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Abstract: A tropospheric duct (TD) is an anomalous atmospheric refraction structure in marine
environments that seriously interferes with the propagation path and range of electromagnetic (EM)
waves, resulting in serious influence on the normal operation of radar. Since the propagation loss (PL)
can reflect the propagation characteristics of EM waves inside the duct layer, it is important to obtain
an accurate cognition of the PL of EM waves in marine TDs. However, the PL is strongly non−linear
with propagation range due to the trapped propagation effect inside duct layer, which makes
accurate prediction of PL more difficult. To resolve this problem, a novel multiscale decomposition
prediction method (VMD−PSO−LSTM) based on the long short−term memory (LSTM) network,
variational mode decomposition (VMD) method and particle swarm optimization (PSO) algorithm
is proposed in this study. Firstly, VMD is used to decompose PL into several smooth subsequences
with different frequency scales. Then, a LSTM−based model for each subsequence is built to predict
the corresponding subsequence. In addition, PSO is used to optimize the hyperparameters of each
LSTM prediction model. Finally, the predicted subsequences are reconstructed to obtain the final PL
prediction results. The performance of the VMD−PSO−LSTM method is verified by combining the
measured PL. The minimum RMSE and MAE indicators for the VMD−PSO−PSTM method are 0.368
and 0.276, respectively. The percentage improvement of prediction performance compared to other
prediction methods can reach at most 72.46 and 77.61% in RMSE and MAE, respectively, showing
that the VMD−PSO−LSTM method has the advantages of high accuracy and outperforms other
comparison methods.

Keywords: tropospheric duct; propagation loss; deep learning; LSTM network; multiscale decompo-
sition prediction; VMD method; PSO algorithm

1. Introduction

A tropospheric duct (TD) is an abnormal atmospheric refraction structure appearing
at the marine–atmosphere boundary [1], with ultra−long horizontal scale characteristics
and a typical weather background. The main reason for its appearance is due to the
rapid decrease of water vapor in the vertical gradient, which results in the decrease of
atmospheric refraction index with the increase of height, i.e., there is a negative gradient
relationship [2]. When the negative gradient relationship satisfies certain conditions, the
TD will cause the propagation path of electromagnetic (EM) waves caught in it to bend
towards the marine surface. When the curvature of EM waves bent towards the marine
surface is smaller than the curvature of the earth, EM waves will be trapped in a thin
atmospheric layer of a certain thickness above the marine surface for propagation. This
phenomenon is called the TD propagation of EM waves [3]. In TDs, the propagation loss
(PL) of radar EM waves is usually weaker than in the normal atmospheric environment,
appearing over−the−horizon propagation, which extends the detection range of radar.
However, as the EM waves are trapped inside duct layer, the EM energy is less distributed
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in the upper area of the duct layer, resulting in unexpected holes and lowering the target
detection performance of radar [4–6]. The main effects of marine TDs on the radar system
are shown in Figure 1.

Figure 1. Main effects of a marine TD on radar systems.

Based on valid TD environmental information obtained, the precondition for an
accurate assessment of the influence of a TD on the performance of a radar system is
accurate cognition of the EM waves propagation characteristics [7]. Since the PL in a TD can
reflect the trapped propagation effect of the duct layer on EM waves and the propagation
characteristics of EM waves, the PL is of vital research and application value. However,
in TDs, the propagation path and range of EM waves appear as significant anomalies
relative to the standard atmospheric environment, making the accurate cognition of the
propagation characteristics of EM waves inside the duct layer very difficult [8].

The main theoretical algorithms currently used to calculate EM wave PL in TDs include
the ray tracing algorithm, duct mode algorithm, parabolic equation algorithm and multiple
hybrid algorithms [9]. However, as the propagation range varies, the calculation time using
theoretical algorithms increases rapidly and the calculation efficiency decreases, which
does not satisfy the real−time requirements for engineering applications. In addition, when
the TD phenomenon appears, shipboard radar can be used to conduct over−the−horizon
detection of the marine surface and to obtain the PL on the EM waves’ propagation path.
However, when studying the actual propagation characteristics of EM waves, due to
the limitations of measurement conditions and experimental equipment, it is usually not
possible to obtain all the PL values along the entire propagation path. Generally, only the
PL values on the propagation path closer to the radar can be measured [10].

Rapid development in deep learning offers new solutions for accurate prediction
of PL. Recurrent neural network (RNN) has achieved outstanding results in sequence
prediction since its proposal [11]. LSTM is an improved RNN with better generalization
ability and fault tolerance, which can solve the problems of RNN’s inability to achieve
memorization and forgetting of long−term historical information [12]. However, building
prediction model with better performance and achieving accurate prediction of PL is
extremely difficult [13]. For a radar system, the trapped propagation effect in a TD results
in EM waves with strongly non−linear and non−smooth characteristics for the following
main reasons: (1) When EM waves are trapped inside the duct layer, they are influenced by
the interference of the duct mode, which can result in jumping propagation due to mutual
interference and elimination of multiple duct modes. Additionally, when the strength
of the duct is strong, there are more duct modes inside duct layer, and the interference
effects between them can be even more complicated. Moreover, as the wind velocity at
marine surface varies, interference between duct modes also results in variations of the
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position where PL will enhance and weaken [14]. (2) The weather’s physical quantities
such as temperature, humidity and pressure above a marine surface can have complicated
variations in time and space due to various complicated or random weather processes.
However, the refractivity in tropospheric atmosphere is a multivariate function relating
to the physical quantities, thus the refractivity is usually non−uniform in time and space
scales [15]. The different space distribution of the atmospheric reflectivity can seriously
influence the propagation path of EM waves, making them have different space energy
distributions, resulting in significantly different space propagation characteristics of EM
waves compared to the standard atmosphere [16].

