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Abstract: This study investigates the combined effect of the breaking and energy dissipation of water
waves by variable bottoms across the surf zone. The shoreline is set up as a partially reflecting
vertical wall in the solution technique, with shelves between the steps that approximate the geometric
profile of the varied bottom over the surf zone. The eigenfunctions over the shelves are matched
on the connecting step using the conservations of mass and momentum. The impacts of breaking
and energy dissipation are implemented in the proposed eigenfunction matching method using
the energy-dissipation factors, which are modeled by empirical formulas. The proposed model
is validated by comparing its results with the experimental data available in the literature. Some
benchmark results of wave scattering by a rectangular breakwater near a partially reflecting vertical
wall are provided and discussed. In addition, wave breaking and dissipation in the proposed model
using different empirical formulas are discussed.

Keywords: wave dissipation; wave breaking; partially reflecting wall; surf zone; step approximation;
eigenfunction matching method

1. Introduction

When a wave train propagates from the deep ocean into the surf zone, it experiences
shoaling, refraction, diffraction, reflection, and breaking. Among these processes, wave
breaking and associated energy dissipation are the most significant phenomena to be
considered across the surf zone. Wave breaking not only results in large forces on coastal
structures, but also induces nearshore currents that produce sediment transport. To protect
wharfs, shorelines, and harbors from wave attacks, breakwaters are frequently adopted
as they can additionally dissipate wave energies. Therefore, an approach that considers
the breaking and dissipation of waves to accurately predict the transformation of waves in
the surf zone is essential for applications in coastal engineering and the design of coastal
structures or breakwaters.

Occasionally, shorelines are protected by seawalls or vertical breakwaters, which are
typically treated as partially reflecting structures. Goda [1] studied several common coastal
structures and provided guidelines for approximating the partially reflecting effects. Subse-
quently, Isaacson and Qu [2] formulated a partially reflecting boundary condition to model
these effects. This condition was successfully applied for normal [3] and oblique [4] wave
scattering by breakwaters placed near a partially reflecting vertical breakwater or seawall. In
this study, a numerical model was developed to evaluate wave transformations in the surf
zone in which the shoreline is approximated using a partially reflecting vertical wall.

Depth-integrated models are computationally efficient for solving problems of water
wave scattering compared with depth-resolved models, such as the finite volume method [5]
and finite element method [6]. Two of the well-known depth-integrated models are the
mild-slope equation (MSE) [7] and eigenfunction matching method (EMM) [8]. Basically,
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the MSE is solved using numerical methods and was successfully applied to problems of
the scattering of waves by breakwaters [9], wave–current interactions [10], and nonlinear
waves [11]. On the other hand, the EMM is a semi-analytical technique for analyzing the
scattering of water waves by an undulated sea bottom [12–17]. The eigenfunction matching
method has a simplified mathematical formulation and its solutions are as accurate as the
MSE solutions. [18]. Nevertheless, further investigation is required to apply the eigenfunction
matching method to three-dimensional, nonlinear, and/or time-dependent problems.

Experimental results of breaking and dissipation of water waves are usually formulated
using the energy-dissipation factors through empirical formulas. Generally, shoaling waves
break when the energy-dissipation factor reaches a certain value, denoted the wave-breaking
index, which was studied by McCowan [19], Goda [20], Weggel [21], and Svendsen [22].
Comprehensive reviews have been published recently [23,24]. Dally et al. [25], Battjes and
Janssen [26], and Isobe [27] studied energy dissipations after wave breaking based on hydraulic
jump models, periodic bores, and turbulence, respectively. Their results were also formulated
empirically using the energy-dissipation factors.

When considering numerical models for analyzing wave transformations with break-
ing and dissipation in the surf zone, Isobe [27] was among the first to use the MSE incor-
porated with energy-dissipation factors to estimate the wave breaking and dissipation.
Following this study, Tsai and his co-authors considered the empirical formulas for the
energy-dissipation factor with nonlinear shoaling [28] and the bottoms of steep slopes [29].
Subsequently, Lan et al. [30] added the bottom curvature and slope-squared terms to the
MSE to improve the accuracy of the proposed method. Then, Hsu et al. [31] employed the
method for water-wave breaking problems and dissipation by permeable breakwaters.

