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Abstract: As a Lagrangian mesh-free method, the moving particle semi-implicit (MPS) method can
easily handle complex incompressible flow with a free surface. However, some deficiencies of the
MPS method, such as inaccurate results, unphysical pressure oscillation, and particle thrust near
the free surface, still need to be further resolved. Here, we propose a modified MPS method that
uses the following techniques: (1) a modified MPS scheme with a split-pressure Poisson equation is
proposed to reproduce hydrostatic pressure stably; (2) a new virtual particle technique is developed
to ensure the symmetrical distribution of particles on the free surface; (3) a Laplacian operator that is
consistent with the original gradient operator is introduced to replace the original Laplacian operator.
In addition, a two-judgment technique for distinguishing free surface particles is introduced in the
proposed MPS method. Four free surface flows were adopted to verify the proposed MPS method,
including two hydrostatic problems, a dam-breaking problem, and a violent sloshing problem. The
enhancement of accuracy and stability by these improvements was demonstrated. Moreover, the
numerical results of the proposed MPS method showed good agreement with analytical solutions
and experimental results.

Keywords: MPS method; pressure Poisson equation; virtual particle; Laplacian operator; free surface

1. Introduction

The moving particle semi-implicit (abbr. as MPS) method is a mesh-free method fully
based on a Lagrangian description [1]. Because the MPS method can easily capture the free
surface or interface of a fluid flow, it is widely adopted to simulate incompressible fluids
with a free surface or interface in various engineering fields. Huang and Zhu [2] used
the MPS method to simulate tsunami processes. Pan et al. [3,4] simulated liquid sloshing
problems using the MPS-LES method. Shibata et al. simulated ship–wave interactions in
rough seas [5], dam-breaking processes [6], and a lift-boat falling into water [7]. Sun et al. [8]
studied the mass transfer mechanisms of rotary atomization using the MPS method. Yang
and Zhang [9] adopted the MPS-LES method for investigating fluid–structure interactions.
Duan et al. [10] developed a FS-MMPS solver to simulate the multifluid interactions
of oil spill processes. Chen et al. [11,12] investigated bubble dynamics using the MPS
method. Despite its inherent advantages for capturing surfaces or interfaces, the MPS
method has many shortcomings, such as unphysical pressure oscillation, inconsistent and
nonconservative operators, and particle thrust. For this reason, many improvements and
modifications have been proposed.

The original Laplacian operator was derived based on the physical quantity migration
of the diffusion problem [13]. It is physically conservative but inaccurate and inconsis-
tent [14]. To ensure consistency with the original gradient operator, several conservative
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Laplacian models have been developed by calculating the divergence of the original gradi-
ent operator (Zhang et al. [15], Khayyer and Gotoh [16], and Xu and Jin [17]). Although
the consistencies of these Laplacian operators were improved, their accuracies and con-
sistencies under irregular distributions remained insufficient. Furthermore, Tamai and
Koshizuka [18] constructed spatial operators with arbitrary order consistency based on
the moving least squares method, Duan et al. [19,20] developed a second-order Laplacian
operator with a corrective matrix, and Liu et al. [21] proposed a renormalized Laplacian
model with theoretical first-order consistency. These Laplacian operators have higher
accuracy than other conservative operators. However, the physical conservation of these
operators is sacrificed in order to achieve this.

The original gradient operator in the MPS method has insufficient repulsive force and
nonconservation of momentum. Koshizuka et al. [1] proposed a repulsive pressure gradient
operator to reduce particle aggregation. Toyota et al. [22] developed a conservative gradient
operator. Khayyer and Gotoh [23] proposed a conservative repulsive gradient operator.
Jandaghiana and Shakibaeinia [24] developed another conservative gradient operator. In
order to further improve the accuracy, several gradient operators with modified matrixes
have been proposed [10,25–27].

The original source term of the pressure Poisson equation causes violent pressure
fluctuations. In order to alleviate the pressure fluctuation, improved source terms have
been proposed, such as a higher-order source (HS) term [16,28], hybrid DI/DF (density
invariant/divergence-free) terms [15,29,30], multiterms with compensating parts [18,25,26,31],
a weak compressible source term [23], a quasi-compressibility source term [32], and a
compressible multiterm [33].

In most MPS calculations, the Dirichlet boundary condition is applied to free surface
particles directly. This leads to particle thrust on a free surface because there is zero
interactive repulsive force between two free surface particles. Li et al. [34] applied a revised
model to free surface particles to maintain a reasonable distance between free surface
particles. Chen et al. [35] and Shibata et al. [6] developed virtual particle techniques in
which an interactive repulsive force exists on free surfaces. These virtual particle techniques
can effectively prevent particle thrust on free surfaces and alleviate pressure oscillation.
However, they are limited to the original Laplacian operator and its derivatives because
the position of the virtual particle is not given.