These reasons have a vast influence on the propagation characteristics of EM waves,
making the PL seriously non−smooth and random. When the non−smooth characteristics
are strong, the propagation characteristics cannot be accurately cognized, which will make
the training of deep learning methods more difficult and the prediction accuracy lower.
Therefore, for the measured PL in a TD, it is necessary to decompose the PL sequence
into simple subsequences by the signal decomposition method before using deep learning
method for prediction, to lower its non−smoothness and contribute to improving the
prediction accuracy [17]. Typical signal decomposition methods include wavelet analysis
and empirical mode decomposition (EMD). However, wavelet analysis relies on the choice
of wavelet basis function and is a non−adaptive decomposition method, and EMD is prone
to the problem of mode mixing, which can influence the decomposition results [18]. The
newly proposed variational mode decomposition (VMD) method not only overcomes the
shortcomings of wavelet analysis and EMD, but also effectively solves the problems such
as strong non−smoothness of PL. VMD can decompose PL into multiple subsequences
of different frequency scales and relative smoothness, i.e., intrinsic mode function (IMF)
components [19]. Therefore, the LSTM network can be used to predict IMF components, and
then reconstruct the corresponding prediction results, improving the prediction accuracy
of the LSTM network. Currently, many heuristic optimization algorithms have been
integrated into deep learning for prediction performance improvement. The particle swarm
optimization (PSO) algorithm is an efficient optimization algorithm that finds the global
optimal solution by continuously updating the velocity and position of particles, with the
advantages of high accuracy and fast convergence [20]. PSO can effectively optimize the
hyperparameters of the LSTM network such as the number of neurons and learning rate,
thus improving the prediction performance of LSTM networks.

Based on the above study methods, this study proposes a novel hybrid prediction
method (VMD−PSO−LSTM) by combining the VMD method, PSO algorithm and LSTM
network based on measured PL to achieve accurate prediction in marine evaporation duct
(ED). The VMD−PSO−LSTM method is constructed as follows: (1) using the VMD method,
the measured PL is decomposed to obtain a limited number of smooth subsequences with
different frequency scales; (2) for the decomposed subsequences (IMF components) of
different scales, corresponding LSTM prediction models are built, respectively, using the
PSO algorithm to optimize the hyperparameters of each LSTM prediction model, and using
the optimized LSTM network to predict the subsequences; (3) the prediction results for
each PL subsequences are reconstructed to obtain the final PL prediction results.

The remainder of this paper is constructed as follows: Section 2 introduces the marine
over−the−horizon propagation experiment and measured PL. Section 3 introduces the
modeling process and methods used in the VMD−PSO−LSTM method. The prediction
results and analysis for multiple prediction methods are introduced in Section 4. Finally,
the conclusions and future work are presented in Section 5.

2. EM Waves Over−the−Horizon Propagation Experiment in Marine ED

The marine ED is the TD type with the highest probability of appearance, which can
reach up to 89% in specific marine areas, and often appears in the near marine surface
atmosphere below 40 m of height and consists of a shallow trapped layer. In addition, the
appearance probability of the ED and evaporation duct height (EDH) vary significantly
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with geographical area, season and time of day. Typically, ED has a higher appearance
probability and higher EDH during summer and daytime in low−latitude marine areas.
Due to its weak trapping capability, the frequency of EM waves that can be trapped or
significantly influenced is generally above 1 GHz [1–3].

In 2017, the China Research Institute of Radiowave Propagation conducted an
over−the−horizon propagation experiment of EM waves in the South China Sea, which
relied on a shipboard S−band radar installed on the “Qiongsha 3” ship [21]. The ship
moved irregularly between Wenchang (19◦33’ N, 110◦49’ E) and Yongxing Island (16◦84′ N,
112◦33′ E). The marine area where the over−the−horizon propagation experiment was
conducted is shown in Figure 2. The “Qiongsha 3” ship is 84 m long, 13.8 m wide and
displaces about 2500 tons, as shown in Figure 3a. The experimental equipment installed
on the deck is shown in Figure 3b. The radar was installed on the port side of the bow,
about 12 m above the marine surface. Considering the height of the radar antenna, the
total height of the radar is about 14 m above the marine surface and its signal is easily
trapped by the marine ED. The depression angle of the S−band radar is set at 1◦. The main
parameters of the shipboard S−band radar are shown in Table 1.

Figure 2. Marine area for the conduct of the over−the−horizon propagation experiment.

Figure 3. Scene of the over−the−horizon propagation experiment. (a) “Qiongsha 3” ship and
S−band radar; (b) equipment installed on deck.
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Table 1. S−band radar system parameters in the over−the−horizon propagation experiment.

Number Parameter Value

1 Frequency 3.1 GHz
2 Transmitting Power 41.8 dBm
3 Transmitting Antenna Gain 28.0 dB
4 Pulse Repetition Frequency 2.0 kHz
5 Bandwidth 5.0 MHz
6 Pulse Width 3.0 µs
7 Polarization HH

The experiment was conducted as follows: while the Qiongsha 3 ship was moving
between Wenchang and Yongxing Island, the S−band radar continuously transmitted
signals to the onshore receiver in Hainan. An EMI signal receiver was installed at the
receiver for continuous monitoring and receiving the S−band over−the−horizon signals,
and a low noise amplifier was installed at the receiver front to improve the signal−to−noise
ratio. According to the radar equation [22], the one−way PL of EM waves is calculated as:

L = Pt + Gt + Gr + GLNA − Pr − Lr1 − Lr2 (1)

where Pt and Pr represent the radar transmitting power and receiver receiving power,
respectively. Gt and Gr represent the transmitting antenna gain and the receiving antenna
gain, respectively, GLNA represents the low noise amplifier gain. Lr1 and Lr2 represent the
feedline loss at the transmitter and receiver, respectively. The above equipment parameters
in the over−the−horizon propagation experiment are shown in Table 2.

Table 2. Equipment parameters in the over−the−horizon propagation experiment.

