtained by the above FTESO. The analysis and proof that ẑik tracks the actual
value are described below.

According to the extended system (6) and the proposed FTESO (7), we can obtain the
observation error dynamics as follows:

.
ei1 = −βi1(sigαi1(ei1) + ei1) + ei2.
ei2 = −βi2(sigαi2(ei1) + 2sigαi1(ei1) + ei1) + ei3.
ei3 = −βi3(sigαi3(ei1) + 2sigαi2(ei1) + sigαi1(ei1))− σi.

(8)

The stability and convergence of the proposed FTESO are stated in the following theorem:

Theorem 1. Consider the AUV formation control system with the dynamic model (4) under
Assumption 1. If the FTESO is proposed in the form of (9), with appropriate observer gains
satisfying the prescribed constraints, then the observation errors ei =

[
eT

i1, eT
i2, eT

i3
]T will converge to

the small region Ωi in finite time Ti f . This implies that the error dynamics system (8) is finite-time
uniformly ultimately bounded stable.

Proof of Theorem 1. Consider a Lyapunov candidate function as Vi1(e) = εT
i Piεi, where Pi

is a positive definite symmetric matrix and εT
i =

[
(sigαi1(ei1) + ei1)

T , eT
i2, eT

i3

]
is introduced

as an auxiliary error variable. It should be noted that ei1, ei2, and ei3 will converge to
origin in finite time, if the new state εi is finite-time stable. The time derivative of εi,
invoking (8), yields:

.
εi =

 αi1|ei1|αi1−1 .
ei1 +

.
ei1.

ei2.
ei3

 =

 αi1|ei1|αi1−1(ei2 − βi1(sigαi1(ei1) + ei1))
ei3
2 − βi2(sigαi2(ei1) + sigαi1(ei1))
−βi3(sigαi3(ei1) + sigαi2(ei1))


+

 ei2 − βi1(sigαi1(ei1) + ei1)
ei3
2 − βi2(sigαi1(ei1) + ei1)

−βi3(sigαi2(ei1) + sigαi1(ei1))

+

 05
05
−σi

 = diag
([
|ei1|αi1−1, |ei1|αi1−1, |ei1|αi1−1

])
Ai1εi + Ai2εi + Φi

(9)

where Φi =
[
05 05 −σi

]T and the coefficient matrices Ai1 and Ai2 are expressed as:

Ai1 =

−αi1βi1I5 αi1I5 05
−βi2I5 05 e−1

i I5/2
−βi3eiI5 05 05

, A2i =

 −βi1I5 I5 05
−βi2I5 05 I5/2
−βi3eiI5 05 05

 (10)

with ei = |ei1|αi1−1. From the characteristic polynomials of Ai1 and Ai2 that all their
eigenvalues have negative real parts if the observer gains are set as βik > 0, indicating that
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Ai1 and Ai2 are Hurwitz matrices. Thus, symmetric and positive definite matrices Qi1 and
Qi2 exist that satisfy the following Lyapunov equations:{

AT
i1Pi + PiAi1 = −Qi1

AT
i2Pi + PiAi2 = −Qi2.

(11)

Differentiating Vi1(e) with respect to time yields the following:

.
Vi1 = εT

i
[
diag([ei, ei, ei])

(
AT

i1Pi + PiAi1
)]

εi + εT
i
(
AT

i2Pi + PiAi2
)
εi + 2εT

i PiΦi

= −εT
i [diag([ei, ei, ei])Qi1]εi − εT

i Qi2εi + 2εT
i PiΦi ≤ −emax

i εT
i Qi1εi − εT

i Qi2εi + 2‖εi‖‖Pi‖‖Φi‖
(12)

where emax
i = |ei1|αi1−1

max and |ei1|max = max{|ei11|, . . . , |ei15|}. Given the fact that |ei1|max ≤
‖ei1‖ ≤ ‖εi‖1/αi1 and αi1 ∈

( 2
3 , 1
)
, we can obtain the following:

.
Vi1 ≤ −‖εi‖

αi1−1
αi1 εT

i Qi1εi − εT
i Qi2εi + 2‖εi‖‖Pi‖‖Φi‖

≤ −λmin(Qi1)‖εi‖
3− 1

αi1 − λmin(Qi2)‖εi‖2 + 2‖εi‖‖Pi‖‖Φi‖.
(13)

Since σi is assumed to be bounded reasonably by
∣∣σip

∣∣ ≤ σi, we have 2‖εi‖‖Pi‖‖Φi‖ ≤

2
√

5σi‖εi‖‖Pi‖ ≤ 2
√

5σiλmin(Pi)
− 1

2 V
1
2

i1‖Pi‖, by using the inequality

λmin(Pi)‖εi‖2 ≤ Vi1 ≤ λmax(Pi)‖εi‖2 (14)

Then, inequality (13) becomes the following:

.
Vi1 ≤ −λmin(Qi1)λmax(Pi)

1
2αi1
− 3

2 V
3
2−

1
2αi1

1i − λmin(Qi2)λmax(Pi)
−1Vi1 + 2

√
5σi‖Pi‖λmin(Pi)

− 1
2 V

1
2

i1

≤ −λi1V
3
2−

1
2αi1

i1 − λi2Vi1 + λi3V
1
2

i1

(15)

where λi1 = −λmin(Qi1)λmax(Pi)
1

2αi1
− 3

2 , λi2 = −λmin(Qi2)λmax(Pi)
−1, and

λi3 = 2
√

5σi‖Pi‖λmin(Pi)
− 1

2 .
It can be seen that (15) has the same form as the sufficient condition in Lemma 1

2. Thus, the error trajectories of the proposed FTESO (7) are fast finite-time uniformly
ultimately bounded stable. The state observation errors ei will converge to a small region
Ωi in the finite time Ti f . Moreover, the settling time Ti f is subject to the constraint:

Ti f ≤
ln
((

λi2 − λi2
)
Vi1(e0)

1
2αi1
− 1

2 /
(
λi1 − λi1

)
+ 1
)

(
λi2 − λi2

)( 1
2αi1
− 1

2

) . (16)

And the stable region Ωi is denoted as

Ωi =

{
e|λi1Vi1(e)

1− 1
2αi1 + λi2Vi1(e)

1
2 < λi3

}
(17)

where λi1 and λi2 are arbitrary constants that meet the conditions λi1 ∈ (0, λi1) and
λi2 ∈ (0, λi2). This completes the proof. �

Remark 1. Contrasting our proposed FTESO (7) with the FTESO in [37], our approach
factors in the dynamics of disturbances and uncertainties to achieve a higher degree of
estimation accuracy. Our usage of fractional powers within the FTESO allows for a quick
finite-time convergence. It can be noted that the size of the attraction region Ωi hinges upon
the selection of the observer gains βik and αi1. By increasing βik or decreasing αi1, the attrac-
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tion region of the observation error system can be expanded and the convergence speed
can be improved, but excessive tuning will lead to undesired overshoot and oscillation. As
a result, a trade-off should be taken for βik and αi1.

