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Abstract: This paper focuses on developing a data-driven trajectory tracking control approach for
autonomous underwater vehicles (AUV) under uncertain external disturbance and time-delay. A
novel model-free adaptive predictive control (MFAPC) approach based on a fuzzy state observer
(FSO) was designed to achieve high precision. Concretely, the mathematical model of AUV motion
was analyzed, and simplified via model decoupling, thus providing the model basis with an explicit
physical explanation for the controller. Second, the MFAPC scheme for a multiple-inputs and multiple-
outputs (MIMO) discrete time system was derived, that estimates system external disturbance. The
controller can online estimate and predictive time-varying parameter pseudo-Jacobian matrix (PJM)
to establish equivalent state space data-model for AUV motion system. Third, the Takagi–Sugeno
(T–S) fuzzy model based state observer was designed to combine with the MFAPC scheme for the first
time, which was used to online decline the state error generated by system uncertain time-delay. In
addition, the stability of the proposed control scheme was analyzed. Finally, two trajectory tracking
scenarios were designed to verify the effectiveness and robustness of the proposed FMFAPC scheme,
and the simulations are implemented using the realistic parameters of T-SEA AUV.

Keywords: data-driven; model-free adaptive predictive control; pseudo Jacobian matrix; fuzzy state
observer; Takagi-Sugeno fuzzy model; external disturbance; time-delay; autonomous underwater vehicle

1. Introduction

With the development of electronic hardware and the advancement of computer tech-
nology in recent decades, unmanned systems have played a significant role in numerous
fields. Autonomous Underwater Vehicles (AUVs) are momentous types of unmanned
marine crafts that are indispensable nowadays [1], including those that implement military
reconnaissance, hydrological sampling, resource exploration, pipeline inspection, and fish
aquaculture [2–5]. To ensure the advantages and performance of AUVs in the application
field, high-accuracy trajectory tracking control is a crucial technique issue that needs to be
solved [6].

Conventional-type AUVs are shaped like f a torpedo, are equipped with at least one
paddle propeller or hydraulic propeller as a driver, and uses rudders and flanks to control
their attitudes. Compared with other types of unmanned crafts, the operating environment
of an AUV is complex and changeable, with random disturbances such as water currents
and surges. These external disturbances will make the motion of AUV’s attitudes unstable
and cause it to sideslip. To solve this issue, researchers apply adaptive control to estimate
the motion deviations caused by external currents. In [7], a novel predictor-based line-
of-sight (PLOS) guidance law was presented to rapidly identify and compensate for the
sideslip angles of the vehicle. In [8], a terminal sliding mode control (SMD) approach
was developed for AUVs, aiming to mitigate and solve unknown disturbances in the
underwater environment. Gun et al. [9] proposed a back-stepping approach to handle the
nonlinear dynamics of the vehicle, including sea currents and external disturbances.
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Due to the unpredictable nature of the hydrological environment, it is difficult to build
an accurate mathematical model or obtain precise model parameters for the AUV motion
system [10,11], which is the basis for the control algorithm. In this case, the performance
of the model-based control scheme was seriously degraded. Given this issue, a model-
based control scheme with high accuracy and robustness is challenging. Yet, data-driven
control approaches utilize online input-output (I/O) data to directly generate and self-
adjust the controller, this control approach is also called as model-free control approach.
Model-free adaptive control (MFAC) is a novel control approach that was developed based
on the data-driven concept, and can handle the control issues caused by an inaccurate
mathematical model or imprecise system parameters [12–14]. The MFAC scheme uses
a dynamic linearization technique to build the equivalent data model rather than just
using measurement I/O data to generate the controller. In this case, prior training is not
required for the MFAC controller. From the application point of view, the MFAC is practical.
Many researchers have worked in recent years to improve MFAC on a theoretical level
and to apply it to unmanned systems. In [15], the MFAC scheme was combined with an
adaptive factor to reduce system oscillation and overshoot for accomplishing unmanned
surface vehicle heading control. Yue et al. [16] developed an improved MFAC via particle
swarm optimization (PSO) algorithm for the unmanned ground vehicle to overcome the
influence of time-delay and sudden wheelbase change. In [17], a novel improved MFAC
scheme was proposed for spacecraft, aim at ensure controller parameters could adjust
adaptively. An SMC scheme was combined with MFAC to strengthen the robustness of
tracking performance. Meanwhile, the research on MFAC and its improved algorithm to
practice on AUV is still rare, but on drawing previous research results, practicing MFAC on
AUV is meaningful and appropriate.