Number Parameter Value

1 Receiving Antenna Gain 16.0 dB
2 Low Noise Amplifier Gain 22.3 dB
3 Transmitter Feedline Loss 2.0 dB
4 Receiver Feedline Loss 2.0 dB

The over−the−horizon propagation experiment was conducted four times in total and
three obvious sets of over−the−horizon propagation signals were collected. According to
Equation (1), PL sequences of the three sets of over−the−horizon signals can be calculated
by combining the equipment parameters, as shown in Figure 4.

Figure 4. Three sets of PL sequences measured in the over−the−horizon propagation experiment:
(a) first set; (b) second set; (c) third set.

From Figure 4, the variation trend of each PL at different ranges are various, because
of the influence of the ED, the PL sequences have serious deviation and there are strong
non−linear and non−smoothness characteristics, which cannot reflect the real propaga-
tion situations of EM waves. So, it is necessary to lower the non−smoothness of the PL
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sequences, which is very essential to achieve the subsequent accurate prediction of PL
sequences at long ranges [23].

Figure 5 shows the EDH data on the Wenchang–Yongxing Island path obtained while
measuring the third set of PL [24]. Figure 5 shows that the EDHs at different measurement
locations are varied over the corresponding time and space during the over−the−horizon
experiment. Overall, the EDH is smaller when the ship is close to Wenchang, and when the
ship moves away from Wenchang reaching a remote marine area, the EDH is larger and
very undulating [25]. The different space distribution of EDH can seriously influence the
propagation path of EM waves, resulting in PL with strong non−linear characteristics.

Figure 5. EDHs measured on Wenchang–Yongxing Island path: (a) Wenchang–Yongxing Island;
(b) Yongxing Island–Wenchang.

3. Multiscale Decomposition Prediction of PL in ED
3.1. General Framework of Multiscale Decomposition Prediction Model

In this study, the VMD method, PSO algorithm and LSTM network, are used to build
the VMD−PSO−LSTM model for PL prediction in marine EDs. The LSTM network is a
special RNN that solves the problems of gradient explosion and short−term memory in
RNN and can extract the data correlation inside the PL well [26]. Since the measured PL is
a non−linear and highly complicated sequence, if the PL sequence is predicted directly,
it is prone to generate large errors, which seriously influences the accurate cognition
of EM waves’ propagation characteristics. Therefore, the measured non−smooth PL is
decomposed to obtain the IMF components with smoothness and a trend, thus improving
the accuracy of LSTM network [27]. The VMD method is more effective than other signal
decomposition methods in extracting the detailed characteristics of the PL and lowering
the non−smoothness of the PL, which can contribute to building a model with higher
prediction accuracy. In addition, this study uses the PSO algorithm, replacing the process
of artificially setting the hyperparameters of the LSTM network based on experience with
using the PSO algorithm to automatically search for the optimal hyperparameters [28].
Additionally, this study uses the LSTM network optimized by the PSO algorithm to predict
the PL subsequence. Eventually all the PL subsequence prediction results are reconstructed
as predicted values of PL in EDs. The general framework of the VMD−PSO−LSTM model
is shown in Figure 6. The detailed PL prediction process of the VMD−PSO−LSTM model
is as follows:

(1) Using VMD method to decompose PL. The measured PL is decomposed using the
VMD method to obtain a limited number of IMF components. This study obtains the
optimal number of components of the PL by calculating the central frequency, and the
decomposition process is expressed as follows:

L(t) = ∑K
i=1 IMFi(t) (2)
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where L(t) and IMF(t) represent the PL and IMF components, respectively, and K
represents the total number of IMF components.

(2) Building IMF components prediction models. Initializing the PSO algorithm, ran-
domly generating a population of particles and setting the parameters of the PSO
algorithm. Subsequently, using the PSO algorithm to optimize the hyperparame-
ters (number of neurons, number of iterations and the learning rate) of the LSTM
network [29]. Using the optimized LSTM network to learn the history state informa-
tion for each set of PL subsequences and predict the value of the corresponding PL
subsequences. The prediction principle of the PL subsequence can be expressed as:

Y(t + 1) = PLSTM[IMF(t), IMF(t− 1)] (3)

where PLSTM(·) represents the LSTM network optimized by PSO and Y(t + 1) rep-
resents the predicted value of the PL subsequence.

(3) Reconstructing the IMF components’ prediction result. The predicted values of each
PL IMF component are reconstructed to obtain the final prediction result of PL in a
marine ED. The reconstructed result can be expressed as:

L(t + 1) = ∑K
i=1 Yi(t + 1) (4)

Figure 6. General framework of the VMD−PSO−LSTM model.

3.2. Using VMD Method to Decompose PL Sequence

The PL of EM waves in a marine ED is a type of non−smooth signal, so we use the
VMD method to preprocess the PL to lower the complexities of the PL [30]. VMD is an
adaptive and completely non−recursive signal analysis method based on the Wiener filter
theory. VMD can decompose the PL into multiple subsequences called IMF components
by setting the number of components for the PL, according to the characteristics of the
PL in a real ED. Thus, VMD can achieve the effective decomposition of IMF components
and has strong robustness to noise [31]. The VMD method can also effectively lower the
non−smoothness of a complicated signal after the signal has been effectively reconstructed
with valid information from different frequency bands. In the VMD method, each IMF
component is defined as a non−smooth AM–FM signal, and the main decomposition
process is as follows [32]:
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(1) Conducting the Hibbert transform on each IMF component to obtain the unilateral
frequency spectrum and the analytical signal of the IMF component:[

δ(t) +
j

πt

]
∗ uk(t) (5)

where “∗” represents the convolution operation, δ(t) represents an impulse function,
j represents the imaginary part and t represents time.