3.2. Outer-Loop Formation Prediction Control Law

In this subsection, we design a DMPC-based outer-loop formation controller. This
controller, which draws on the information interaction with neighbors, facilitates the
positional tracking of the ith AUV. The controller operates under composite constraints
and ensures the avoidance of collisions. Then, we formulate a constrained QP problem in
accordance with the control objective to obtain the optimal driving speed.

To facilitate the recursive model prediction and the implementation of the control law,
the kinematic model (1) is discretized by using the Forward-Euler method with a sampling
period Ts, resulting in following discrete model:

ηi(k + 1) = ηi(k) + Ji(k)vi(k)Ts. (18)

To smoothen the speed change of the AUV, the velocity increment ∆uiv(k) = vi(k)−
vi(k− 1) is taken as the control input. xiη(k) =

[
ηi(k) vi(k− 1)

]T is denoted as the state
variable of the prediction model. The augmented state-space model of the outer-loop
subsystem can be derived as:

xiη(k + 1) = Aiηxiη(k) + Biη∆uiv(k) (19)

yiη(k) = Ciηxiη(k) (20)

where Aiη =

[
I5 Ji(k)Ts
05 I5

]
∈ R10×10, Biη =

[
Ji(k)Ts

I5

]
∈ R10×5, and Ciη =

[
I5 05

]
∈ R5×10.

According to the state prediction model (19) and (20), we can calculate the predicted
state sequence of the system when given an input sequence. Let Np1 and Nc1 denote the
prediction and control horizon of the outer-loop controller, respectively. The predicted state
sequence and the input incremental sequence are usually represented by compact vectors:

Yiη =


yiη(k + 1|k)
yiη(k + 2|k)

...
yiη
(
k + Np1

∣∣k)

 ∈ R5Np1 , xiη =


xiη(k + 1|k)
xiη(k + 2|k)

...
xiη
(
k + Np1

∣∣k)
 ∈ R10Np1 (21)

∆Uiv =


∆uiv(k|k)

∆uiv(k + 1|k)
...

∆uiv(k + Nc1 − 1|k)

 ∈ R5Nc1 (22)

where yiη(k + l|k) and xiη(k + l|k) are the output vector yiη(k + l) and state vector xiη(k + l)
predicted at time k, respectively. ∆uiv(k + j|k) denotes the input increment ∆uiv(k + j) pre-
dicted at the same time k. Then, we characterize the relationship between the predicted
output vector sequence and the control increment sequence through the following predic-
tion equation based on the recurrence relations:

Yiη = H1
ixxiη(k) + H1

iu∆Uiv (23)

where xiη(k) is the initial state, H1
ix =

[
CiηAiη , CiηA2

iη , . . . , CiηA
Np1
iη

]T
∈ R5Np1×10 and
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H1
iu =


CiηBiη 05 · · · 05

CiηAiηBiη CiηBiη · · · 05
...

...
. . .

...

CiηA
Np1−1
iη Biη CiηA

Np1−2
iη Biη · · · CiηA

Np1−Nc1
iη Biη

 ∈ R5Np1×5Nc1 .

Considering the control objective, the constraints within the outer-loop subsystem are
considered. First, we set upper and lower boundaries for the amplitude of the control input
uiv(k) and the input increment ∆uiv(k):

umin
iv ≤ uiv(k) ≤ umax

iv (24)

∆umin
iv ≤ ∆uiv(k) ≤ ∆umax

iv (25)

where umin
iv and ∆umin

iv represent the predefined lower bounds, and umax
iv and ∆umax

iv repre-
sent the predefined upper bounds.

Next, to assure safe navigation throughout the formation construction stage, we need to
consider the collision avoidance constraints between AUVs. The primitive collision avoidance
constraints of the ith AUV can be transformed into a convex constraint, as follows:∥∥∥S

(
yiη(k + l|k)− yjη(k + l|k)

)∥∥∥ ≥ rs, j ∈ Ξi (26)

where l = 1, 2, . . . , Np1 and rs is the preset minimum allowable distance between the ith
AUV and the jth AUV. S denotes a scaling matrix. Let rd be the radius of the safe detection
zone for the ith AUV. Ξi is the set of those AUVs that contain within rd. Let the nominal
value yiη represent an initial guess of the actual value yiη for convexifying the collision
avoidance constraint. It follows from (26) that a sufficient condition for upholding the
collision avoidance constraint is the following:

d
T
ij(k + l|k)STS

(
yiη(k + l|k)− yjη(k + l|k)

)
≥ rs

∥∥∥Sdij(k + l|k)
∥∥∥ (27)

where dij(k + l|k) = yiη(k + l|k) − yjη(k + l|k). In order to express the constraints in a

compact matrix form, define Rl = rs

∥∥∥Sdij(k + l|k)
∥∥∥ + d

T
ij(k + l|k)STSyjη(k + l|k), Rij =[

R1, R2, . . . , RNp1

]T
and Sij = diag

{
S1, S2, . . . , SNp1

}
, and Sl = d

T
ij(k + l|k)STS. Then, (27)

can be rewritten as SijYiη ≥ Rij. Substitute (23) to derive the collision avoidance constraint
as follows:

SijH1
iu∆Uiv ≥ Rij − SijH1

ixxiη(k). (28)

The input amplitude constraint (24) can be converted to the input incremental con-
straint, associating (25) and (28), expressed in the compact linear constraint form as follows:

Γiη∆Uiv ≤ γiη (29)

where Γiη =


I5Nc1

−I5Nc1

Iη1
−Iη1
−SijH1

iu

, γiη =


∆Umax

iv
−∆Umin

iv
Umax

iv − Iη2ui(k− 1)
−Umin

iv + Iη2ui(k− 1)
SijH1

ixxiη(k)−Rij

, Iη1 =


I5 05 · · · 05
I5 I5 · · · 05
...

...
. . .

...
I5 I5 · · · I5

 ∈
R5Nc1×5Nc1 , and Iη2 = [I5, I5, . . . , I5]

T ∈ R5Nc1 .
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In order to achieve the control objective of formation positional tracking with low en-
ergy requirements, we define the local distributed cost function in the outer-loop subsystem
of the ith AUV in a discretized form:

Jiη(k) =
Np1

∑
l=1

∥∥∥(yiη(k + l|k)− yi f (k + l)
)∥∥∥2

Qi f
+

Nc1−1
∑

l=0
‖∆uiv(k + l|k)‖2

Ri1

+
Np1

∑
l=1

∑
j∈Ni

aij

∥∥∥(yiη(k + l|k)− yij(k + l)
)∥∥∥2

Qij

(30)

where Qi f , Qij, and Ri1 are the weight matrices. yi f (k + l) = ηr(k + l) + ri f (k + l) with
ri f (k + l) represents the formation configuration. yij(k + l) = yjη(k + l) + rij(k + l) with
rij(k + l) represents the predefined relative distance between the ith AUV and its neighbor
jth AUV. Np1 indicates the degree of prediction of future tracking errors. The larger it is,
the better the tracking accuracy and stability. The smaller Nc1 is, the worse the dynamic
response is, and conversely the more maneuverable the control is. Qi f is the position
tracking matrix, the larger it is, the better the tracking accuracy and dynamic response.
Qij is the relative position matrix, the larger it is, the better the ability of the formation to
maintain the preset configuration. Ri1 is the control increment weight matrix, mainly to
limit the drastic change of ∆uiv.