However, the energy-dissipation factor was rarely used with the EMM for the analysis
of water-wave breaking and dissipation across the surf zone. Following Hsu et al. [31],
Tsai et al. [32] applied the EMM with energy-dissipation factors to estimate wave breaking
and dissipation by permeable breakwaters. This study investigates the application of the
eigenfunction matching method incorporated with energy-dissipation factors for estimating
the breaking and dissipation of water waves by variable bottoms across the surf zone. The
proposed EMM model was validated with numerical and experimental results given in the
literature. Other applications and discussions are also presented.

The study is organized as follows. In Section 2, the detailed formulation and solution
are elaborated. In Section 3, the EMM results are validated. Section 4 presents the discus-
sions and further applications. In Section 5, the work is summarized and the significance of
the study is highlighted.

2. Materials and Methods
2.1. Problem Definition

The problem of wave scattering by breakwaters close to a partially reflecting vertical
wall over an uneven bottom is examined in this subsection. A train of monochromatic
waves with incidence angle γ, amplitude a, angular frequency σ, and wavelength λ,
propagating from the left-hand side towards porous breakwaters and ending at a partially
reflecting vertical wall over an uneven bottom is considered. Furthermore, the fluid is
assumed to be irrotational and incompressible under the hypothesis of the small amplitude
linear water wave theory [33] with continuous surface elevations. A schematic of this
problem is shown in Figure 1. A Cartesian coordinate system is used, where the z-axis is
considered vertically upwards and the x-axis denoting the horizontal plane. The wave
motion is presumed to be time-harmonic by e−iσt, where t is the time, i is the unit of complex
numbers, and σ is equal to 2π/T with T being the wave period. The permeable breakwaters
and uneven bottom are divided into M− 1 shelves in the interval of xm−1 ≤ x ≤ xm for
m = 1, 2, . . . , M− 1 in the step approximation. The shelves are separated by M− 2 steps at
x = xm for m = 1, 2, . . . , M− 2. In addition, x0 = −∞ is assumed and a partially reflecting
vertical wall is located at x = xM−1.
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The velocity field (xm−1 ≤ x ≤ xm) on the m-th shelf for m = 1, 2, . . . , M− 1 is defined by

um = ∇φm, (1)

where∇ = (∂/∂x, ∂/∂y, ∂/∂z) and φm are the velocity potential. The pressures in the water
and porous layers are respectively defined as [34]:

Pm = −ρ(−iσφm + gz). (2)

Sequentially, by applying the continuity condition to Equation (1), the Laplace equation
results in:

∇2φm = 0, (3)

Furthermore, the kinematic and dynamic boundary conditions are defined as follows:

− iσηm −
∂φm

∂z
= 0 (4)

and
−iσφm + gηm = 0 at z = 0, (5)

where ηm represents the surface elevation. Combining Equations (4) and (5) yields

∂φm

∂z
− σ2

g
φm = 0, (6)

and the bottom boundary condition is

∂φm

∂z
= 0 on z = −hm. (7)
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At the m-th step located at x = xm, the velocity potentials φm and φm+1 require
interface conditions

∂φm

∂x

∣∣∣∣
x=xm

=
∂φm+1

∂x

∣∣∣∣
x=xm

(8)

and
φm|x=xm

= φm+1|x=xm
, for−min(hm, hm+1) ≤ z ≤ 0, (9)

where

min(hm, hm+1) =

{
hm if hm ≤ hm+1
hm+1 if hm > hm+1.