(2) Using the exponential operator e−jωkt to correct the center frequency of the IMF
component, and modulate the spectrum of IMF components to the corresponding
baseband: [(

δ(t) +
j

πt

)
∗ uk(t)

]
e−jωkt (6)

(3) Solving the gradient of the demodulation signal, calculating the squared norm of
the demodulation gradient and estimating the bandwidth of each IMF component,
obtaining the following variational constraint model: min

{uk},{ωk}

{
∑K

k=1

∥∥∥∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt

∥∥∥2

2

}
s.t.∑K

k=1 uk(t) = L(t)
(7)

where {uk} = {u1, u2, . . . , uK} represents the K IMF components obtained from the
decomposition of PL L(t), {ωk} = {ω1, ω2, . . . , ωK} represents the central frequency
of each IMF component and ∂t represents the time derivative.

(4) For the above variational constraint model, the model can be converted to an uncon-
strained variational problem by introducing a penalty factor α and Lagrange operator
λ(t) to obtain its optimal solution, and the extended Lagrange expression is as follows:

L({uk}, {ωk}, λ) = α∑K
k=1

∥∥∥∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt

∥∥∥2

2

+
∥∥∥L(t)−∑K

k=1 uk(t)
∥∥∥2

2
+
〈

λ(t), L(t)−∑K
k=1 uk(t)

〉 (8)

(5) Using the alternating direction multiplier method to continuously update each IMF
component uk and central frequency ωk to solve the “saddle point” (the optimal solu-
tion to the original variational constraint model) of the extended Lagrange expression,
the updated IMF component and central frequency, respectively, are as follows:

un+1
k (ω) =

L(ω)−∑K
i<k un+1

i (ω)−∑K
i>k un

i (ω) + λn(ω)
2

1 + 2α
(
ω−ωn

k
)2 (9)

ωn+1
k =

∫ ∞
0 ω

∣∣∣un+1
k (ω)

∣∣∣2dω∫ ∞
0

∣∣∣un+1
k (ω)

∣∣∣2dω

(10)

λn+1(ω) = λn(ω) + τ

(
L(ω)−

K

∑
k=1

un+1
k (ω)

)
(11)

where τ is the noise tolerance of the signal. Given the allowable error value ζ > 0,
iterating until the convergence condition is met or the maximum number of iterations
is reached:

∑K
k=1

∥∥∥un+1
k − un

k

∥∥∥2

2

∑K
k=1
∥∥un

k

∥∥2
2

< ζ (12)
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In the VMD method, the decomposition results of the IMF components are mainly
influenced by the number of components K [33]. The waveshape and frequency of the
decomposed IMF components will vary with the K. The more accurate the size of K is set,
the better the decomposed IMF components will be in describing the propagation charac-
teristics of PL, and the more accurate the following prediction results obtained by using
the LSTM network. Therefore, before decomposing the PL, K needs to be set in advance; a
too large value of K will generate additional noise or result in mode mixing, too small will
result in IMF components being under−decomposed and some important information will
be filtered out. To make the decomposed IMF components describe as much information as
possible about the characteristics of PL and to achieve more accurate prediction results [34],
this study sets the best K by calculating the central frequency distribution for different
decomposition numbers, and the corresponding calculation process is shown in Figure 7.

Figure 7. Process for calculating the central frequency of different decomposition numbers.

To balance the size of K and the accuracy of the decomposition for the measured
PL sequences, this study calculates and observes the central frequency distribution to
determine the size of K [35]. The central frequency of the IMF components obtained from
the VMD decomposition are distributed from low frequency to high frequency. For a set
of PL sequences, the number of components is calculated from small to large, to calculate
the central frequency under different decomposition numbers. When the central frequency
of the IMF component of the last layer remains relatively stable, it can be considered that
the best size of K is obtained at this time. Using the VMD method to decompose measured
PL sequences under different K values, the central frequency distribution of each IMF
component (IMF1, IMF2, . . . IMFK) is obtained as shown in Tables 3–5.

Table 3. Central frequency for the IMF components of the first set of PL.

K IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7

2 7.84 × 10−7 0.085722
3 7.77 × 10−7 0.080441 0.204793
4 7.75 × 10−7 0.079771 0.200860 0.335962
5 7.74 × 10−7 0.079503 0.199620 0.324704 0.436563
6 7.62 × 10−7 0.071275 0.134334 0.210364 0.326630 0.439310
7 7.47 × 10−7 0.060998 0.106955 0.171296 0.238401 0.329121 0.437847



J. Mar. Sci. Eng. 2023, 11, 51 10 of 23

Table 4. Central frequency for the IMF components of the second set of PL.

K IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8

2 7.11 × 10−7 0.160041
3 7.00 × 10−7 0.124964 0.264836
4 6.97 × 10−7 0.120772 0.252542 0.376416
5 6.48 × 10−7 0.066249 0.16108 0.267773 0.416254
6 6.44 × 10−7 0.064167 0.156436 0.255209 0.352884 0.450286
7 6.20 × 10−7 0.052778 0.129169 0.211793 0.283487 0.366564 0.455107
8 6.01 × 10−7 0.045661 0.108541 0.168596 0.240634 0.308612 0.379114 0.458929

Table 5. Central frequency for the IMF components of the third set of PL.

K IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9

3 3.63 × 10−7 0.110601 0.226735
4 3.62 × 10−7 0.105327 0.216277 0.395508
5 3.55 × 10−7 0.085214 0.165108 0.317864 0.435583
6 3.48 × 10−7 0.070245 0.151811 0.238644 0.333217 0.441332
7 3.38 × 10−7 0.054487 0.113588 0.223596 0.302816 0.384877 0.461104
8 3.64 × 10−7 0.115827 0.233349 0.175235 0.236412 0.311493 0.389808 0.463149
9 3.36 × 10−7 0.052281 0.107843 0.166575 0.223360 0.285226 0.342295 0.405546 0.469048

As can be seen from Table 3, for the IMF components of the first set of PL, the central
frequency of the IMF components of the last layer starts to remain stable after K is greater
than 4. Therefore, when K is equal to 5, the central frequency of adjacent IMF components is
more spaced. The results of central frequency decomposition are relatively better, which can
effectively avoid the phenomenon of mode mixing and can well explore the characteristic
information inside PL [36]. Similarly, we can obtain the best number of components for the
second and third sets of PL sequences. The best number of components for three sets of PL
sequences is shown in Table 6.