Based on the above derivations, we can formulate the optimization problem for
the outer-loop subsystem of the ith AUV at the sampling instant k within the receding-
horizon framework:

min
∆Uiv

Jiη(k)

s.t. Γiη∆Uiv ≤ γiη .
(31)

To simplify the computation of (31), it can be transformed into a convex QP problem.
This problem is solved over a finite receding horizon using a QP solver. The standard
convex QP form of the DMPC problem (31) can be derived:

∆U∗iv = argmin
∆Uiv

(
1
2 ∆UT

ivWiη∆Uiv + fT
iη∆Uiv

)
s.t. Γiη∆Uiv ≤ γiη

(32)

where Wiη = Ri1 + H1T
iu Qi f H1

iu + ∑j∈Ni
aijH1T

iu QijH
1
iu,

fiη = H1T
iu Qi f

(
H1

ixxiη − Yi f

)
+ ∑j∈Ni

aijH1T
iu Qij

(
H1

ixxiη − Yij

)
, with Yi f =[

yi f (k + 1), . . . , yi f
(
k + Np1

)]T
, Yij =

[
yij(k + 1), . . . , yij

(
k + Np1

)]T
, Qi f =

diag
{

Qi f , Qi f , . . . , Qi f

}
∈ R5Np1×5Np1 , Qij, and Ri1 are similar to Qi f , both correspond-

ing compact matrices.
By solving the QP optimization problem in (32) online, we obtain the optimal control

input increment sequence ∆U∗iv. Of this sequence, we only utilize the first element ∆u∗iv(k|k)
for receding optimization. Once ∆u∗iv(k) is determined, we obtain vi(k) which serves as the
desired driving speed for the inner-loop controller of the ith AUV, i.e.,

vir(k) = vi(k) = vi(k− 1) + ∆u∗iv(k). (33)

3.3. Inner-Loop Formation Prediction Control Law

In this subsection, with the aid of the proposed FTESO, we design a DMPC-based
formation controller for the inner-loop subsystem to obtain the optimal driving force and
moment for the ith AUV to track the desired speed.

The dynamic model (4) is discretized with a sampling period Ts, yielding the following
discretized model:

vi(k + 1) =
(

I−M∗i
−1Ts(C∗i + D∗i )

)
vi(k) + M∗i

−1Tsτi(k) + M∗i
−1Tsτ̂id(k) (34)
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where τ̂id represents the compound disturbance compensated by FTESO (7), which is
supposed to be invariant over a short period. It should be noted that we assume the center
of gravity and buoyancy of the ith AUV to coincide, which allows gi(ηi) to approximate
to zero. We select xiv(k) =

[
vi(k) τi(k− 1)

]T as the state variable and take the increment
∆uiτ(k) = τi(k)− τi(k− 1) as the control input. This allows us to reformulate the inner-
loop predictive model as follows:

xiv(k + 1) = Aivxiv(k) + Biv∆uiτ(k) + Div (35)

yiv(k) = Civxiv(k) (36)

where Aiv =

[
I5 −M∗i

−1Ts
(
C∗i + D∗i

)
M∗i
−1Ts

05 I5

]
∈ R10×10, Biv =

[
M∗i
−1Ts
I5

]
∈ R10×5,

Civ =
[
I5 05

]
∈ R5×10, and Div =

[
M∗i
−1Tsτ̂id
05×1

]
∈ R10. Similar to our previous approach,

we can characterize the relationship between the predicted output vector sequence and the
control increment sequence using the following prediction equation:

Yiv = H2
ixxiv(k) + H2

iu∆Uiτ + Div (37)

where Yiv =
[
yiv(k + 1|k), yiv(k + 2|k), . . . , yiv

(
k + Np2

∣∣k)]T ∈ R5Np2 ,
∆Uiτ = [∆uiτ(k|k), ∆uiτ(k + 1|k), . . . , ∆uiτ(k + Nc2 − 1|k)]T ∈ R5Nc2 ,

H2
ix =

[
CivAiv, CivA2

iv, . . . , CivA
Np2
iv

]T
∈ R5Np2×10,

H2
iu =


CivBiv 05 · · · 05

CivAivBiv CivBiv · · · 05
...

...
. . .

...

CivA
Np2−1
iv Biv CivA

Np2−2
iv Biv · · · CivA

Np2−Nc2
iv Biv

 ∈ R5Np2×5Nc2 , and

Div =

[
CivDiv, CivAivDiv + CivDiv, . . . , Civ

Np2−1

∑
n=0

An
ivDiv

]T

∈ R5Np2 . Np2 and Nc2 de-

note the prediction and control horizon of the inner-loop controller, respectively.
According to the control objective, we assess the constraints on the control input

increment and the actuator saturation in the inner-loop subsystem, as follows:

∆umin
iτ ≤ ∆uiτ(k) ≤ ∆umax

iτ (38)

τmin
i ≤ τi(k) ≤ τmax

i (39)

where τmin
i and ∆umin

iv represent predefined lower bounds, while τmax
i and ∆umax

iv denote
predefined upper bounds. The actuator saturation constraint (39) can be transformed into
an input incremental constraint, and we can express the above constraints in a compact
linear constraint form:

Γiv∆Uiτ ≤ γiv (40)

where Γiv =


I5Nc2

−I5Nc2

Iv1
−Iv1

, γiη =


∆Umax

iτ
−∆Umin

iτ
τmax

i − Iv2τi(k− 1)
−τmin

iv + Iv2τi(k− 1)

, with Iv1 =


I5 05 · · · 05
I5 I5 · · · 05
...

...
. . .

...
I5 I5 · · · I5

 ∈
R5Nc2×5Nc2 and Iv2 = [I5, I5, . . . , I5]

T ∈ R5Nc2 .
To achieve the convergence of the formation tracking velocity to the desired value, we

define the local distributed cost function of the inner-loop subsystem as follows:

Jiv(k) =
Np2

∑
l=1
‖(yiv(k + l|k)− vir(k + l))‖2

Qiv
+

Nc2−1

∑
l=0
‖∆uiτ(k + l|k)‖2

Ri2
(41)
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where yiv(k + l|k) and ∆uiτ(k + j|k) denote the predicted value of yiv(k + l) and ∆uiτ(k + j)
at time k, respectively. Qiv and Ri2 are given weight matrices.