With respect to the MFAC algorithm, it relies on a mathematical quantity, namely,
the pseudo-Jacobian matrix (PJM), to describe the dynamic changes of multiple inputs
and multiple outputs (MIMO) system, and builds the equivalent approximate data model.
However, the complex MIMO system is likely to have parameters that jump or are subjected
to external random disturbance, magnifying the model approximation error [18] between
the data model and the actual system, which cannot be ignored.

Additionally, the time-delay phenomenon widely exists in practical operating sys-
tems. The controller cannot inhibit the disturbance timely when the system is subjected
to a time-delay, the control system is prone to generating excessive overshoot and will
undermine dynamic control performance. A nonlinear systems can be expressed by the
Takagi-Sugeno (T-S) fuzzy modeling approach, and divide the system into numerous linear
subsystems associated with fuzzy membership functions, which is aimed at simplifying
the complex nonlinearity of the actual system [19–21]. In recent decades, the T-S fuzzy
modeling technique has become a significant approach for processing nonlinear control
issues and also an important means of handling system time-delay [22,23]. Many research
results have demonstrated with the time-delay issue in nonlinear dynamic systems [24–26].
In [27], considering time-varying delay and input constraint, a novel control approach
was proposed based on the T-S fuzzy model expressed system, and researchers performed
simulation on a flexible-joint robot to verify its utility. The stabilization problem of flexible
spacecraft was addressed based on saturated time-delay input via the T-S fuzzy model [28].
Zhong et al. [29] developed an effective approach to attenuate the impact of the unknown
output-delay via the T-S fuzzy model -based augmented observer for the unmanned vehi-
cle. Generally, the controller of a practical system is not only subjected by the unknown
time-delay, but also affected by external disturbance. Thereby, considering both time-delay
and external disturbance simultaneously is practical and generalized.

Inspired by previous research results, in this paper we study the trajectory tracking
technique for AUVs. An improved control scheme based on model-free adaptive control
was designed, aiming to handle the influence of external uncertain disturbances. Moreover,
we designed a discrete T-S fuzzy model-based state observer to deal with the system’s
uncertain time-delay. The main contributions of this study are summarized as follows:
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1. A novel tracking controller was proposed via improved model-free adaptive predic-
tive control (MFAPC) for AUV horizontal sailing. The dynamic linearization method
and predictive control concept were utilized to design an MFAPC controller. We
utilized the dynamic linearization method and predictive control concept to design
an MFAPC controller. Combining the MFAPC approach with the fuzzy state observer
(FSO), we realized accurate tacking control under system time-delay and external
disturbance simultaneously.

2. To handle the uncertain time-delay problem in systems, a T-S fuzzy model-based state
FSO was designed to attenuate the impact of time-delay. We combined the FSO with
MFAPC approach for the first time. Based on this, the proposed novel control scheme
can process the disturbance and time-delay simultaneously.

3. The dynamic linearization method of proposed MFAPC controller is designed able to
robustly process the MIMO nonlinear discrete time system, which conforms to the
practical characteristics of the AUV motion system. The current researches on the
theory of the data-driven based MFAC are most focused on the single input and single
output (SISO) systems.

4. The practicality and feasibility of the proposed control scheme for the AUV heading
tracking control were validated using MATLAB/Simulink simulation tests.

The remainder of this paper is organized as follows: In Section 2, some necessary
fundamentals are introduced, including the discrete-time data model and T-S fuzzy logic
system. In Section 3, the equivalent approximate data model based on the dynamic
linearization method is derived for the MIMO system, and the discrete feedback fuzzy FSO
is designed to combine with the MFAPC scheme. Additionally, the required assumptions
are presented, and the stability of the algorithm is proven. In Section 4, the comparison,
verification, and simulation results are introduced using the parameters of an experimental
prototype AUV. Finally, the conclusions are drawn in Section 5.