Table 6. Best number of components for three sets of measured PL sequences.

Propagation Loss Best Number of Components

First Set 5
Second Set 6
Third Set 7

The decomposed IMF components of three sets of PL sequences are shown in
Figures 8–10. From Figures 8–10, after the VMD decomposition, the IMF components
can be completely decomposed from small to large according to the frequency. The decom-
posed IMF components are all different, which does not result in over−decomposition,
showing that the decomposed IMF components characterize as much information as possi-
ble about the measured PL. Analysis of the IMF components shows that the IMF1 reflects
the variation trend of the measured PL sequence. IMF2 is highly regular and contains
more periodic information. Other IMF components are less regular and contain more
non−periodic information. It shows that through VMD decomposition, both the varia-
tion trend and local characteristics inside the PL are explored, thus contributing to the
prediction model to better learn the characteristics inside the PL and reduce the difficulty of
prediction. Moreover, except for IMF1, the IMF components are stable, and the values are
all relatively evenly distributed on both sides of 0. Thus, the purpose of filtering out noise
is also achieved by using VMD, reducing the influence of noise on prediction accuracy.
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Figure 8. IMF components of PL sequence for the first set:(a) IMF1; (b) IMF2; (c) IMF3; (d) IMF4;
(e) IMF5.

Figure 9. IMF components of PL sequence for the second set:(a) IMF1; (b) IMF2; (c) IMF3; (d) IMF4;
(e) IMF5; (f) IMF6.

Therefore, the corresponding prediction models are built for multiple IMF components
of the decomposition of three sets of measured PL sequences, and finally the corresponding
PL prediction results for three sets of PL sequences are reconstructed.
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Figure 10. IMF components of PL sequence for the third set:(a) IMF1; (b) IMF2; (c) IMF3; (d) IMF4;
(e) IMF5; (f) IMF6; (g) IMF7.

3.3. Building a PL Subsequence Prediction Model Using a LSTM Network

For the VMD−PSO−LSTM method, we use optimized a LSTM network to predict
the PL subsequence (IMF component) at long ranges. Since PL values at each measured
location have a certain non−linear relationship with both historical and future loss values,
it is because of this characteristic that the LSTM network can be used to predict the PL.
Additionally, LSTM prediction models are built for each set of PL subsequences. The LSTM
prediction model learns the characteristic historical information about the PL subsequence,
and the output is the predicted value of the IMF component. Finally, the predicted values
of each IMF component are reconstructed to obtain the final PL predicted values [37].

The LSTM network is a special kind of RNN with good generalization ability and
fault tolerance, which effectively improves the problems of gradient explosion, gradient
disappearance and poor memory that exist in RNN. An LSTM network saves the long−term
state by adding a hidden memory unit, the memory unit in LSTM network consists of the
input gate, forget gate and output gate [38]. The forget gate is used to select the information
to be discarded through the Sigmoid function, the input gate is used to select the current
information to be saved and the output gate is used to control the number of information
to be output. With the three gate mechanisms, the LSTM network’s memory unit can
continuously update information at different moments, so the LSTM model is able to learn
the long−term evolution regulation of the PL subsequence [39]. The prediction process of
the PL subsequence combining LSTM network is shown in Figure 11.
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Figure 11. Prediction process for the PL subsequence combining LSTM network.

The detailed processes of learning the long−term evolution regulation of the prop-
agation loss subsequence in the memory unit are as follows. The first step of the LSTM
network is to determine what information about PL will be discarded from the unit state.
This step is determined by the forget gate. The output ht−1 at the previous moment and
input Xt at the current moment are input into the Sigmoid activation function and output a
number between 0 and 1 to each number in the cell state ct−1 at the previous moment, 1
represents the “fully keep” state and 0 represents the “fully forget” state. The calculation
equation of the forget gate is as follows:

ft = σ
(

W f Xt + U f ht−1 + b f

)
(13)

The next step will determine what PL characteristics information will be saved in the
unit state by the input gate. This step consists of two parts. One is that the Sigmoid function
determines which values need to be updated, and the other part is that the tanh activation
function will generate a new candidate state c̃t, which can be added to the memory unit
state. The input gate is calculated as follows:

it = σ(WiXt + Uiht−1 + bi) (14)

c̃t = tanh(WcXt + Ucht−1 + bc) (15)

Then the old cell state ct−1 at the previous moment is updated with the new cell state
ct. The output of the forget gate is multiplied by the old cell state ct−1; the output of the
input gate is multiplied by the new candidate information, and the sum of the two parts
generates a new cell state ct as follows:

ct = ft · ct−1 + it · c̃t (16)

Finally, the output gate determines what information will be output. The output ht−1
at the previous moment and input Xt at the current moment are input into the Sigmoid
activation function, and the newly obtained cell state ct is then input into the tanh activation
function to set the unit state value between −1 and 1; subsequently, the two parts are
multiplied as follows:

ot = σ(WoXt + Uoht−1 + bo) (17)

ht = ot · tanh(ct) (18)

where ht−1 represents the hidden memory unit state at the previous moment, Xt represents
the PL subsequence of the input at current moment, i.e., IMF(t). h(t) represents the
output at the current moment. Wi, Ui, W f , U f , Wo, Uo, Wc and Uc represent the weight
vector matrix corresponding to the three gates; bi, b f , bo and bc represent biasing term; it
represents the input gate, ft represents the forget gate and ot represents the output gate.
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σ and tanh represent the Sigmoid activation function and hyperbolic tangent activation
function, respectively, and are calculated as follows:

Sigmoid(X) =
1

1 + e−X (19)

tanh(X) =
eX − e−X

eX + e−X (20)

In the LSTM network, choosing the appropriate training function in the modeling
process has an important influence on the accuracy of the prediction results, and the
appropriate training function can make the prediction model provide more ideal results.
This study chooses tanh and Sigmoid functions as the activation functions, and Mean
Square Error (MSE) as the loss function when training the model. This study also uses the
Adam method to optimize the loss function in the back propagation of the LSTM network.
The equation for the loss function is as follows:

Loss =
∑H

i=1

(
ypred(i)− y(i)

)2

H
(21)

where H represents the size of the training set, ypred(i) and y(i) represent the predicted
result and corresponding true value of the PL, respectively. The modeling process for
the PL subsequence prediction model based on an optimized LSTM network is shown
in Figure 12.