By substituting (37) into (41), we can formulate the DMPC optimization problem for
the inner-loop subsystem of the ith AUV at sampling instant k as the following QP form:

∆U∗iτ = argmin
∆Uiτ

(
1
2 ∆UT

iτWiv∆Uiτ + fT
iv∆Uiτ

)
s.t. Γiv∆Uiτ ≤ γiv

(42)

where Wiv = Ri2 + H2T
iu QivH2

iu and fiv = H2T
iu Qiv

(
H2

ixxiv + Div − Vir
)
, with vir =[

vir(k + 1), . . . , vir
(
k + Np2

)]T ∈ R5Np2 , Qiv = diag{Qiv, Qiv, . . . , Qiv} ∈ R5Np2×5Np2 , and
Ri2 = diag{Ri2, Ri2, . . . , Ri2} ∈ R5Nc2×5Nc2 .

The solution of the QP optimization problem (42) yields the optimal control in-
put increment sequence ∆U∗iτ at time k. However, only the first element ∆u∗iτ(k|k) of
the sequence is used for the ith AUV to obtain the optimal control force and moment
τ∗i (k) = τi(k− 1) + ∆u∗iτ(k). The ∆u∗iτ(k) is recalculated at each sampling instant, the
ith AUV repeatedly calculates and executes τ∗i (k) to achieve receding optimization. The
predicted state xiv(k + 1) and the optimal input τ∗i (k) are both determined solely by the
current state xiv(k).

With the parallel optimization of N AUV subsystems, all local optimization problems
are solved simultaneously at each sampling moment. One or more information interactions
occur between local controllers to obtain the optimal input sequence for that moment.
Thus, the proposed control law can compensate well for the compound disturbances,
which consist of model uncertainties and external disturbances. This occurs throughout
the iterative optimization process, while simultaneously ensuring collision avoidance and
formation tracking control tasks under complex constraints.

3.4. Use of Laguerre Functions in the DMPC Design

This subsection introduces a strategy to handle the computational burden caused by a
longer control horizon and dual closed-loop structure. This is the main difficulty in our
theoretical analysis. The Laguerre orthogonal functions are leveraged in the DMPC design
to decrease the order of the input incremental matrices. This approach permits a reduction
in input variables during each control cycle, thereby reducing the computational burden in
the time interval and improving real-time performance.

The Laguerre functions are a set of discrete orthogonal polynomial functions, let it be
l1(k), l2(k), . . . , lM(k), the z-transfer of the mth Laguerre function is expressed as follows:

Xm(z) =

√
1− a2

z− a

[
1− az
z− a

]m−1
(43)

where 0 ≤ a < 1 denotes the pole of the Laguerre function, also known as the scaling factor.
It can be verified that Xm satisfies the following orthogonality:

1
2π

∫ π
−π Xm

(
ejω)Xn

(
ejω)∗dω = 1 m = n

1
2π

∫ π
−π Xm

(
ejω)Xn

(
ejω)∗dω = 0 m 6= n

(44)

where (·)∗ denotes complex conjugate of (·).
The discrete Laguerre functions are defined by taking the inverse Z-transform of (43),

i.e., lm(k) = Z−1{Xm(z)}. Given the network structure of Xm(z) and the recurrence relation,
the set of discrete Laguerre functions satisfies the following difference equation:

L(k + 1) = ΞL(k) (45)
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where Ξ =


a 0 0 · · · 0
β a 0 · · · 0
−aβ β a · · · 0

...
...

...
. . .

...
(−a)M−2β (−a)M−3β (−a)M−4β · · · a

 and L(k) =

[l1(k), l2(k), . . . , lM(k)]T , with β = 1 − a2 and initial condition L(0) =√
β
[
1,−a, a2,−a3, . . . , (−a)M−1

]T
. Note that at a = 0, the Laguerre functions are con-

verted to impulse functions.
Assuming the current moment is k, the input increment of the single-input system at

the next time l, represented by the Laguerre function, is:

∆u(k + l) =
M

∑
m=1

κmlm(l) = L(l)TK (46)

where K = [κ1, κ2, . . . , κM]T . When we extend this to the multi-AUV system, each AUV has
five independent control inputs, and the input increment of the ith AUV is as follows:

∆ui(k)
T =

[
L1

i (k)
TK1

i , L2
i (k)

TK2
i , . . . , L5

i (k)
TK5

i

]
= Li(k)

TKi (47)

where Lp
i (k) =

[
lp
i1(k), lp

i2(k), . . . , lp
iM(k)

]T
and Kp

i =
[
κ

p
i1, κ

p
i2, . . . , κ

p
iM

]T
, with p = 1, 2, . . . 5.

Li(k) = diag
{

L1
i (k)

T , L2
i (k)

T , . . . , L5
i (k)

T
}

, and Ki =
[
K1T

i , K2T
i , . . . , K5T

i
]T

. Note that within
a multi-input structure, the scaling factor ap and the number of polynomial terms Mp can
be selected independently for each input signal.

For illustrative purposes, the inner-loop predictive controller of the ith AUV is taken as
an example. If we partition the input matrix into Biv =

[
B1

iv B2
iv . . . B5

iv
]
, the prediction

of the system output in the next l steps can be derived as follows:

yiv(k + l|k) =
l−1
∑

j=0
CivAl−j−1

iv

[
B1

ivL1
i (j)TK1

iτ B2
ivL2

i (j)TK2
iτ . . . B5

ivL5
i (j)TK5

iτ

]
+CivAl

ivxiv(k) +
l−1
∑

j=0
CivAl−j−1

iv Div.
(48)

For a compact notation, we denote (48) by the following:

yiv(k + l|k) = CivAl
ivxiv(k) + µi(l)

T Kiτ + Dl
iv (49)

where µi(l)
T =

l−1
∑

j=0
CivAl−j−1

iv

[
B1

ivL1
i (j)T B2

ivL2
i (j)T . . . B5

ivL5
i (j)T

]
and Dl

iv =

l−1
∑

j=0
CivAl−j−1

iv Div. Kiτ as the parameter vector that is to be optimized.

First, we employ the Laguerre function to optimize the constraint terms (38) and (39),
leading to the following constraint form:

∆umin
iτ ≤ Liτ

TKiτ ≤ ∆umax
iτ (50)

τmin
i ≤

_
L iτKiτ + τi(k− 1) ≤ τmax

i (51)

where Liτ = diag
{

L1
iτ(l)

T , . . . , L5
iτ(l)

T
}

and
_
L iτ = diag

{
l−1
∑
j=0

L1
iτ(j)

T,
l−1
∑
j=0

L2
iτ(j)

T, . . . ,
l−1
∑
j=0

L5
iτ(j)

T

}
.