In traditional MPS methods, the pressure Poisson equation for fluid particles is directly
applied to wall particles. This kind of wall boundary condition is homogeneous, and it
can effectively maintain particle number density on a solid wall. However, it cannot stably
and precisely reproduce hydrostatic pressure at every moment because the Neumann
boundary condition is not satisfied on the wall [36,37]. One solution is to directly apply
the nonhomogeneous Neumann boundary condition to the wall boundary, such as in
Lee et al. [29], Sun et al. [30], Tamai and Koshizuka [18], and Zhang et al. [38]. The
nonhomogeneous Neumann boundary condition is mathematically consistent and accurate.
However, when the Neumann boundary condition is applied to particle methods, the
nonslip boundary condition is difficult to satisfy in mesh methods because the position
of the particle is not fixed. Therefore, Sun et al. [30] modified the intermediate velocity of
wall pressure particles to ensure that the nonslip boundary condition can be approximately
satisfied.

Although previous efforts have significantly improved the performance of the MPS
method, further studies on enhancement of its accuracy and stability are still required. In
this study, several techniques are developed or introduced to improve the MPS calculations.
First, a modified MPS scheme with a split-pressure Poisson equation is proposed. In the
modified MPS scheme, the pressure Poisson equation is split into a hydrostatic pressure
Laplacian equation and a dynamic pressure Poisson equation. Therefore, hydrostatic
pressure can be reproduced stably and precisely. Additionally, a new virtual particle
technique is developed to ensure the symmetrical distribution of particles on the free surface.
In the new virtual particle technique, the position of virtual particles is given. Hence, it
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can be applied to an arbitrary Laplacian operator. In addition, we introduce a consistent
Laplacian operator proposed by Zhang et al. [15] to the discrete Poisson equation and
Laplacian equation. Moreover, a two-judgment technique for distinguishing free surface
particles is introduced to the proposed MPS method. Hydrostatic, dam-breaking, and tank
sloshing problems were adopted to verify the proposed method. Two hydrostatic problems
were adopted to verify the ability of the proposed method to reproduce hydrostatic pressure.
The dam-breaking and tank sloshing problems were used to examine the performance of
the proposed method at simulating fluid flow under fixed-wall and moving-wall conditions,
respectively.

2. Original MPS Method

The original MPS method introduced in this section is based on Koshizuka et al. [1].

2.1. Governing Equations

The governing equations of the MPS method include the momentum equation (Equa-
tion (1)) and the mass conservation equation (Equation (2)):

d
→
u

dt
= −1

ρ
∇P + ν∇2→u +

→
g (1)

dρ

dt
+ ρ∇ ·→u = 0 (2)

where
→
u , t, ρ, P, ν, and

→
g represent velocity vector, time, density, pressure, viscous coeffi-

cient, and acceleration of gravity, respectively.

2.2. Gradient Operator and Laplacian Operator

The original MPS gradient operator can be represented as follows:

〈∇ f 〉i =
d
n0

∑
j 6=i

f j − fi

r2
ij

→
r ijwij (3)

where f denotes the physical quantity, d represents the dimension of calculation, n0 denotes
the initial particle number density,

→
r ij represents the displacement vector from particle i to

particle j, and wij represents the kernel function. In the original MPS method, wij follows
the equation

wij =

{
re
rij
− 1, r ≤ re;

0, others.
(4)

where re represents the searching radius. Usually, re = 2.1l0, where l0 denotes the particle
resolution. The particle number density follows the equation

n(i) = ∑
j 6=i

wij (5)

In order to prevent particle aggregation, the following pressure gradient equation
(Equation (6)) is usually used:

〈∇P〉i =
d
n0

∑
j 6=i

Pj − P̂i

r2
ij

→
r ijwij (6)

where P̂i is the minimum pressure in the searching domain of particle i.
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The original Laplacian operator follows the equation〈
∇2 f

〉
i
=

2d
λn0

∑
j 6=i

(
f j − fi

)
wij (7)

λ =

∑
j 6=i

rij
2wij

∑
j 6=i

wij
(8)

2.3. Simulation Process of Traditional MPS Scheme

The MPS method is an operator-splitting scheme. Normally, it consists of an explicit
step and an implicit correction step at each time step.