(10)

In addition, the condition at the vertical wall reads as

∂φ

∂x
= 0 for−max(hm, hm+1) ≤ z ≤ −min(hm, hm+1), (11)

where

max(hm, hm+1) =

{
hm+1 if hm ≤ hm+1
hm if hm > hm+1

(12)

and φ refers to either φm or φm+1. Additionally, the partially reflecting condition of the
vertical wall is expressed as:(

∂φM−1

∂x
− ik̂M−1,0

1− Kw

1 + Kw
φM−1

)∣∣∣∣
x=xM−1

= 0, (13)

where k̂M−1,0 is the wavenumber defined in the next subsection and Kw is a priori given as
the partially reflecting factor of the vertical wall [2,33,35,36]. It needs to be mentioned that
Equation (13) was originally developed without the effects of evanescent modes.

The far-field condition for the surface elevation of the incident wave is defined as:

η1 = a
(

eik̂1,0x + KReiθR e−ik̂1,0x
)

eikyy as x → −∞, (14)

where the reflection coefficient KR and phase angle θR are real numbers, such that
KR =

∣∣KReiθR
∣∣. In Equation (14), ky and k̂1,0 are positive real wavenumbers expressed as:

k̂m,n =
√

k2
m,n − k2

y (15)

and
ky = k1,0 sin γ, (16)

where k1,0 = 2π/λ > 0 and kM,0 > 0 are the progressive wavenumbers satisfying the
dispersion relation

σ2

g
= km,0 tanhkm,0 hm. (17)

In Equation (17), the indices vary as in m = 1, 2, . . . , M − 1 and n = 0, 1, . . .. In
addition, the evanescent wavenumbers km,n in Equation (17) are defined as:

km,n = iκm,n, (18)

where the smallest positive root κm,n satisfies the dispersion relation

σ2

g
= −κm,n tan κm,nhm. (19)
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2.2. Eigenfunction Matching Method

In the eigenfunction expansion method, the velocity potential is defined as

φm(x, y, z) =
N

∑
n=0

(
Am,nξ

(1)
m,n(x) + Bm,nξ

(2)
m,n(x)

)
ζm,n(z)eikyy (20)

for m = 1, 2, 3, . . . , M− 1. In addition, Am,n and Bm,n are unknowns. The eigenfunctions in
Equation (20) can be defined as

ζm,n(z) =
cosh km,n(z + hm)

cosh km,nhm
, (21)

ξ
(1)
m,n(x) = eik̂m,n(x−xm−1), (22)

and
ξ
(2)
m,n(x) = e−ik̂m,n(x−xm), (23)

where {
xm = xm for m = 1, 2, . . . , M− 1
x0 = 0.

(24)

In Equation (20), ky denotes the incident wave transverse wavenumber, which is a
constant according to Snell’s law [37] and the linear wave theory [33].

It can be noticed that the solutions defined by Equation (20) satisfy
Equations (3), (6) and (7) analytically, and the unknowns Am,n and Bm,n are determined
by using Equations (8), (9), (11), (13) and (14).

The conversion of mass in Equations (8) and (11) can be formulated as〈
∂φm

∂x

∣∣∣∣ζlarger
m,l

〉
=

〈
∂φm+1

∂x

∣∣∣∣ζlarger
m,l

〉
for m = 1, 2, . . . , M− 2 and l = 0, 1, . . . , N, (25)

where the inner product of two vertical eigenfunctions is written as

〈G1|G2〉 =
∫ 0

−h̃
G1(z)G2(x)dz (26)

where G1 and G2 are the vertical eigenfunctions of ζm,n with arbitrary m and n, and h̃
denotes the water depth of the vertical eigenfunction G1. In Equation (25), the depth
eigenfunction, ζ

larger
m,l , is defined as

ζ
larger
m,l =

{
ζm,l for hm > hm+1
ζm+1,l for hm+1 > hm.

(27)

Furthermore, Equation (9) is represented as〈
ζsmaller

m,l

∣∣∣φm

〉
=
〈

ζsmaller
m,l

∣∣∣φm+1

〉
for m = 1, 2, . . . , M− 2 and l = 0, 1, . . . , N, (28)

where

ζsmaller
m,l =

{
ζm,l for hm < hm+1
ζm+1,l for hm+1 < hm.