Given that the Laguerre functions are orthonormal for a sufficiently large control
horizon Nc2. Substituting (47) into (41) and using the orthogonality (44) of the Laguerre
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function (i.e., the inner product of different terms is 0 and the same term is 1), the following
derivation can be performed to obtain the reconstructed form of the cost function (41):

Jiv(k) =
Np2

∑
l=1
‖(yiv(k + l|k)− vir(k + l))‖2

Qiv
+

Nc2−1
∑

l=0
∆uiτ(k + l|k)TRi2∆uiτ(k + l|k)

=
Np2

∑
l=1
‖(yiv(k + l|k)− vir(k + l))‖2

Qiv
+

Nc2−1
∑

l=0

(
Liτ(l)

TKiτ

)
Ri2

(
Liτ(l)

TKiτ

)T

=
Np2

∑
l=1

[yiv(k + l|k)− vir(k + l)]TQiv[yiv(k + l|k)− vir(k + l)]

+
Nc2−1

∑
l=0

(
diag

{
L1

iτ(l), L2
iτ(l), . . . , L5

iτ(l)
}

Kiτ
)
Ri2
(
diag

{
L1

iτ(l), L2
iτ(l), . . . , L5

iτ(l)
}

Kiτ
)T

=
Np2

∑
l=1

[yiv(k + l|k)− vir(k + l)]TQiv[yiv(k + l|k)− vir(k + l)] + KT
iτRi2Kiτ .

(52)

By substituting (49) into (52), we can rewrite the DMPC optimization problem (42) for
the inner-loop subsystem of the ith AUV as:

min
K∗iτ

Jiv(k) = min
K∗iτ

(
1
2 KT

iτWiLKiτ + fT
iLKiτ

)
s.t. (50), (51)

(53)

where WiL = ∑
Np2
l=1 µi(l)Qivµi(l)

T + Ri2 and fiL =

∑
Np2
l=1 µi(l)Qiv

(
CivAl

ivxiv(k) + Dl
iv − vir(k + l)

)
.

The QP optimization Equation (53), with constraints, can be solved to obtain the
optimal parameter vector K∗iτ . This vector replaces the conventional DMPC method calcu-
lation of ∆u∗iτ . Thus, the optimal input increment of the inner-loop subsystem is indirectly
obtained by the rolling optimized control law, ∆uiτ(k)

T = Liτ(0)
TKiτ , until the control

variables at the next moment are calculated. This iterative process ensures the achievement
of receding horizon optimization. The use of the Laguerre function in the design of the
outer-loop predictive controller is not included here, as its analysis parallels that of the
inner-loop controller described above.

Remark 2. By parameterizing the input increment sequence using the Laguerre function,
the input matrix order in the prediction horizon can be lowered, thereby reducing the
computational load online. This property enables its application in large-scale and real-
time AUV control systems. With the employment of the Laguerre function, the coefficients
ap and Mp can also be served as tuning parameters, in addition to the control and prediction
horizon and weighting matrices. Larger ap and Mp lead to faster closed-loop responses [38].

3.5. Stability Analysis

A notable attribute of the MPC is the potential for establishing the stability of a closed-
loop system under certain conditions. Extending this to cases using Laguerre polynomials,
a terminal state constraint is utilized to analyze the stability of the closed-loop system.
Specifically, for the inner-loop subsystem, an additional constraint is attached to the final
state of the receding optimization problem: xiv

(
k + Np2

)
= 0, where xiv

(
k + Np2

)
is the

terminal state produced under the effect of the control sequence, ∆uiτ(k + l)T = Liτ(l)
TKiτ .

Theorem 2. Consider the inner-loop subsystem (35) and (36) of the ith AUV in the formation
control system, which has a local cost function (41) with constraints (38) and (39). The inner-loop
predictive control subsystem is asymptotically stable if for each sampling instant k, there exists a
solutionKiτ such that the performance index Jiv is minimized subject to the terminal state constraint.
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Proof of Theorem 2. Constructing an appropriate Lyapunov function is key to ensuring
the stability of the DMPC system. Select the cost function Jiv(k) as the Lyapunov function
Vi2(y(k), k):

Vi2(y(k), k) =
Np2

∑
l=1

ỹiv(k + l|k)TQivỹiv(k + l|k) +
Nc2−1

∑
l=0

∆uiτ(k + l)TRi2∆uiτ(k + l) (54)

where ỹiv(k + l|k) = yiv(k + l|k)−vir(k + l) and yiv(k + l|k) = CivAl
ivxiv(k)+µi(l)

T Kk
iτ +

Dl
iv, Kk

iτ is the parameter vector solution of the cost function (41) under the original and

terminal constraints at moment k, and input increment ∆uiτ(k + l)T = Liτ(l)
TKk

iτ . It is clear
that Vi2(y(k), k) is positive definite and tends to infinity as yiv(k) tends to infinity. Similarly,
the Lyapunov function at moment k + 1 can be derived as:

Vi2(y(k + 1), k + 1) =
Np2

∑
l=1

ỹiv(k + 1 + l|k + 1)TQivỹiv(k + 1 + l|k + 1)

+
Nc2−1

∑
l=0

∆uiτ(k + 1 + l)TRi2∆uiτ(k + 1 + l)

(55)

where yiv(k + 1 + l|k + 1) = CivAl
ivxiv(k + 1) + µi(l)

T Kk+1
iτ + Dl

iv, Kk+1
iτ is the parameter

vector solution at time k + 1, and ∆uiτ(k + 1 + l)T = Liτ(l)
TKk+1

iτ . Given that yiv(k + 1)
is the response one step ahead of yiv(k) and yiv(k + 1) = CivAivxiv(k) + CivBiv∆uiτ(k) +
CivDiv, the feasible solution of Kk+1

iτ corresponding to the initial output yiv(k + 1) in the

receding horizon is Kk
iτ . Therefore, the feasible solution sequence at moment k + 1 is to

move the elements in Liτ(0)
TKk

iτ , Liτ(1)
TKk

iτ , . . ., Liτ(Nc2 − 1)TKk
iτ one step forward and

substitute the last element with 0, i.e., Liτ(1)
TKk

iτ , Liτ(2)
TKk

iτ , . . ., Liτ(Nc2 − 1)TKk
iτ , 05×1.