In the explicit step, an intermediate velocity
→
u
∗

can be obtained using Equation (9):

→
u
∗
−→u

n

∆t
= ν∇2→u

n
+
→
g (9)

Then, in the implicit step, the velocity of the (n + 1)th time step
→
u

n+1
can be calculated

using Equation (10):
→
u

n+1
−→u

∗

∆t
= −1

ρ
∇Pn+1 (10)

By combining Equations (9) and (10), the momentum equation is obtained. Taking
the divergence of both sides of Equation (10), the following pressure Poisson equation is
obtained:

∇2Pn+1 =
ρ

∆t

(
∇ ·→u

∗
−∇ ·→u

n+1
)

(11)

For incompressible flows,
→
u

n+1
satisfies the following incompressible continuity

equation:

∇ ·→u
n+1

= 0 (12)

Substitute Equation (12) into Equation (11), and a DF-type (divergence-free type)
pressure Poisson equation is obtained:

∇2Pn+1 =
ρ

∆t
∇ ·→u

∗
(13)

From Equation (12) and Equation (2) (the mass conservation equation), the following
equation can be obtained:

ρ− ρ∗

ρ∆t
= ∇ ·→u

∗
(14)

where ρ∗ denotes intermediate density.
By replacing ρ and ρ∗ with n0 and intermediate number density n(i), respectively, on

the left side of Equation (14), Equation (15) is obtained:

n(i)− n0

n0∆t
= −∇ ·→u

∗
(15)

By combining Equations (13) and (15), a DI-type (density-invariant type) pressure
Poisson equation is obtained (Equation (16)):

∇2Pn+1 = − ρ

∆t2
n(i)− n0

n0
(16)
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The simulation process of the original MPS scheme is shown in Figure 1. As is shown
in the figure, the original MPS method directly solves the pressure Poisson equation to
obtain the total pressure of fluid flow.
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3. Proposed MPS Method

In this section, we present the details of the proposed MPS method. In Section 3.1, the
hybrid DI/DF source term introduced for the proposed MPS method is presented. Then, a
modified MPS scheme with a split-pressure Poisson equation is developed in Section 3.2.
In Section 3.3, the consistent Laplacian operator proposed by Zhang et al. [15] is introduced.
The new virtual particle technology is described in Section 3.4. Finally, the free surface
judgment technique developed by Pan et al. [39] is presented in Section 3.5.

3.1. Improved Source Term of Pressure Poisson Equation

The pure DI-type source term of the pressure Poisson equation given by Equation (16)
can ensure a stable particle number density, but the pressure oscillation can be exaggerated.
In contrast, the pure DF-type source term given on the right-hand side of Equation (13) has
better pressure behavior, but errors may accumulate regarding the particle number density.
In order to combine the advantages of the two source terms, the following hybrid DI/DF
term developed by Tanaka and Masunaga [32] is adopted in the proposed MPS method:

∇2P = ρ

[
(1− γ)

∇ ·→u
∗

∆t
− γ

n(i)− n0

n0∆t2

]
(17)

where γ is an empirical parameter. Generally, γ = 0.01 is recommended.

3.2. Modified MPS Scheme with a Split-Pressure Poisson Equation

In traditional MPS calculations, hydrostatic pressure cannot be reproduced stably
and precisely because the Neumann boundary condition is not satisfied on the wall. One
solution is to directly apply the Neumann boundary condition shown in Equation (18)
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to the wall boundary, as has been proposed by Lee et al. [29], Sun et al. [30], Tamai and
Koshizuka [18], and Zhang et al. [38]. Here, we develop a modified MPS scheme in which
the pressure Poisson equation is split into a hydrostatic pressure Laplacian equation and a
dynamic pressure Poisson equation as another solution.

∂P
∂n

∣∣∣∣
ΓN

=

ρ
→
g − d

→
u

dt

∣∣∣∣∣
ΓN

 ·→n (18)

In the proposed MPS scheme, the total pressure P is spit into the hydrostatic pressure
Ph and the dynamic pressure Pd.

P = Ph + Pd (19)

By substituting Equation (19) into the pressure Poisson equation shown in Equation
(17), we get the following:

∇2(Ph + Pd) = ρ

[
(1− γ)

∇ ·→u
∗

∆t
− γ

n(i)− n0

n0∆t2

]
(20)

When we split the above equation into a Laplacian equation and a dynamic pressure
Poisson equation, we get the following:

∇2Ph = 0 (21)

∇2Pd = ρ

[
(1− γ)

∇ ·→u
∗

∆t
− γ

n(i)− n0

n0∆t2

]
(22)

Regarding the Dirichlet condition and the wall boundary condition, Ph and Pd satisfy
Equations (23) and (24), respectively:

∇2Ph = 0, innerfluidparticle;
∂Ph
∂n

∣∣∣
ΓN

= ρ
→
g ·→n , wallpressureparticle;

Ph|ΓD
= 0, Dirichletparticle.

(23)

 ∇2Pd = ρ

[
(1− γ)∇·

→
u
∗

∆t − γ
n(i)−n0

n0∆t2

]
, innerparticle;

Pd|ΓD
= 0, Dirichletparticle.

(24)

In Equation (24), “inner particle” refers to an arbitrary pressure particle (whether it is
a fluid particle or a wall pressure particle) that is not judged to be a Dirichlet particle.