Figure 12. Modeling process for PL subsequence prediction model based on optimized LSTM
network. (1) Normalizing PL subsequence; (2) setting prediction window to construct training and
test sets; (3) using optimized LSTM network for prediction.
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For the measured PL, the front 70% of the loss values of each set of subsequences
obtained after decomposition are used to construct a training set to train the LSTM network,
and the remaining 30% of the loss values are used to test the prediction performance of
the VMD−PSO−LSTM method. The size of the prediction window is set to 10 for the PL
subsequence prediction, i.e., this study uses the front 10 PL subsequence values to predict
the next loss value. Furthermore, to enhance the convergence velocity and prediction
accuracy of the LSTM prediction model, we first normalize each PL subsequence before
model training, distributing the PL subsequence input to the prediction model between 0
and 1 [40]. The normalized PL subsequence is then predicted by the LSTM network. The
normalization is calculated as follows:

Y =
X− Xmin

Xmax − Xmin
(22)

where Xmax and Xmin represent the maximum and minimum values in the PL subsequence,
respectively. Furthermore, before training the LSTM network, this study uses the PSO
algorithm to optimize the hyperparameters of the LSTM network.

3.4. Uing PSO Algorithm to Optmize Hyperparameters of LSTM Network

The LSTM network has obvious advantages in time sequence prediction, but the
setting of hyperparameters in a LSTM network is very critical for model training, relying
only on empirical selection of parameters will not only enhance the training difficulty of
the model, but also result in the trained model not having the best prediction performance.
The main purpose of using PSO to optimize the LSTM network is that, before training the
LSTM network, instead of artificially setting the hyperparameters of the LSTM network
based on experience (the number of neurons, the number of iterations and the learning
rate), the three hyperparameters are input as a set into the PSO algorithm for optimization.
The PSO algorithm simulates the prediction process of the LSTM network based on the
training set, and when the fitness function is minimized, the optimal solution is selected
and set to the LSTM network to build a PL subsequence prediction model, so that the final
LSTM prediction model has the best prediction performance [41]. The update equations of
the PSO algorithm can be expressed as follows:

vp,m+1 = w · vp,m + c1 · rand1 ·
(

pbestp − xp,m
)

+c2 · rand2 ·
(

gbestm − xp,m
) (23)

xp,m+1 = xp,m + vp,m+1 (24)

where w represents the inertia weight. c1 and c2 represent learning factors for particle and
population, respectively. rand1 and rand2 represent two random values between 0 and
1. vp,m and xp,m represent the velocity and position of the particle p at the mth iteration,
respectively. pbestp and gbestm represent the known optimal solutions for particle and
population, respectively.

The core idea of the PSO algorithm is to consider each hyperparameter of LSTM
network to be optimized as a particle in the search space. Each particle has two proper-
ties: velocity and position. Position is used to describe the current state of the particle
and velocity is used to describe the movement of the particle at the next iteration. The
particle finds the optimal solution by updating its own velocity and position according
to Equations (23) and (24). In each iteration, the particle updates itself by tracking two
extreme values: the first is the optimal solution currently found by the particle, called
individual optimal position, and the other is the optimal solution currently found in the
whole population, called population optimal position [42]. The search process for the PSO
algorithm in this study is shown in Figure 13.
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Figure 13. Search process for the PSO algorithm.

Based on PL subsequences, the velocity and position of each particle need to be
randomly initialized. The particle swarm related parameters need to be initialized before
the hyperparameters of LSTM network are optimized. In this study, the parameters of the
PSO algorithm are set as follows: the number of evolutionary iterations is 100, the number
of particles is 30, the particle dimension is 3, the learning factors c1 = c2 = 1.49, the inertia
weight w = 0.8 and the MSE function is used as the fitness function.

According to the particle dimension and the hyperparameters of the LSTM network
to be optimized, the expression for the initialized particle is as follows:

xi,0 = (h, ε, nLSTM) (25)

where h represents the number of neurons, ε represents the learning rate and nLSTM
represents the number of iterations. Based on certain experience of setting hyperparameters,
the three hyperparameters h, ε and nLSTM in xi,0 set in this study are set in the range [1, 300],
[1, 500] and [0.001, 0.01], respectively, for the optimal search [43]. In this study, based on
the LSTM prediction model built from the PL subsequences, the hyperparameters of the
optimal LSTM prediction model optimized by the PSO algorithm are shown in Tables 7–9.

Table 7. Results of hyperparameters optimized by PSO based on first set PL.

PL Subsequence
First Set Number of Neurons Number of Iterations Learning Rate

IMF1 90 228 0.0091
IMF2 65 290 0.0067
IMF3 157 383 0.0078
IMF4 210 169 0.0072
IMF5 212 203 0.0094

Table 8. Results of hyperparameters optimized by PSO based on second set PL.

PL Subsequence
Second Set Number of Neurons Number of Iterations Learning Rate

IMF1 219 243 0.0049
IMF2 92 470 0.0084
IMF3 79 420 0.0043
IMF4 193 376 0.0074
IMF5 144 151 0.0091
IMF6 29 309 0.0074
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Table 9. Results of hyperparameters optimized by PSO based on third set PL.