2. Fundamentals
2.1. Mathematical Model of AUV

In this part, we present the mathematical model of the AUV motion system, which is
the basis for controller design. Generally, we describe the vehicle’s motion in Euclidean
space via an inertial frame and a body-fixed frame. The AUV dynamic model of six degrees
of freedom (DOF) can be expressed as (1), which is derived and defined by Fosson [30],

M
.
v + C(v)v + D(v)v + g(η) = τ, (1)

where: M represents the inertia matrix, C(v) is the state-dependent matrix of Coriolis and
centripetal terms, D(v) represents the hydrodynamic damping and lift matrix, g(η) is the
vector of gravitational forces and moments, v is the vector of velocities, and τ is the vector
of input.

The AUV dynamic model can be decoupled into three mutually dependent subsystems:
the heading-system, the diving-system, and the velocity system, thereby simplifying control
problems [31]. We considered that the structure of the vehicle is symmetric, and the mass
distribution is homogeneous. Under these physical conditions, the three DOF model of AUV
horizontal plane motion can be obtained by simplifying the six DOF model expressed as
follows, which was firstly applied for AUV heading control by Lekkas and Fossen [32–34]:

M
.
v + C(v)v + D(v)v = τ (2)
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The parameter matrices of the three DOF motion model are respectively given as:

M =

m− X .
u 0 0

0 m−Y .
v 0

0 0 Iz − N.
r


C(v) =

 0 0 −(m−Y .
v)v

0 0 (m− X .
u)u

(m−Y .
v)v −(m− X .

u)u 0


D(v) =

Xu + Du|u| 0 0
0 Yv + Dv|v| 0
0 0 Nr + Dr|r|


η =

[
x y ψ

]T , v =
[
u v r

]T , τc =
[
Fu Fv MI

]T

The Kinematic model of AUV translates the velocities under the body-fixed frame into
the inertial frame, which is given as follows:

J(η)v =
.
η (3)

where: J(η) is the coordinate transformation matrix, J(η) =

cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

.

We selected the velocity vector as the state of the system, which expresses as: x = vT ,
and set the system input as u = τT . Because the inertia matrix M is positive definite
matrix, multiplying both side of (2) by M−1, therefore the model (1) can be transformed
into continuous-time state space model as:{ .

x(t) = Aix(t) + Biu(t)
y(t) = Cix(t)

(4)

where:Ai = −M−1C−M−1D,Bi = −M−1, and Ci =

[
1 0
0 1

]
are the constant coefficient

matrixes of suitable dimensions.
From observing the mathematical model of AUV, we can see that the changes in

hydrodynamic terms probably cause parameter uncertainty, and further undermine the
accuracy of the controller.

2.2. Discrete-Time Data Model

In this section, we introduce the equivalent data form of the MIMO system which,
regarding to I/O data, is based on the data-driven concept [13], in order to describe the
relationship between the control input and output of the system.

Because of the AUVs’ rigid structure, when a force or torque is applied to them, a
displacement or attitude response can be obtained as an output. Referring to the continuous-
time state space model (4), the relationship between control I/O data and the MIMO system
can be simplified into the following form (5). Therefore, we can use (5) to describe the
relationship of control I/O data of the AUV motion system.{

x(k + 1) = f
(
x(k), · · · x

(
k− ny

)
, u(k), · · · u(k− nu)

)
y(k + 1) = Cix(k + 1)

(5)

where: ny, nu are positive integers, denoting orders of system respectively, f (· · · ) =
( f1(· · · ), · · · , fm(· · · ))T ∈ ∏

ny+nu

Rm 7→ R is nonlinear function.

Moreover, this equivalent data model is able to be used to express widespread practical
system, for instance, industry engineering system [35], urban transportation system [36],
motion control system [37] and etc.
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2.3. T-S Fuzzy Logic System

Generally, there is a possible time-delay in the practical system, which can influence
the performance of the controller. In this section, we present a T-S fuzzy model-based
mathematical expression of the system with time-delay.