Two different wall particle layouts are used to calculate the hydrostatic pressure and
dynamic pressure, respectively. The three-layer particle layout shown in Figure 2a is
adopted to calculate the dynamic pressure Pd. This layout is identical to that of the original
MPS method. In this layout, wall pressure particles are settled in the first layer and ghost
particles are settled in the other layers in order to ensure accurate particle number density
near the wall. The other three-layer particle layout, shown in Figure 2b, is adopted to
calculate the hydrodynamic pressure Ph. In Figure 2b, two pressure particle layers and a
ghost particle layer are involved. The particles in the first layer are treated as adhesion
fluid particles. Therefore, they satisfy the Laplacian equation. The particles in the second
layer, meanwhile, are wall boundary particles, which satisfy the wall boundary condition
in Equation (23).

In Figure 2, particle layouts for a regular wall are presented. However, it is often
necessary in practice to calculate cases with an irregular wall. For fixed walls with complex
shapes, it may be difficult to directly deploy three-layer particle layouts. In this paper, we
introduce an artificial bottom for use when calculating cases with irregular walls. As is
shown in Figure 3, after the artificial bottom is introduced, the irregular computational
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domain becomes regular. Therefore, the three-layer particle layouts shown in Figure 2 can
easily be deployed.

As the total pressure is split, the proposed MPS scheme is named an MPS scheme
with a split-pressure Poisson equation (MPS-SP scheme). The simulation process of the
MPS-SP scheme is presented in Figure 4. By comparing Figures 1 and 4, it can be seen
that the original MPS scheme directly calculates the total pressure P, while the MPS-SP
scheme uses two different pressure equations to calculate the dynamic pressure Pd and
hydrostatic pressure Ph and then obtains the total pressure P by adding Pd and Ph together.
We can also see from Figure 4 that different wall particle layouts are required to calculate
the hydrostatic pressure and dynamic pressure in the MPS-SP scheme.
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3.3. Laplacian Operator

The original Laplacian operator shown in Equation (7) has the property of physical
conservation. However, it is inconsistent with the original gradient operator. In order
to ensure physical conservation and consistency, we introduce the following Laplacian
operator proposed by Zhang et al. [15]:

∇2 f =
2d
n0

∑
j 6=i

f j − fi

r2
ij

wij (25)

The operator given by Equation (25) is physically conservative. According to [15], the
Laplacian operator is derived by taking the divergence of the original gradient operator
given by Equation (3). Therefore, it is consistent with the original gradient operator.

3.4. Improved Virtual Particle Technology with Given Position

In traditional MPS methods, free surface particles are generally regarded as the Dirich-
let boundary, and the pressure of free surface particles is set to the same value (usually 0 Pa).
According to the gradient operator shown in Equation (3), the interaction force between
particle i and particle j can be expressed as follows:

〈∇P〉ij =
d
n0

Pj − Pi

r2
ij

→
r ijwij (26)
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If i and j are both free surface particles, then

Pj = Pi, i, j ∈ freesurface (27)

Substituting Equation (27) into Equation (26) gives

〈∇P〉ij ≡ 0, i, j ∈ freesurface (28)

Equation (28) indicates that there is zero interactive repulsive force between free
surface particles, no matter how close they are. This may lead to particle overlapping and
particle thrust on the free surface, finally causing numerical instability. The virtual particle
techniques proposed by Chen et al. [35] and Shibata et al. [6] solve the problem of zero
interaction force between free surface particles; however, these techniques are limited to
the original Laplacian operator and its derivatives because the positions of virtual particles
cannot be given. In this section, we develop an improved virtual particle technique with a
given position that can be applied to an arbitrary Laplacian operator.

3.4.1. Classification of Free Surface Particles

Free surface particles are classified into splash particles and ordinary free surface
particles. Splash particles are free surface particles without neighbors. Ordinary free
surface particles are free surface particles with neighbors. Neighboring virtual particles are
present only for ordinary free surface particles. Because splash particles are surrounded by
a void, they are set as the Dirtichlet boundary, and their values of pressure are set to 0 Pa.

3.4.2. Position of a Virtual Particle

If i is an ordinary free surface particle, then a neighboring virtual particle is present
for i. The weight of the virtual particle wv is set to

wv = n0 − n(i) (29)

In addition, the intermediate velocity of the virtual particle
→
u v
∗ is set to

→
u
∗
v =

→
u
∗
i (30)

In general, particle distribution at the free surface is asymmetric. In this case, the
following symmetry condition cannot be satisfied:

∑
j 6=i

rij<re

→
r ij

r2
ij

= 0 (31)

We assume the symmetry condition can be satisfied after the neighboring virtual
particle is placed in

→
r iv:

→
r iv

r2
iv

+ ∑
j 6=i

rij<re

→
r ij

r2
ij

= 0 (32)

Therefore, the position of the virtual particle can be calculated according to the follow-
ing equation:

→
r iv

r2
iv

= ∑
j 6=i

rij<re

−→r ij

r2
ij

(33)

Because the position of the virtual particle is known, the technique can be applied to
arbitrary Laplacian operators.
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3.4.3. Discrete Dynamic Pressure Poisson Equation on a Free Surface

In this study, the virtual particle technique is only applied to the dynamic pressure
Poisson equation.