(29)

Furthermore, Equations (25) and (28) are valid for both hm > hm+1 and hm+1 > hm.
Then, based on Equations (5), (14), and (21), the far-field solution can be expressed as

φ1 = − iag
σ

ζ1,0(z)
(

eik̂1,0x + KReiθR e−ik̂1,0x
)

eikyy as x → −∞. (30)
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Substituting Equation (30) into Equation (20), yields

B1,0eik̂m,nx = − iaKReiθR g
σ

, (31)

A1,0 = − iag
σ

, (32)

and
A1,n = 0, (33)

where n = 1, 2, . . . , N. In addition, combining the solution expression (20) and partially
reflecting condition (13) yields

N
∑

n=0

(
ik̂M−1,n AM−1,nξ

(1)
M−1,n(xM−1)− ik̂M−1,nBM−1,nξ

(2)
M−1,n(xM−1)

)〈
ζM−1,n|ζM−1,l

〉
= ik̂M−1,0

(
1−Kw
1+Kw

) N
∑

n=0

(
AM−1,nξ

(1)
M−1,n(xM−1) + BM−1,nξ

(2)
M−1,n(xM−1)

)〈
ζM−1,l

∣∣ζM−1,n
〉 (34)

Finally, substituting the solution expression (20) into the conservation of mass (25) and
momentum (28) results in

N
∑

n=0

(
ik̂m,n Am,nξ

(1)
m,n(xm)− ik̂m,nBm,nξ

(2)
m,n(xm)

)〈
ζm,n|ζlarger

m,l

〉
=

N
∑

n=0

(
ik̂m+1,n Am+1,nξ

(1)
m+1,n(xm)− ik̂m+1,nBm+1,nξ

(2)
m,n(xm)

)〈
ζm+1,n|ζ

larger
m,l

〉 (35)

and
N
∑

n=0

(
Am,nξ

(1)
m,n(xm) + Bm,nξ

(2)
m,n(xm)

)〈
ζsmaller

m,l

∣∣∣ζm,n

〉
=

N
∑

n=0

(
Am+1,nξ

(1)
m,n(xm) + Bm+1,nξ

(2)
m,n(xm)

)〈
ζsmaller

m,l

∣∣∣ζm+1,n

〉
,

(36)

For m = 1, 2, . . . , M− 2. Finally, the system of 2(M− 1)(N + 1) Equations (32)–(36)
is solved to determine the unknowns Am,n and Bm,n if the matrix system of the linear
equations is nonsingular. Equation (31) is then used to evaluate the reflection coefficient KR.
The SuperLU library is utilized in this study to evaluate the sparse matrix of the system of
linear equations [38].

2.3. Wave Breaking and Dissipation

With the aid of the wave breaking and dissipation theory in MSE [27,28,30], the
propagating wave number km,0 is described by the energy-dissipation factor fd as

km,0
2 = k̂m,0

2(1 + i fd). (37)

Furthermore, Equations (22) and (23) are replaced by

ξ
(1)
m,0(x) = eikm,0(x−xm−1) (38)

and
ξ
(2)
m,0(x) = e−ikm,0(x−xm). (39)

Based on the velocity potential (20), Equations (5) and (21), the surface elevation is
expressed as

ηm(x, y) =
N

∑
n=0

(
iσAm,n

g
ξ
(1)
m,n(x) +

iσBm,n

g
ξ
(2)
m,n(x)

)
eikyy, (40)

where Am,n and Bm,n are solved by Equations (32)–(36) by replacing Equations (22) and (23)
and k̂m,0 by Equations (38) and (39) and km,0, respectively.
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The energy-dissipation factor fd is defined to complete the solution procedure. There-
fore, empirical formulas are frequently used. In the literature [23,24], several wave-breaking
indices have been presented. In the present study, the Goda [20] wave-breaking index is
used as

γb = 0.17
{

1− exp
[
−1.5

πhm

λ

(
1 + 15β

4/3
)]}

, (41)

where β is the bottom slope. Therefore, wave breaking occurs when

2ηm

hm
> γb, (42)

where ηm is calculated by Equation (40). When the condition (42) is satisfied in the breaking
zone, the energy dissipation factor fd is assessed by

fd =
0.15

km,0hm

[
1−

(
0.2hm

ηm

)2
]

(43)

or

fd = 2.5β

√
1

k1,0hm

√
ηm/hm − 0.135

0.4(0.57 + 5.3β)− 0.135
, (44)

as defined by Dally et al. [25] and Isobe [27], respectively. Wave breaking occurs only when
the slope is not negative since the wave comes from the left-hand side. In Equation (41),
only slopes that are non-negative are taken into account.