PL Subsequence
Third Set Number of Neurons Number of Iterations Learning Rate

IMF1 281 254 0.0070
IMF2 82 134 0.0074
IMF3 25 433 0.0086
IMF4 137 178 0.0060
IMF5 262 373 0.0082
IMF6 117 193 0.0081
IMF7 39 443 0.0075

4. Prediction Results and Analysis
4.1. Performance Evaluation Indicators

To evaluate the prediction performance of the VMD−PSO−LSTM method, this study
uses Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) to evaluate the
prediction performance of the VMD−PSO−LSTM method from different perspectives
based on the test set. The smaller the value of RMSE and MAE, the better the prediction
performance of the VMD−PSO−LSTM method and the higher the prediction accuracy of
the PL. The evaluation indicators RMSE and MAE are calculated as follows:

MAE =
∑T

i=1

∣∣∣Lpred(i)− L(i)
∣∣∣

T
(26)

RMSE =

√
∑T

i=1
(

Lpred(i)− L(i)
)2

T
(27)

where Lpred(i) represents the predicted result of the PL sequence, L(i) represents the true
value of the PL and T represents the size of the test set.

In addition, to compare the prediction performance of the VMD−PSO−LSTM method
with other prediction methods, this study uses PRMSE and PMAE to represent the pre-
diction improved performance of the VMD−PSO−LSTM method in RMSE and MAE,
respectively [33], PRMSE and PMAE are calculated as follows:

PRMSE =
|RMSE1 − RMSE2|

RMSE1
× 100% (28)

PMAE =
|MAE1 −MAE2|

MAE1
× 100% (29)

4.2. PL Prediction Results and Analysis

To show the advantages of the VMD−PSO−LSTM method in PL prediction, this study
additionally builds another seven prediction models for comparison with the
VMD−PSO−LSTM method to verify its performance. These include single prediction
methods: the RNN network, gate recurrent unit (GRU) network and LSTM network. These
also include hybrid prediction methods: the PSO−LSTM method, VMD−LSTM method, a
method (WST−LSTM) consisting of wavelet scattering transform (WST) and LSTM and a
method (VMD−GA−LSTM) consisting of a genetic algorithm (GA), VMD and LSTM [44].
Three sets of measured PL sequences are input into the above seven prediction models and
the VMD−PSO−LSTM model for training and prediction. Their prediction performance
is evaluated using RMSE and MAE indicators. The Figures 14–16 show the prediction
results of the multiple prediction methods on three sets of PL test sets. It can be seen from
Figures 14–16 that as the propagation range varies, the PL sequences predicted by the
RNN, GRU and LSTM networks are farther away from the PL and are greater than the PL
of the first and third sets. In addition, the RNN, GRU and LSTM networks have worse
prediction results when the PL sequence has large fluctuations. The predicted sequences
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of the other methods (WST−LSTM, VMD−LSTM, PSO−LSTM, VMD−GA−LSTM and
VMD−PSO−LSTM methods) fluctuate around the PL. For the first set of PL, the prediction
results of WST−LSTM, VMD−LSTM and PSO−LSTM methods also deviate from PL below
the PL sequence.

Figure 14. Prediction results of the first set of PL for different methods.

Figure 15. Prediction results of the second set of PL for different methods.

The WST−LSTM, VMD−LSTM and PSO−LSTM methods can only weakly reflect the
trend of the PL sequence, compared with the prediction results of RNN, GRU and LSTM
networks. The VMD−GA−LSTM method cannot fully reflect the direction of the trend and
fluctuation size of the PL sequence correctly. However, the trend situation of its prediction
results is generally consistent with the real situation. The VMD−PSO−LSTM has the best
prediction results, and the PL sequence predicted by the VMD−PSO−LSTM method at
more remote locations has better fitting results compared with other methods, which can
better reflect the propagation trend and fluctuation size of the PL.

Based on the three sets of PL sequences, the prediction results of the VMD−PSO−LSTM
method and other seven prediction methods are compared. This study calculates the RMSE
and MAE indicators of the VMD−PSO−LSTM method and the other seven prediction
methods in the test set to evaluate the prediction performance from different perspectives.
The RMSE and MAE indicators of different prediction methods in each PL test set are
shown in Tables 10 and 11.
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Figure 16. Prediction results of the third set of PL for different methods.

Table 10. RMSE of different prediction methods for three sets of PL sequences.

Prediction Method
RMSE (dB)

First Set Second Set Third Set

RNN 1.877 2.536 1.243
GRU 1.662 2.414 0.974
LSTM 1.364 2.259 0.742

WST−LSTM 1.213 2.165 0.667
VMD−LSTM 0.932 2.010 0.609
PSO−LSTM 0.783 1.909 0.497

VMD−GA−LSTM 0.704 1.878 0.447
VMD−PSO−LSTM 0.517 1.682 0.368

Table 11. MAE of different prediction methods for three sets of PL sequences.

Prediction Method
MAE (dB)

First Set Second Set Third Set

RNN 1.813 2.051 1.175
GRU 1.606 1.951 0.892
LSTM 1.292 1.836 0.659

WST−LSTM 1.105 1.762 0.604
VMD−LSTM 0.816 1.614 0.544
PSO−LSTM 0.665 1.517 0.428

VMD−GA−LSTM 0.613 1.476 0.351
VMD−PSO−LSTM 0.406 1.332 0.276

As Tables 10 and 11 show, both RMSE and MAE indicators of the VMD−PSO−LSTM
method are smaller than the other seven comparison methods for different PL, which shows
that the prediction performance of the VMD−PSO−LSTM method is better than that of
the other comparison methods, the VMD−PSO−LSTM method has a higher PL prediction
accuracy than the other comparison methods.

Tables 12 and 13 show the percentage improvement in the PL prediction performance
of the VMD−PSO−LSTM method compared to other seven methods. The advantage of the
VMD−PSO−LSTM method is further verified by the PRMSE and PMAE indicators. Accord-
ing to the comparison results, the VMD−PSO−LSTM method has lower error and higher
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prediction accuracy for PL prediction. Compared to the other seven prediction methods,
for three sets of measured PL sequences, the VMD−PSO−LSTM method improves the
prediction performance at most by 72.46 and 77.61%, and improves by at least 10.44 and
9.76% in RMSE and MAE, respectively. Moreover, the VMD−PSO−LSTM model has good
generalization which has better prediction performance in different sets of PL sequences.