For inner particles, we combine Equations (25) and (24) to obtain the following discrete
dynamic pressure Poisson equation:

2d
n0

∑
j 6=i

Pdj − Pdi

r2
ij

wij = ρ

[
(1− γ)

∇ ·→u
∗

∆t
− γ

n(i)− n0

n0∆t2

]
(34)

For ordinary free surface particles, after a neighboring virtual particle is introduced,
the discrete slamming pressure Poisson equation can be expressed as follows:

2d
n0

∑
j 6=i

Pdj − Pdi

r2
ij

wij +
2d
n0

Pv − Pdi

r2
iv

wv = ρ

[
(1− γ)

∇ ·→u
∗

∆t
− γ

n(i) + wv − n0

n0∆t2

]
(35)

where Pv refers to the pressure of the virtual particle. Usually, Pv = 0.
Taking molds on both sides of Equation (33) gives

riv

r2
iv

=

∣∣∣∣∣∑j 6=i

−→r ij

r2
ij

∣∣∣∣∣ (36)

Hence,

1
r2

iv
=

∣∣∣∣∣∑j 6=i

−→r ij

r2
ij

∣∣∣∣∣
2

(37)

By substituting Equations (29) and (37) into Equation (35), the discrete dynamic
pressure Poisson equation of ordinary free surface particles can be obtained:

2d
n0

∑
j 6=i

Pdj − Pdi

r2
ij

wij +
2d
n0

(Pv − Pdi)

∣∣∣∣∣∑j 6=i

−→r ij

r2
ij

∣∣∣∣∣
2

(n0 − n(i)) = ρ(1− γ)
∇ ·→u

∗

∆t
(38)

3.4.4. Pressure Gradient on a Free Surface

According to Equation (6), the pressure gradient of an ordinary free surface particle
with a neighboring virtual particle can be expressed as follows:

∇P =
2d
n0

Pv − P̂i

r2
iv

→
r ivwv +

2d
n0

∑
j 6=i

Pj − P̂i

r2
ij

→
r ijwij (39)

On the free surface, the minimum pressure P̂i is equal to 0. At the same time, Pv is
equal to 0 as well. Therefore, the above equation can be expressed as follows:

∇P =
2d
n0

∑
j 6=i

Pj

r2
ij

→
r ijwij (40)

3.5. Judgement of Free Surface Particles

The original method proposed by Koshizuka et al. [1] judged free surface particles
only by number density. It is thus a one-judgment method. Tanaka and Masunaga [32]
proposed another one-judgment method that makes judgements based on the number of
neighboring particles. These one-judgment methods are very simple, but they can easily
cause misjudgments. Once an internal particle is misjudged as a free surface particle, the
pressure field is distorted. In order to further reduce misjudgments, hybrid strategies
have been developed, such as the two-judgment methods proposed by Lee et al. [29], Pan
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et al. [39], and Wan and Zhang [40]. There are also methods for judging the free surface
particles using the geometric arrangement of neighboring particles, such as those proposed
by Sun et al. [30], Shibata et al. [6], and Sun et al. [41].

In this paper, the two-judgment algorithm proposed by Pan et al. [39] is introduced to
detect free surface particles.

If the following condition is satisfied, then particle i is recognized as an inner particle:

n(i)
n0
≥ β1 (41)

However, if Equation (42) is satisfied, particle i is recognized as a free surface particle:

n(i)
n0
≤ β2 (42)

When Equation (43) is satisfied, a secondary judgement is required to further distin-
guish whether particle i is a free surface particle.

β2 ≤
n(i)
n0
≤ β1 (43)

In Equations (41)–(43), β1 and β2 are user-defined tuning parameters. In this paper,
we chose β1 = 0.98 and β2 = 0.85.

For a particle that requires a secondary judgement, its neighboring region between
1.0l0 and 2.1l0 is divided into eight parts (as Figure 5 shows). If there are no neighboring
particles in the two adjacent parts, then the particle is recognized as a free surface particle.
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4. Verification

In the part of the study described in this section, several free surface flows were
adopted to verify the proposed MPS method, including two hydrostatic problems, a dam-
breaking problem, and a violent sloshing problem. First, the hydrostatic problems were
used to verify the proposed method’s ability to reproduce the hydrostatic pressure. One
hydrostatic problem involved a regular tank, and the other involved a tank with an irregular
bottom. Then, the dam-breaking problem was adopted to verify the proposed method’s
ability to calculate the slamming pressure on a solid wall. Finally, the violent sloshing
problem was used to demonstrate the proposed method’s ability to simulate slamming
pressure on a moving wall. Table 1 presents a brief description of the four computational
models used in the verification analysis. In the MPS-OL model, the original MPS scheme
and operators were used. In the MPS-CL model, the original MPS scheme was adopted,
but the original Laplacian operator was substituted for the consistent operator proposed by
Zhang et al. [15]. The MPS-CL-V model added the proposed virtual particle technique to
the MPS-CL model. The MPS-SP-CL-V model adopted the MPS-SP scheme, the consistent
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Laplacian operator, and the proposed virtual particle technique. The free surface particle
detection algorithm proposed by Pan et al. [39] and the improved source term (Equation
(17)) proposed by Tanaka and Masunaga [32] were adopted in all the models listed in
Table 1.