Due to the optimality of the solution Kk+1
iτ at k + 1, it follows that

Vi2(y(k + 1), k + 1) ≤ V̂i2(y(k + 1), k + 1) (56)

where V̂i2(y(k + 1), k + 1) is identical to (55) except that the parameter vector solution Kk+1
iτ

in the control sequence is replaced by the feasible solution Kk
iτ . The difference between

Vi2(y(k), k) and Vi2(y(k + 1), k + 1) is then bounded by the following:

Vi2(y(k + 1), k + 1)−Vi2(y(k), k) ≤ V̂i2(y(k + 1), k + 1)−Vi2(y(k), k). (57)

Eliminate the same terms in the control sequence and output sequence of V̂i2(y(k + 1), k + 1)
and Vi2(y(k), k) at moments k + 1, k + 2,. . ., k + Np2 − 1, and we can derive the follow-
ing equation:

V̂i2(y(k + 1), k + 1)−Vi2(y(k), k) = ỹiv
(
k + Np2

∣∣k)TQivỹiv
(
k + Np2

∣∣k)
−ỹiv(k + 1|k)TQivỹiv(k + 1|k)− ∆uiτ(k)

TRi2∆uiτ(k).
(58)

Given the terminal constraint xiv
(
k + Np2

)
= 0 is applied, equivalent to yiv

(
k + Np2

)
=

0, we have the following:

V̂i2(y(k + 1), k + 1)−Vi2(y(k), k) = −vir
(
k + Np2

)TQivvir
(
k + Np2

)
−ỹiv(k + 1|k)TQivỹiv(k + 1|k)− ∆uiτ(k)

TRi2∆uiτ(k).
(59)

This allows inequality (57) to be converted into:

Vi2(y(k + 1), k + 1)−Vi2(y(k), k) ≤ −vir
(
k + Np2

)TQivvir
(
k + Np2

)
−ỹiv(k + 1|k)TQivỹiv(k + 1|k)− ∆uiτ(k)

TRi2∆uiτ(k) < 0.
(60)
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Namely, Vi2(y(k + 1), k + 1) < Vi2(y(k), k); the Lyapunov function is monotonically
decreasing. This proves that the inner loop subsystem is asymptotically stable. �

Next, we analyze the stability of the entire closed-loop system. Analogous to the
proof of Theorem 2, we select Jiη(k) as the Lyapunov function Vi3(y(k), k) of the outer-
loop subsystem:

Vi3(y(k), k) =
Np1

∑
l=1

∥∥∥(yiη(k + l|k)− yi f (k + l)
)∥∥∥2

Qi f
+

Nc1−1
∑

l=0
‖∆uiv(k + l|k)‖2

Ri1

+
Np1

∑
l=1

∑
j∈Ni

aij

∥∥∥(yiη(k + l|k)− yij(k + l)
)∥∥∥2

Qij
.

(61)

According to the idea of the proof of Theorem 2, the following inequality can be obtained:

Vi3(y(k + 1), k + 1)−Vi3(y(k), k) ≤ −yi f
(
k + Np1

)TQi f yi f
(
k + Np1

)
− ỹiη(k + 1|k)TQi f ỹiη(k + 1|k)

−N(N − 1)rij
(
k + Np1

)TQijrij
(
k + Np1

)
− ∆uiv(k)

TRi1∆uiv(k) < 0.
(62)

Next, we set the Lyapunov function of the entire closed-loop system as follows:

Vi4(y(k), k) = Vi2(y(k), k) + Vi3(y(k), k). (63)

From inequalities (60) and (62), we have the following:

Vi4(y(k + 1), k + 1)−Vi4(y(k), k) = Vi2(y(k + 1), k + 1)−Vi2(y(k), k)

+Vi3(y(k + 1), k + 1)−Vi3(y(k), k) < 0
(64)

As a result, the entire closed-loop system is asymptotically stable.

4. Simulation

In this section, some simulation analyses are conducted to verify the effectiveness
and robustness of the proposed control scheme. A formation system consisting of four
AUVs (N = 4, i = 1, 2, 3, 4) with a virtual leader (AUV0) is considered. The directed
communication topology for the simulation is depicted in Figure 3, the meaning of the
arrows is the direction of the communication or information flow between the nodes in
the formation network. Initial values for xi, yi, and zi are randomly distributed within
the intervals [10, 40], [0, 30], and [−10, 0], respectively, while the attitude angles θi and
ψi lie within the intervals [−π/18, π/18] and [0, π], respectively. The parameters re-
lated to the AUVs are based on previous research [39]. A diamond formation was pre-
defined to facilitate omnidirectional exploration, with the desired formation configura-
tion preset to r1 f = [0, 0, 6.5, 0, 0]T , r2 f = [0,−7.5, 0, 0, 0]T , r3 f = [0, 0,−6.5, 0, 0]T , and
r4 f = [0, 7.5, 0, 0, 0]T . r12 = −r21 = [0, 7.5, 6.5, 0, 0]T , r13 = −r31 = [0, 0, 13, 0, 0]T , r14 =

−r41 = [0,−7.5, 6.5, 0, 0]T , r23 = −r32 = [0,−7.5, 6.5, 0, 0]T , r24 = −r42 = [0,−15, 0, 0, 0]T

and r34 = −r43 = [0,−7.5,−6.5, 0, 0]T . The safety distance during the formation construc-
tion stage is set as rs = 3 m, while the detection distance measured using sonar is set as
rd = 6 m. To reflect model uncertainties, 20% of the nominal values were taken as model
errors, meaning that the parameters for the AUVs in the simulation represented only 80% of
the nominal system dynamics. External disturbances were applied to each AUV to evaluate
the formation robustness, modeled as follows [34]:

τicu = 0.1sign(ui) + 0.2 sin(0.1t) N
τicv = 0.1sign(vi) + 0.3 sin(0.3t) N
τicw = 0.08sign(wi) + 0.2 sin(0.5t) N
τicq = 0.02sign(qi) + 0.1 sin(0.3t) N ·m
τicr = 0.05sign(ri) + 0.1 sin(0.3t) N ·m

(65)
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Each control parameter has its settings guidelines: Given the low driving speed of the
AUV in this paper, smaller Np1 and Np2 are intended to be used. During debugging, reduce
it if the rapidity is not enough, and increase it if the stability is not good; the selection of Nc1
and Nc2 is based on a trade-off between performance and computation [40]; since we value
the position tracking performance more than the velocity tracking performance, Qi f is set
slightly larger than Qiv; to weaken the interaction of angles between AUVs, the orientation
weight in Qij is set slightly smaller; when tuning Ri1 and Ri2, it can be set very small first,
and then increase it slightly if the system is stable and the control variable does not change
too drastically [41]. By solving the Lyapunov Equation (11), the relationship between the
observer gains βik and αi1, such that Ai1 and Ai2 are Hurwitz matrices, can be obtained, and
tuned to select the appropriate values [42]; the Laguerre parameter ap is adjusted within
the constraint interval, and a smaller Mp is selected to coordinate the number of constraints
in the optimization problem, and to make a trade-off between response speed and control
complexity [38]. Following the above guidelines, we dealt with the main difficulties in the
simulation and selected the parameters that produced the optimal simulation results and
listed them in Table 1.

Table 1. Control parameters of the proposed scheme.