Iterations are required in the solution process because the surface elevation ηm and
the energy-dissipation factor fd are interdependent. More precisely, the wave-breaking
condition (42) was employed from the surface elevation ηm determined by fd = 0. The
energy-dissipation factor and surface elevation are iteratively updated until the maximum
norm between two consecutive surface elevations is less than 10−5m. This leads to a surface
elevation as a result of transformation of waves owing to the breaking, dissipating, and
variable bottoms.

2.4. Wave Force

The dynamic pressure on the wall can be evaluated using Equation (2) as

pM−1|x=xM−1
= iρσφM−1|x=xM−1

. (45)

By integrating the dynamic pressure along the vertical wall, the dimensionless hori-
zontal wave force is obtained by the normalization factor 2aρghM−1 as

KF =
iσ
∫ 0
−hM−1

φM−1dz
∣∣∣
x=xM−1

2aghM−1
. (46)

Sequentially, substituting the solution expression Equation (20) into the above equation
gives the required formula for the non-dimensional wave force on the wall as

KF =

iσ
N
∑

n=0

(
AM−1,nξ

(1)
M−1,n(xM−1) + BM−1,nξ

(2)
M−1,n(xM−1)

)∫ 0
−hM−1

ζM−1,n(z)dz

2aghM−1
. (47)

In deriving Equation (40), the transverse wave function eikyy is neglected as the equa-
tion is normalized by considering its maximum value in the transverse direction.
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3. Results

In this section, the EMM model is validated by comparing its results with those found
in the literature. Several cases of wave scattering, breaking, and dissipation by breakwaters
or variable bottoms in front of a partially reflecting wall are considered. The convergence is
assessed by examining the test cases.

3.1. Rectangular Breakwater Close to a Partially Reflecting Vertical Wall

Following Zhao et al. [35], we consider the problem of water wave scattering by a
rectangular breakwater near a partially reflecting vertical wall over a uniform bottom with
k1,0h1 = 1.2, γ = 0, Kw = 0.8, D/h1 = 3, and h2/h1 = 0.5 as depicted in Figure 2. To
study the convergence of the solution, the dimensionless wave force KF is plotted against
the dimensionless breakwater width b/λ as depicted in Figure 3. Here, Equation (47) is
used for evaluating the dimensionless wave force. From the figures, it can be seen that the
convergence is obtained for N = 4. Furthermore, the computational results based on the
present theory coincide with those of Zhao et al. [35].
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Overall, this numerical example illustrates that the eigenfunction matching method
can be utilized to solve the normal scattering of water waves by a rectangular permeable
breakwater near a partially reflecting vertical wall.

3.2. Constructive and Destructive Bragg Scattering by Periodic Half-Cosine Shaped Breakwaters

Subsequently, the proposed EMM is validated for solving problems with variable
bottoms. Following Chang and Tsai [39], we consider the constructive and destructive
Bragg scattering by four periodic half-cosine-shaped breakwaters placed near a partially re-
flecting wall as depicted in Figure 4. Following Kirby and Anton [40] and Tsai et al. [41], the
water depth and amplitude of the half-cosine-shaped breakwaters are set as h1 = 0.15m and
a = 0.05m, respectively. Additionally, the wavelength of the periodic bottom and the sepa-
ration distance between the half-cosine-shaped breakwaters are defined by 2π/K = 0.8m
and d = 0.5m, respectively. The vertical wall is separated from the toe of the last breakwater
by D.
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Figure 4. Problem definition of the oblique constructive and destructive Bragg scattering by four
periodic half-cosine-shaped breakwaters placed near a partially reflecting wall.