Table 1. Models for verification.

Model MPS Scheme Laplacian Operator Virtual Particle Technique

MPS-OL Original scheme Original (Equation (7)) ×
MPS-CL Original scheme Consistent (Equation (25)) ×

MPS-CL-V Original scheme Consistent (Equation (25))
√

, Equations (38) and (40)

MPS-SP-CL-V MPS-SP scheme Consistent (Equation (25))
√

, Equations (38) and (40)

4.1. Hydrostatic Problems

The theoretical calculation of the hydrostatic pressure is possible. Through the simula-
tion of hydrostatic problems, the ability of numerical methods to reproduce hydrostatic
pressure can be compared. In the investigation described in this section, two hydrostatic
cases were considered. One was in a regular rectangular tank, and the other was in a tank
with an irregular bottom.

4.1.1. Hydrostatic Problem in a Regular Tank

Figure 6 shows the simulation domain of the hydrostatic problem in a regular tank. It
was a 600 mm long rectangular tank with a water depth of 500 mm. The spatial resolution
l0 = 0.010 m, and the time step length ∆t = 0.0001 s. The monitoring point A was set to
observe the pressure variation. As is shown in Figure 6, point A was located at the middle
of the bottom of the tank.
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Figure 7 shows the fluid behavior of hydrostatic simulation using different models at
t=3.0 s. It is clear from the results of the MPS-OL and MPS-CL that the particles on the free
surface were slightly collapsed, and the particle distributions near the free surface became
irregular. The particle distribution of the MPS-CL-V on the free surface was more regular
than those of the MPS-OL and MPS-CL, but the free surface was still slightly collapsed. In
contrast, the result of the MPS-SP-CL-V was the best. Not only was the free surface smooth,
but the particles on the free surface were also evenly distributed.
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Figure 8 shows the time histories of the hydrostatic pressure on point A. The pressure
curves of MPS-OL, MPS-CL, and MPS-CL-V oscillated strongly at the initial stage, and then
the amplitude gradually decreased with increasing in time. After about 1.4 s, the pressure
results of the three methods tended to be stable. By comparing the amplitude of the three
curves at the initial stage, it can be seen that MPS-OL > MPS-CL > MPS-CL-V. The adoption
of the consistent Laplacian operator and the proposed virtual particle technique had a
certain effect on alleviating the pressure oscillation, but it could not completely eliminate
the long-period oscillation at the initial stage. In contrast, the MPS-SP-CL-V curve was not
only stable after 1.4 s, but was also very stable at the initial stage. In addition, it can also
be seen that the steady-state pressures of these four models were very close to that of the
analytical solution. The steady-state pressure of MPS-SP-CL-V was slightly higher than
that of the analytical solution, while those of the other curves were slightly lower than the
analytical solution. Table 2 lists the average error on point A between 2 and 3 s for the four
models. It is clear that the error of MPS-SP-CL-V was minimal. In general, MPS-SP-CL-V
was able to reproduce hydrostatic pressure accurately and stably.
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Table 2. Average error on point A between 2 and 3 s.

Model MPS-OL MPS-CL MPS-CL-V MPS-SP-CL-V

Average error 4.14% 3.27% 4.81% 2.89%

Table 3 lists the time cost of calculating 10,000 time steps using different models. The
computer adopted in this study was equipped with an Intel Core i7-9700 3.0 GHz CPU
with 32 GB of memory. A single core was used without any parallel computing. It is shown
in Table 3 that the time cost of the MPS-SP-CL-V model was the highest. This is because
the MPS-SP-CL-V model needed to solve both the pressure Laplacian equation and the
pressure Poisson equation at each time step, while the other tree models only needed to
calculate the pressure Poisson equation at each time step. It can also be seen that the time
cost of the MPS-CL-V model was slightly greater than those of the MPS-OL model and the
MPS-CL model. This is because the introduction of virtual particles onto the free surface
increased the total number of calculated particles.

Table 3. Time cost of calculating 10,000 time steps using different models.