Parameter Value Parameter Value

Qi f diag
(
102, 102, 102, 102, 102) Ts 0.5 s

Qij diag
(
102, 102, 102, 10, 10

)
Np1 20

Qiv diag(10, 10, 10, 10, 10) Nc1 8
Ri1 diag

(
10−2, 10−2, 10−2, 10−2, 10−2) Np2 10

Ri2 diag
(
10−1, 10−1, 10−1, 10−1, 10−1) Nc2 5

βi1 diag(20, 20, 20, 10, 10) αi1 0.75
βi2 diag(160, 160, 160, 80, 80) ap 0.7
βi3 diag(160, 160, 160, 80, 80) Mp 3

Moreover, based on the actual speed limit of the thruster, we provide the state and in-
put constraints as follows: ∆Umax

iv = −∆Umin
iv = [0.2, 0.1, 0.2, 0.05, 0.05]T ,

Umax
iv = −Umin

iv = [1.5, 1, 1, 0.05, 0.2]T , and ∆Umax
iτ = −∆Umin

iτ = [50, 50, 100, 5, 5]T . To
avoid actuator saturation for each AUV, the bounds of force and moment are set as
τmin

i = [−200,−500,−500,−7,−10]T and τmax
i = [300, 500, 500, 7, 10]T .The reference tra-

jectory generated by the virtual leader is a 3-D spiral curve, defined as follows:
xr(t) = 30 cos(0.005πt)
yr(t) = 30 sin(0.005πt)
zr(t) = −0.05t− 3

(66)

To verify the disturbance compensation performance of the proposed FTESO (7),
we conducted comparative simulations with the ESO (67) from [43] and the FTESO (68)
from [18]. Figure 4 shows the norms of the compound disturbance estimation errors
‖ei2‖ = ‖τ̂id − τid‖ for the four AUVs under the three observers, characterizing insights
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into transient and steady-state responses. We calculated the settling time of the designed
FTESO in the simulation and highlighted it on the plots. It is clear from Figure 4 that our
proposed third-order fast FTESO can achieve finite-time stabilization, with the estimation
errors converging to a small neighborhood of the origin. And the dynamic convergence
speed and estimation accuracy of the proposed FTESO are better than ESO (67) and FTESO
(68) with less chattering. This shows the advantages of our approach. Thus, each AUV can
accurately compensate for model uncertainties and external disturbances of its correspond-
ing subsystem in finite time.{ .

ẑi1 = ẑi2 − βi1ai1ei1 + Gi(ηi, vi) + τi.
ẑi2 = −β2

i1ai2ei1
. (67)

{ .
ẑi1 = ẑi2 − βi1sig3/4(ei1) + Gi(ηi, vi) + τi.
ẑi2 = −βi2sig1/2(ei1)

. (68)
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Figure 4. Compound disturbance estimation errors ei2 of the ith AUV.

The collision avoidance performance of the AUV formation was tested via a set of
comparison experiments with and without collision avoidance constraints based on our
proposed scheme. Since the initial positions of the four AUVs are randomly distributed,
the risk of collision is increased. The formation trajectory without collision avoidance
constraints is shown in Figure 5 (top). Here, the four AUVs track the reference trajectory
while keeping the preset shape, but AUV3 and AUV4 collide at 10 s, followed by a collision
between AUV1 and AUV2 at 20 s. Specifically, as presented in Figure 6 (top), the relative
distance between AUV1 and AUV2 during the formation configuration stage exceeds
the safe distance, resulting in a collision. The same situation occurs with AUV3 and
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AUV4. However, when collision avoidance constraints are considered, the formation
trajectory (shown in Figure 5 (bottom)) indicates that the four AUVs can perform the
formation tracking task while avoiding collision during the configuration stage. The
collision avoidance performance is visualized in Figure 6 (bottom), where the distances
among AUVs within the detection zone are always greater than the safe distance, indicating
that inter-vehicle collision avoidance can be achieved. Therefore, the proposed control
scheme can provide real-time collision avoidance capability for AUV formation maneuvers.
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In order to assess the feasibility and superiority of the proposed scheme, we con-
ducted three sets of comparative simulations with the same parameters, constraints, and
disturbance settings: (a) the proposed FTESO-based dual closed-loop DMPC with Laguerre
function; (b) a FTESO-based dual closed-loop DMPC without Laguerre function; (c) a
standard DMPC without FTESO. Figures 7–16 plot the tracking performance curves of
AUV positional and velocity states under the three schemes. It can be easily observed that,
in all scenarios, the four AUVs are able to successfully track the desired state despite the
differing tracking errors. In scheme (a), full-state stable tracking is achieved within 200 s.
Meanwhile, in scheme (b), the process takes about 300 s, which suggests that the use of
the Laguerre function improves both the response speed and control accuracy. Although
the standard DMPC scheme (c) can also achieve formation tracking, the settling time of
the state variables is longer and accompanied by oscillations due to the uncompensated
compound disturbance effects. Compared with the other schemes, our proposed method
delivers superior formation tracking control performance.
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Figure 7. State xi of the AUV formation system. (a) The proposed FTESO-based dual closed-loop
DMPC with Laguerre function. (b) The FTESO-based dual closed-loop DMPC without Laguerre
function. (c) The standard DMPC without FTESO.
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Figure 8. State yi of the AUV formation system. (a) The proposed FTESO-based dual closed-loop
DMPC with Laguerre function. (b) The FTESO-based dual closed-loop DMPC without Laguerre
function. (c) The standard DMPC without FTESO.
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Figure 9. State zi of the AUV formation system. (a) The proposed FTESO-based dual closed-loop
DMPC with Laguerre function. (b) The FTESO-based dual closed-loop DMPC without Laguerre
function. (c) The standard DMPC without FTESO.
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Figure 10. State θi of the AUV formation system. (a) The proposed FTESO-based dual closed-loop
DMPC with Laguerre function. (b) The FTESO-based dual closed-loop DMPC without Laguerre
function. (c) The standard DMPC without FTESO.
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Figure 11. State ψi of the AUV formation system. (a) The proposed FTESO-based dual closed-loop
DMPC with Laguerre function. (b) The FTESO-based dual closed-loop DMPC without Laguerre
function. (c) The standard DMPC without FTESO.
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Figure 12. State ui of the AUV formation system. (a) The proposed FTESO-based dual closed-loop
DMPC with Laguerre function. (b) The FTESO-based dual closed-loop DMPC without Laguerre
function. (c) The standard DMPC without FTESO.
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Figure 13. State vi of the AUV formation system. (a) The proposed FTESO-based dual closed-loop
DMPC with Laguerre function. (b) The FTESO-based dual closed-loop DMPC without Laguerre
function. (c) The standard DMPC without FTESO.
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Figure 14. State wi of the AUV formation system. (a) The proposed FTESO-based dual closed-loop
DMPC with Laguerre function. (b) The FTESO-based dual closed-loop DMPC without Laguerre
function. (c) The standard DMPC without FTESO.
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Figure 15. State qi of the AUV formation system. (a) The proposed FTESO-based dual closed-loop
DMPC with Laguerre function. (b) The FTESO-based dual closed-loop DMPC without Laguerre
function. (c) The standard DMPC without FTESO.
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Figure 16. State ri of the AUV formation system. (a) The proposed FTESO-based dual closed-loop
DMPC with Laguerre function. (b) The FTESO-based dual closed-loop DMPC without Laguerre
function. (c) The standard DMPC without FTESO.