Chang and Tsai [39] initially investigated the constructive Bragg scattering, in which
multiple breakwaters should be periodically located with the wavelength equal to half
of the significant wavelength of the coastal wave environment, and the partially vertical
wall should be located by a quarter of the significant wavelength away from the last
breakwater. In this situation, the wave forces on the wall can be significantly reduced.
Figure 5. describes the reflection coefficient and dimensionless wave force obtained using
the proposed EMM model with D = 0.4m and Kw = 0.5. Similar to the previous example,
N = 4 is adopted in this subsection. In the figure, it can be observed that the convergence is
obtained for shelf numbers up to M = 120, and the results agree with those in the literature.
In addition, the primary Bragg resonances can be observed to be constructive as the wave
forces migrate significantly, especially when 2k1,0/K.

Similarly, the destructive Bragg scattering is configured by D = 0.8m and Kw = 0.5.
Figure 6 depicts the reflection coefficient and dimensionless wave force obtained using
the proposed model. In the figure, convergent results can be found with M = 120 and the
results agree well with those in Chang and Tsai [39]. In addition, the Bragg resonances can
be observed to be destructive. These results suggest that the separation distance should
not be close to the wavelength of the periodic bottom so that extreme wave forces on the
vertical wall can be avoided.
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In summary, this numerical example demonstrates that the EMM can be used to
solve the problem of the typical scattering of waves by variable breakwaters placed near a
partially reflecting vertical wall.

3.3. Oblique Incidence

Then, the proposed EMM is also validated for its capacity to solve problems of oblique
Bragg scattering as the significant wave angle, γ, is sometimes not parallel to the normal
direction of the shoreline in real coastal environments.

In this subsection, the constructive Bragg scattering in Figure 5 is extended by consid-
ering γ = 30◦ and Kw = 0.2 with the separation distance maintained as D = 0.4m. Figure 7
gives the convergence results of the reflection coefficient and dimensionless wave force
with respect to the shelf numbers. In the figure, it is significant to observe that the Bragg
resonances are constructive, particularly at 2k1,0 cos γ/K∼ 1. This confirms Bragg’s theory
for oblique waves [42,43].
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3.4. Water Wave Breaking and Dissipation by Mild Slopes

In this subsection, the eigenfunction matching method is validated for its capacity to
analyze water-wave breaking and dissipation by mild slopes.

Following Tsai et al. [28], we consider water-wave breaking and dissipation by a
slope of 1/10 with the normally incident wave of period T = 1.205s and wave height
2a = 0.1104m from the far field with a water depth of h1 = 0.6m. Figure 8 demonstrates
the numerical wave heights attained by the EMM with various numbers of evanescent
modes N and shelves M. Here, Kw = 0 is adopted to approximate the shoreline. From the
figures, it is noticeable that the convergence is attained for M = 200 and N = 2, which are
then adopted in this subsection. The EMM solutions are subsequently validated as they
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agree well with the experimental data [44] and the MSE numerical results [28], as shown
in Figure 9. In the figures, the energy-dissipation factors are evaluated by the empirical
Formulas (43) and (44) of Dally et al. [25] and Isobe [27], respectively.
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Figure 8. Wave heights for breaking and dissipation of waves by a slope of 1/10 for various numbers
of (a) evanescent modes and (b) shelves.
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Figure 9. Wave heights for breaking and dissipation of waves by a slope of 1/10 with various
formulas of energy dissipation factors [25,27,28,44].

Figure 10 depicts the surface elevations at various wave phases, with the energy-
dissipation factor calculated using Isobe’s formula [27]. It is also noticeable that the wave
shoaling and energy dissipation are due to the slope.
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Figure 10. The change in surface elevations at various wave phases for scattering of waves
(a) t = T/4 (b) t = T/2 (c) t = T3/4 (d) t = T by a slope of 1/10.