Model MPS-OL MPS-CL MPS-CL-V MPS-SP-CL-V

Time cost 20.3 min 20.3 min 22.2 min 87.6 min

4.1.2. Hydrostatic Problem in a Tank with an Irregular Bottom

Figure 9 shows the simulation domain of the hydrostatic calculation in a tank with an
irregular bottom. The width of the tank was 0.48 m, and the maximum fluid depth was
0.36 m. The particle spatial resolution l0 = 0.010 m, and the time step length ∆t = 0.0001 s.
The monitoring point S was set to observe the pressure variation. Point S was located at the
middle of the bottom, and the depth was 0.26 m away from the free surface. As is shown in
Figure 9, the irregular computational domain became regular after the artificial bottom was
introduced.
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Figure 9. Simulation domain of the hydrostatic calculation in a tank with an irregular bottom.

Figure 10 shows the fluid behavior of the hydrostatic simulation in a tank with an
irregular bottom using the MPS-SP-CL-V model at t = 3.0 s. It is clear from the figure
that the free surface remained flat and the fluid particles in the tank maintained a regular
distribution. The pressure distribution was also smooth. Figure 11 shows the time history
of the hydrostatic pressure on point S. It is clear that the curve of the MPS-SP-CL-V model
was almost consistent with that of the analytical solution. In general, both Figures 10 and 11
indicate that the MPS-SP-CL-V model also reproduced the hydrostatic pressure well when
simulating a case with an irregular bottom.
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Figure 10. Fluid behavior of hydrostatic simulation in a tank with an irregular bottom using the
MPS-SP-CL-V model at t = 3.0 s.
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4.2. Dam-Breaking Experiment

The dam-breaking experiment conducted by Lobovský et al. [42] was simulated using
the models shown in Table 1. The experiment was conducted in a glass tank with 0.600 m
height and 1.610 m length (shown in Figure 12). The initial width and height of the water
column were both 0.600 m. Two monitoring points, B1 and B2, were set to observe the
pressure variation. As is shown in Figure 12, B1 was located in the left corner of the tank.
The other monitoring point, B2, was located in the right corner. These two points were both
3 mm from the bottom. B1 was in the area where strong slamming would occur, while B2
was in the area farthest from the strong slamming area. The simulations were performed at
spatial resolution l0 = 0.0050 m and time step length ∆t = 0.0001 s.
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Figure 12. Schematic diagram of pool size.

Figure 13 shows the particle distributions and the pressure contours of the dam-
breaking fluid flows simulated by the four models. The nonsmooth free surface and
unnatural pressure field were quite obvious in the pictures of the MPS-OL model, in which
the original MPS scheme and the original Laplacian operator were used. The free surfaces
in the pictures of the MPS-CL were smoother than those of the MPS-OL, but the pressure
fields were still not smooth. The pictures of the MPS-CL-V showed a smoother free surface
and pressure distribution; however, the pressure on the right-side wall was unstable over
time. Compared to the results obtained by the other models, the pressure field and the free
surface of the MPS-SP-CL-V were much better.
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Figure 13. Particle distributions and pressure contours of dam-breaking fluid flows at t = 316.7 ms,
413.4 ms, and 463.3 ms.

Figure 14a1–a4 presents the time histories of pressure acting on B1 calculated by
the four models. The pressure fluctuation of the MPS-OL was frequent and significant.
Compared to the MPS-OL, the pressure fluctuation of the MPS-CL was slightly mitigated.
After applying the proposed virtual particle technique, the pressure curves of the MPS-CL-
V and the MPS-SP-CL-V were much more stable than those of the MPS-CL. Figure 14b1–b4
presents the time histories of pressure acting on B2 calculated by the four models. As is
shown in Figure 14b1,b2, long-term, large-amplitude pressure fluctuations and short-term,
small-amplitude pressure fluctuations appeared on both the MPS-OL and MPS-CL curves.
As the MPS-CL-V curve shows in Figure 14b3, the amplitude of short-period fluctuation was
suppressed, but the amplitude of long-period fluctuation was still significant. Compared to
the above three curves (Figure 14b1–b3), it is obvious that the results of the MPS-SP-CL-V
shown in Figure 14b4 had the best pressure stability. In the figure, both the long-period
and short-period fluctuation are alleviated significantly, which makes the curve of the
MPS-SP-CL-V look much smoother than the others. In general, whether at point B1, close
to the strong slamming area, or at point B2, far away from the strong slamming area, the
time histories of the pressure calculated by MPS-SP-CL-V appeared to be very stable.
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Figure 14. Time histories of pressure acting on B1 and B2 calculated by the models. (a1) Pressure on
B1 calculated by MPS-OL; (a2) Pressure on B1 calculated by MPS-CL; (a3) Pressure on B1 calculated
by MPS-CL-V; (a4) Pressure on B1 calculated by MPS-SP-CL-V; (b1) Pressure on B2 calculated by
MPS-OL; (b2) Pressure on B2 calculated by MPS-CL; (b3) Pressure on B2 calculated by MPS-CL-V;
(b4) Pressure on B2 calculated by MPS-SP-CL-V. The experiment curve of the pressure on point B1 is
from Lobovský et al. [42].