Table 12. PRMSE of the VMD−PSO−LSTM method in comparison with the other seven methods.

Prediction Method
PRMSE

First Set Second Set Third Set

RNN 72.46% 33.68% 70.39%
GRU 68.89% 30.32% 62.22%
LSTM 62.10% 25.54% 50.40%

WST−LSTM 57.38% 22.31% 44.83%
VMD−LSTM 44.53% 16.32% 39.57%
PSO−LSTM 33.97% 11.89% 25.96%

VMD−GA−LSTM 26.56% 10.44% 17.67%

Table 13. PMAE of the VMD−PSO−LSTM method in comparison with the other seven methods.

Prediction Method
PMAE

First Set Second Set Third Set

RNN 77.61% 35.06% 76.51%
GRU 74.72% 31.73% 69.06%
LSTM 68.58% 27.45% 58.12%

WST−LSTM 63.26% 24.40% 54.30%
VMD−LSTM 50.25% 17.47% 49.26%
PSO−LSTM 38.95% 12.20% 35.51%

VMD−GA−LSTM 33.77% 9.76% 21.37%

To show prominently the influences of the VMD method, the PSO algorithm was
used on the PL prediction results. The performance of the VMD−PSO−LSTM method still
requires further analysis from the prediction results. This study compares the RMSE and
MAE indicators of six prediction methods (LSTM, WST−LSTM, VMD−LSTM, PSO−LSTM,
VMD−GA−LSTM and VMD−PSO−LSTM), and the two indicators for three sets of PL
sequences are shown in Figure 17. The following correlation analysis is conducted:

(1) To analyze the influence of the introducing of the VMD on the PL prediction perfor-
mance, this study compares the prediction performance of VMD−LSTM and LSTM,
the prediction performance of VMD−PSO−LSTM and PSO−LSTM and the prediction
performance of VMD−LSTM and WST−LSTM. For the three sets of PL sequences, the
VMD−LSTM improves the prediction performance compared with the LSTM at most
by 31.67 and 36.84%, and improves by at least 11.02 and 12.09% in RMSE and MAE,
respectively. The VMD−PSO−LSTM improves the prediction performance compared
with the PSO−LSTM at most by 33.97 and 38.95%, and improves by at least 11.89
and 12.20% in RMSE and MAE, respectively. Finally, the VMD−LSTM improves
the prediction performance compared with the WST−LSTM at most by 23.17 and
26.15%, and improves by at least 7.16 and 8.40% in RMSE and MAE, respectively.
The above analysis results show that the introduction of the VMD effectively lowers
the non−smoothness and complexity of PL, reduces the prediction errors of the PL
subsequences and effectively improves the prediction performance and practicality of
the LSTM. Furthermore, the VMD method is not only effective in improving the pre-
diction accuracy of the single LSTM prediction model, but also still helps significantly
in improving the prediction accuracy of the hybrid model.

(2) To analyze the influence of the introducing of the PSO on the PL prediction perfor-
mance, this study compares the prediction performance of PSO−LSTM and LSTM, the
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prediction performance of VMD−PSO−LSTM and VMD−LSTM and the prediction
performance of VMD−PSO−LSTM and VMD−GA−LSTM. For the three sets of PL
sequences, the PSO−LSTM improves the prediction performance compared with
the LSTM at most by 42.60 and 48.53%, and improves by at least 15.49 and 17.37%
in RMSE and MAE, respectively. The VMD−PSO−LSTM improves the prediction
performance compared with the VMD−LSTM at most by 44.53 and 50.25%, and
improves by at least 16.32 and 17.47% in RMSE and MAE, respectively. Finally,
the VMD−PSO−LSTM improves the prediction performance compared with the
VVMD−GA−LSTM at most by 26.56 and 33.77%, and improves by at least 10.44
and 9.76% in RMSE and MAE, respectively. The above analysis results show that
the introduction of the PSO has greater effectiveness in improving the prediction
performance of the single LSTM network and the hybrid VMD−LSTM method. Using
the hyperparameters of the LSTM optimized by the PSO, the mapping relationship
between the historical and future information of PL can be better built so that the
LSTM can converge better. Thus the prediction model of the LSTM can be better built.

Figure 17. RMSE and MAE indicators of the six methods (LSTM, WST−LSTM, VMD−LSTM,
PSO−LSTM, VMD−GA−LSTM and VMD−PSO−LSTM methods): (a) RMSE; (b) MAE.

5. Conclusions and Future Work

To achieve accurate prediction of EM waves’ PL in EDs, a multiscale decomposition
prediction model (VMD−PSO−LSTM) for PL prediction is proposed. Firstly, the VMD
method is used to decompose the measured PL, which can effectively solve the problems
such as high randomness and non−linearity of the PL. Through the LSTM network, the
non−linear mapping relationships between the historical and future information about
PL are learned. Additionally, the PSO algorithm is introduced to optimize the hyper-
parameters of the LSTM network, so that the model can converge better and lower the
training complexity. To verify the prediction performance of the proposed method, the
VMD−PSO−LSTM method is compared with the other seven methods. By comparing
the prediction results of three sets of PL sequences, the following conclusions are obtained
based on the prediction results: (1) the VMD−PSO−LSTM method performs significantly
better than other seven methods in RMSE and MAE indicators, indicating that the pro-
posed method can satisfy the requirements of accurate prediction application for PL;
(2) the VMD method can enhance the PL prediction performance and accuracy of the above
non−decomposition methods (LSTM and PSO−LSTM); (3) the PSO algorithm can enable
LSTM to achieve better convergence and further enhance the prediction performance of the
LSTM model significantly.

In future work, we will focus more on building a more effective hybrid prediction
model combining VMD−PSO−LSTM built in this study to make a higher accuracy for PL
prediction. Additionally, we will consider more spatial information on PL.
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