Subsequently, a second example is considered for the water-wave breaking and dis-
sipation by a slope of 1/20 with the wave of period T = 1.19s and height 2a = 0.06m
from the far field with a water depth of h1 = 0.6m. Figure 11 depicts the comparison
between the numerical wave heights attained using the EMM, experimental data obtained
by Nagayama [45], and the MSE numerical results [28]. A good agreement can also be
observed from the figure.
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Figure 11. Wave heights for breaking and dissipation of waves by a slope of 1/20 for varying formulas
of energy dissipation factors [25,27,28,45].

Overall, the numerical solutions given in this subsection validate the applications of
the proposed EMM for solving water-wave breaking and dissipation by mild slopes.

4. Discussion

In this section, a parametric analysis will be performed for the problem considered in
Section 3.1. Subsequently, the EMM will be further applied to problems of wave breaking
and dissipation by steep slopes, composite slopes, and a barred beach. Some discussions
will be provided.

4.1. Parametric Analysis on Wave Scattring by Rectangular Breakwater in Front of Partially
Reflecting Vertical Wall

As analytical solutions for scattering of waves by breakwaters placed near a partially
reflecting vertical wall have rarely been reported in the literature. Parametric analysis will
be performed for the problem considered in Section 3.1 as described in Figure 2. These
results provide benchmark data for future studies on similar problems. Following the
studies presented in Section 3.1, N = 4 is considered in this subsection.

To study the effects of the wall partially reflecting factors Kw on the hydrodynamic
quantities, the other parameters are fixed as those in Section 3.1. Figure 12 depicts the
dimensionless wave force KF and reflection coefficient KR as functions of the dimensionless
breakwater width b/λ with normal incidence. As shown in the figure, the values of the
reflection coefficient KR are basically proportional to the partially reflecting factors Kw.
In addition, the cases with larger partially reflecting factors yield larger wave forces on
the vertical walls. Similar results can also been found in Figure 13 but with an oblique
incidence of γ = 30◦.

Subsequently, the effects of the breakwater heights were studied with the other parame-
ters fixed as those in Section 3.1. Figure 14 describes the dimensionless wave force KF and
reflection coefficient KR as functions of the dimensionless breakwater width b/λ with different
values of h2/h1. As shown in the figure, the cases with larger breakwater heights, smaller
values of h2/h1, have the larger wave forces and smaller reflection coefficients, as expected.
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4.2. Wave Breaking and Dissipation by Steep Slopes

Section 3.4 is extended by considering steep slopes of 1/5 and 1/3, and the numerical
results will be compared with the experimental data of Tsai et al. [29]. Following the numerical
studies presented in Section 3.4, M = 200 and N = 2 are adopted in this subsection.

First, we consider the problem of a slope of 1/5 with a wave period of T = 2.6s and
a wave height of 2a = 0.106m from the far field with a water depth of h1 = 0.885m. The
EMM solutions shown in Figure 15. indicate that the numerical wave height obtained
using the EMM based on the energy-dissipation factor of Dally et al. [25] agree well with
the experimental data of Tsai et al. [29]. However, the numerical wave heights based on
Isobe’s [27] energy-dissipation factor cease to dissipate on the downstream flat bottom as
fd = 0 if β = 0 in Equation (44).
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Figure 15. Wave heights for breaking and dissipation of wave by a slope of 1/5 with varying formulas
of energy dissipation factors [25,27,29].
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Second, we consider an example that has a slope of 1/3, a wave period of T = 1.8s,
and a wave height of 2a = 0.202m from the far field with a water depth of h1 = 0.970m.
Figure 16 depicts a comparison between numerical wave heights obtained by the EMM
and the experimental data obtained by Tsai et al. [29]. A good agreement is also observed
for the numerical wave height obtained by the EMM based on the energy-dissipation factor
formulated by Dally et al. [25], as shown in the figure.
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Figure 16. Wave heights for breaking and dissipation of wave by a slope of 1/3 with varying formulas
of energy dissipation factors [25,27,29].