Figure 15 presents the pressure curves of point B1 calculated by MPS-SP-CL-V and
the δ-SPH method. Both curves were calculated under a particle resolution of l0 = 0.005 m.
The numerical data of the δ-SPH method were extracted from You et al. [43]. As is shown
in the figure, the peak values of the two curves (both about 3.5) were slightly higher than
those from the experiment (about 3), and both curves were consistent with the experimental
results of Lobovský et al. [42]. When comparing the two curves, it is obvious that the δ-SPH
curve is smoother, while the result of the MPS-SP-CL-V was closer to the experiment data.
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Figure 15. Pressure curves of point B1 calculated by MPS-SP-CL-V and the δ-SPH method
(l0 = 0.005 m). The curves of the δ-SPH method and the experiment are from You et al. [43] and
Lobovský et al. [42], respectively.

4.3. Violent Sloshing

As described in this section, a violent sloshing process in a rectangular tank was
simulated using the proposed method. As Figure 16 shows, the tank was 600 mm wide and
300 mm high. The initial water depth of the tank was 120 mm. A monitoring point C to
detect pressure variation was located on the right wall 100 mm from the bottom. The tank
was oscillated in the horizontal direction, and the motion followed the below equation:

X = Xa sin(ωt) (44)

where X represents the horizontal displacement of the tank, Xa refers to the amplitude
of the oscillation, and ω denotes the circular frequency of the excitation. In this paper,
Xa = 0.05m, and circular frequency ω = 4.8332rad · s−1(corresponding to the oscillation
period T = 1.3s). The time step length of the simulation ∆t = 0.0001s, and the spatial
resolution l0 = 0.005m.
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Figure 16. Schematic diagram of the dimensions of the tank.

Figure 17 presents the free surface profiles of both the experimental results of Kishev
et al. [44] and the MPS-SP-CL-V results at 0.1T, 0.2T, and 0.3T, where T is the oscillation
period of the tank (1.3 s). The contour is the pressure distribution. As the figure shows, the
pressure distribution distributed smoothly, and the free surface profiles of the MPS-SP-CL-V
had good agreement with those of the experiment. Figure 18 shows the comparison of
the pressure values from the original MPS method, the experiment of Kishev et al. [44],
and the MPS-SP-CL-V method. From the figure, it is clear that the oscillation of pressure
in the results of the original MPS method was huge and highly frequent. In contrast, the
MPS-SP-CL-V method could successfully capture the typical pressure characteristics. It
can also be seen from the figure that the pressure profile of the MPS-SP-CL-V was in good
agreement with that of the experiment.
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method of Lee et al. [29].

5. Conclusions

As a particle method based on a Lagrangian description, the MPS method can easily
capture variations in an interface or free surface. It thus has natural advantages in deal-
ing with free surface flow problems. However, in traditional MPS methods, hydrostatic
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pressure cannot be reproduced exactly and stably at every moment because the Neumann
boundary condition is not satisfied on wall pressure particles. In addition, due to there
being no interaction force between the free surface particles, particle thrust occurs on
the free surface, which results in unphysical pressure oscillation. Although some virtual
particle techniques have been developed to increase the interactions between particles on
the free surface, these techniques do not give the positions of virtual particles, so they are
limited to the original Laplacian operator and its derivatives. In order to remedy these
problems, we propose a modified MPS method using the following techniques. First, a
modified MPS scheme with a split-pressure Poisson equation is proposed to ensure the
reproduction of the hydrostatic pressure. Then, we develop a new virtual particle tech-
nique in which the expression of the position of virtual particles is given. Therefore, the
virtual particle technique can be extended to arbitrary Laplacian operators. In addition, a
consistent Laplacian operator is introduced to replace the original Laplacian operator. In
addition, a two-judgment technique and a hybrid DI/DF source term are adopted in the
proposed MPS method.

Hydrostatic, dam-breaking, and sloshing examples were applied to verify these tech-
niques. The original MPS method and the four models listed in Table 1 (including MPS-OL,
MPS-CL, MPS-CL-V, and MPS-SP-CL-V) were involved in the verification. By discussing
and comparing the simulation results of these methods, we drew the following conclusions:

• The stability of the consistent Laplacian operator was better than that of the original
operator, but the degree of enhancement was limited;

• The proposed virtual particle technique applied to the consistent Laplacian operator
was demonstrated to be effective for suppressing unphysical pressure fluctuation;

• Hydrostatic pressure can be reproduced stably and accurately by the MPS-SP-CL-V
method in which the modified MPS scheme with a split-pressure Poisson equation is
adopted;

• A remarkable enhancement in stability was demonstrated when using the MPS-SP-CL-
V method to simulate the dam-breaking problem and the violent sloshing problem.
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