Figure 17 intuitively presents a 3-D formation trajectory tracking. Combined with
Figures 7–16, it implies that all three schemes can successfully accomplish formation spiral
tracking under the specified input and state constraints. However, when the formation
faces harsh compound disturbances, the tracking performance of the controller without
disturbance compensation performs poorly, demonstrating a tracking error significantly
larger than that of the FTESO-based controller. This is because the compound disturbances
cause the AUV to deviate from the desired trajectory. By comparing the results of (a,b), it
can be further observed that the proposed control scheme with Laguerre function allows the
AUV to form the preset formation more quickly and converge to the desired trajectory more
smoothly. This implies a faster response at the onset of the task. Thus, the dual closed-loop
structure and Laguerre function enable the AUV formation to track the reference trajectory
with better speed and accuracy.
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Figure 17. 3-D trajectories of the AUV formation under different schemes. (a) The proposed FTESO-

based dual closed-loop DMPC with Laguerre function. (b) The FTESO-based dual closed-loop 

DMPC without Laguerre function. (c) The standard DMPC without FTESO. 

Without loss of generality, Figure 18 shows the actual control forces and moments 

versus time for AUV1 under the three schemes. Without the benefit of FTESO to 

compensate for compound disturbances, the fluctuations of the control force and moment 

are relatively drastic and unstable (Figure 18(c1,c2)). This is attributed to the need for the 

AUV to significantly rectify the driving forces and moments to more rapidly approach the 

deviated reference trajectory. Under the proposed scheme, as shown in Figure 18(a1,a2), 

the AUV forces and moments vary relatively smoothly, which makes the AUV track the 

trajectory steadily when disturbed. Comparing Figures 18(a1,a2) and (b1,b2), the 

Laguerre-based controller has the fastest control signal response with the smallest 

amplitude when the disturbances are accurately compensated. This confirms that our 

proposed scheme (a) provides superior control performance. It is worth noting that the 

variation of control forces and moments always remains within the prescribed limits. This 

reflects the ability of the DMPC to handle the actuator saturation effectively, ensuring that 

the control input for each DOF does not exceed the maximum force provided by the 

actuator, thus reducing actuator losses. 
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Figure 17. 3-D trajectories of the AUV formation under different schemes. (a) The proposed FTESO-
based dual closed-loop DMPC with Laguerre function. (b) The FTESO-based dual closed-loop DMPC
without Laguerre function. (c) The standard DMPC without FTESO.

Without loss of generality, Figure 18 shows the actual control forces and moments
versus time for AUV1 under the three schemes. Without the benefit of FTESO to compensate
for compound disturbances, the fluctuations of the control force and moment are relatively
drastic and unstable (Figure 18(c1,c2)). This is attributed to the need for the AUV to
significantly rectify the driving forces and moments to more rapidly approach the deviated
reference trajectory. Under the proposed scheme, as shown in Figure 18(a1,a2), the AUV
forces and moments vary relatively smoothly, which makes the AUV track the trajectory
steadily when disturbed. Comparing Figure 18(a1,a2) and Figure 18(b1,b2), the Laguerre-
based controller has the fastest control signal response with the smallest amplitude when
the disturbances are accurately compensated. This confirms that our proposed scheme
(a) provides superior control performance. It is worth noting that the variation of control
forces and moments always remains within the prescribed limits. This reflects the ability
of the DMPC to handle the actuator saturation effectively, ensuring that the control input
for each DOF does not exceed the maximum force provided by the actuator, thus reducing
actuator losses.
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Figure 18. Actual control force and moment for AUV1 under different schemes. (a1) Control force
of scheme (a). (a2) Control moments of scheme (a). (b1) Control force of scheme (b). (b2) Control
moments of scheme (b). (c1) Control force of scheme (c). (c2) Control moments of scheme (c).

To differentiate between the computational demands among the three schemes, we
recorded the emulator execution times under the same configurations. The detailed simu-
lation times corresponding to Figure 17 are given in Table 2. It can be observed that the
actual running time of the standard DMPC system is approximately 43.62 s. In contrast, the
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system with a dual closed-loop DMPC requires 57.91 s, which is about 32.8% longer than
the standard DMPC. This increase is due to the greater complexity of the dual closed-loop
structure as opposed to the simpler DMPC structure. Although there is improvement in
control efficacy, the execution of the dual closed-loop structure is sacrificed to some extent.
However, the proposed system, which employs a Laguerre-based dual closed-loop DMPC,
the computation time only requires 11.75 s. This suggests that, despite the inclusion of
both the dual closed-loop structure and FTESO, the use of the Laguerre function makes
the system solution faster. Thus, the proposed scheme can simultaneously improve the
computational speed and control performance.

Table 2. Comparison of controller execution time.

Control Scheme Simulation Time Run Time

Scheme (a) 600 s 11.75 s
Scheme (b) 600 s 57.91 s
Scheme (c) 600 s 43.62 s

5. Conclusions

In conclusion, this study presents a FTESO-based distributed dual closed-loop model
predictive control scheme for the AUV formation subject to compound disturbances. The
designed FTESO can compensate for model uncertainties and external disturbances of each
AUV faster and more accurately. Control inputs are determined by solving a constrained
DMPC optimization problem based on local information, while avoiding both collisions
among AUVs and actuator saturation. The Laguerre orthogonal function is applied to
alleviate the heavy computational burden, and the corresponding stability proof is provided.
Finally, based on a connected directed topology, simulation results of different schemes
are investigated under the same compound disturbances and system constraints. It is
confirmed that our proposed scheme provides the best tracking effect and superior active
disturbance rejection capability. Control signals show smaller oscillations and enhanced
stability. In addition, the computation time of our proposed formation control system,
which utilizes the Laguerre function, is reduced by 73.1% and 79.7% compared to the
standard DMPC system and the dual closed-loop DMPC system, respectively. This verifies
that our proposed scheme can respond quickly to minimize control costs and improve
real-time execution and dynamic performance of the system.

The proposed method does not consider the impact of communication burden on AUV
formation. Therefore, in future work, we will focus on the control scheme based on the
event-triggered mechanisms. Considering the limitations of the optimization accuracy of
discrete predictive control, we want to carry out research on continuous predictive control
with faster control response. In addition, it is essential to conduct formation obstacle
avoidance research and real AUV experiments.
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