Overall, the numerical solutions given in this subsection validate the applications of
the proposed EMM for solving water-wave breaking and dissipation by steep slopes. In
addition, the energy-dissipation factor formulated by Dally et al. [25] is preferred if wave
dissipation occurs on a flat bottom.

4.3. Wave Breaking and Dissipation by Composite Slopes

Next, we consider the breaking and dissipation of waves by composite slopes of 1/20
separated by a flat region of length 2m. The normal incident wave has a period of T = 1.18s
and a wave height of 2a = 0.07m and is from the far field with a water depth of h1 = 0.25m.
In this subsection, M = 200 and N = 2 are also adopted. In addition, Kw = 0 is adopted to
approximate the shoreline. Figure 17 shows a comparison between the numerical wave
heights obtained by the EMM, the experimental data of Nagayama [45], and the MSE
numerical results of Lan et al. [30]. Good agreements can also be observed from the figure
for the numerical wave heights attained by the EMM based on the energy-dissipation factor
formulated by Dally et al. [25] as the wave dissipation occurs on the flat separation.
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4.4. Wave Breaking and Dissipation by a Barred Beach

Sancho et al. [46] conducted experiments on the wave breaking and dissipation of
water waves by a barred beach. The barred beach has a variable bottom profile as depicted
in Figure 18. Two cases of spilling and plunging breakings are considered by the incident
waves of T = 2.5s & 2a = 0.21m and T = 3.5s & 2a = 0.38m, respectively. Figure 18.
demonstrates the numerical wave heights obtained by the EMM with different numbers of
evanescent shelves M and N = 2. Here, Kw = 0 is adopted to approximate the shoreline.
The figures show that the convergence is obtained for M = 1000 and N = 2, which are then
adopted in this subsection. Based on the previous discussions, the energy-dissipation factor
was modeled by the empirical formula developed by Dally et al. [25] in this subsection.
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For the spilling breaking case, the EMM solutions are compared with the experimental
data [46] and numerical results obtained using the Boussinesq equations of Tonelli and
Petti [47] and D’Alessandro and Tomasicchio [48], as shown in Figure 19. In the figure, good
agreements can be observed. For the plunging case, the EMM solutions are compared with
the experimental data of Sancho et al. [46] and the Boussinesq numerical results obtained
by Tonelli and Petti [47], as depicted in Figure 20.
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Figure 19. Comparisons of wave heights for breaking and dissipation of waves by a barred beach for
the spilling breaking case [46–48].
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Overall, the numerical results presented in this subsection indicate that the proposed
model can be implemented to solve problems of wave dissipation with variable bottoms
after both spilling and plunging breakings.
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5. Conclusions

In this study, the scattering, breaking, and dissipation of water waves by variable
bottoms across the surf zone were investigated. In the solution procedure, shelves among
steps are employed to approximate the geometric profiles of the varied bottom across the
surf zone, and the coastline is set up as a partially reflective vertical wall. By employing the
conservations of mass and momentum on the steps, the eigenfunctions over the shelves are
matched. The impacts of breaking and energy dissipation are implemented in the proposed
eigenfunction matching method using the energy-dissipation factors, which are modeled
using empirical formulae. The results of the proposed model agree well with experimental
data available in the literature. Some benchmark results for oblique wave scattering by
a rectangular breakwater placed near a partially reflecting vertical wall were provided
and discussed. In addition, the proposed model with different empirical formulae was
discussed and applied to solve the breaking and dissipation of water waves by different
variable bottoms. The numerical results indicate that the proposed method with the energy-
dissipation factor modelled by the empirical formula developed by Dally et al. [25] is more
suitable, especially when wave dissipations occur on a flat region of the bottom.

The proposed EMM is a depth-integrated model that assumes irrational, harmonic,
and linear waves. The impacts of the breaking and dissipation of waves can be affected by
the energy-dissipation factor in the EMM formulation. In addition, the current model is
computationally efficient and can be used as preliminary calculations, followed by modern
three-dimensional numerical models. These are currently under investigation.
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