The T-S fuzzy logic system can establish a local linearization model for the dynamic
characteristics of different regions of the global nonlinear system, and approximate the
nonlinear system. Meanwhile, the parallel disturbance compensation approach is widely
utilized to design fuzzy logic based controllers and is used to handle system time delays [38,39].
The fuzzy logic system comprises fuzzy rules, fuzzer, fuzzy inference engine, and defuzzer [40].
Consider the nonlinear discrete time-delay system expressed by the T-S fuzzy model as
follows.

Fuzzy rule i: if z1(k) is Fi1 and z2(k) is Fi2 and · · · and zn(k) is Fin, then{ .
x(k) = A1ix(k) + Adix(k− d) + Biu(k)

y(k) = Cix(k), i ∈ [1, N]
(6)

where: N is the number of fuzzy rule. z(k) = [z1(k), z2(k), · · · , zn(k)]
Tr is the antecedent

variable, u = τT is system input, Fij denotes fuzzy set, A1i, Adi, Bi and Ci represent gain
matrix of system input and output.

Via single point fuzzification, product inference and average weighted defuzzification,
the time-delay fuzzy system can be expressed as:

.
x(k) =

N
∑

i=1
hi(z(k))[A1ix(k) + Adix(k− d) + Biu(k)]

y(k) =
N
∑

i=1
hi(z(k))Cix(k)

(7)

where: hi(z(k)) =
∏n

j=1 Fij(z(k))

∑N
i=1 ∏n

j=1 Fij(z(k))
, Fij(z(k)) is the membership function of z(k) regarding

to fuzzy set Fij, the membership satisfies that ∏n
j=1 Fij(z(k)) ≥ 0, ∑N

i=1 ∏n
j=1 Fij(z(k)) > 0.

If the system is locally controllable, then applying the parallel distribution compensa-
tion technique [38,41] can be used to design the local state feedback controller. Consider
the general form of controller as follows:

Fuzzy rule i: if z1(k) is Fi1 and z2(k) is Fi2 and · · · and zn(k) is Fin, then

u(k) = −Kix(k), i ∈ [1, N] (8)

where: Ki is the gain matrix of state feedback.
With respect to (6), the system state feedback control law is expressed as:

u(k) = −
N

∑
i=1

hi(z(k))Kix(k) (9)

Substituting function (9) into function (7), we can obtain the close-loop system as:

.
x(k) =

N

∑
i=1

N

∑
j=1

hi(z(k))hj(z(k))
[(

A1i − BiKj
)
x(k) + Adix(k− d)

]
(10)

3. Control Design and Stability Analysis

In this section, the basic concepts and calculation process of the improved MFAC
and FSO based control systems are first presented, and then the stability analysis of this
closed-loop system is given in more detail.
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3.1. Syetem Dynamic Linearization and Transformation

The control approach based on a data-driven concept can utilize observed online I/O
data to directly generate a controller, without relying on the accuracy of the mathematical
model of the controlled object. It can avoid control errors caused by uncertain model
parameters, and the controller does not require priori knowledge or prior training. We call
this method the equivalent dynamic linearization technique. The process control approach
can process external disturbance along the discrete-time axis. Meanwhile, adopting the state
estimated signal x̂(k) feedback from the FSO as the system output data for the improved
MFAPC controller. For this process, the following two reasonable assumptions need to be
satisfied:

Assumption 1. The equivalent data form (5) of the MIMO system is a smooth continuous function,
that is, the partial derivatives of this function for each component of u(k) are continuous.

Assumption 2. The partial derivative of the MIMO system (5) is continuous regarding to var-
ious variables, and the system satisfies the generalized Lipschitz condition, that is for ∀k1 6= k2,
k1 > 0, k2 > 0,u(k1) 6= u(k2). In this case, the following inequality is valid:

‖x̂(k1 + 1)− x̃(k2 + 1)‖ ≤ b‖u(k1)− u(k2)‖

where: b is a constant which bigger than zero.

Remark 1. Note that the reliability of Assumptions 1 and 2 has been analyzed in [13,42]. Assump-
tion 1 is the classic constraint condition for general control design. Assumption 2 is the upper limit
of the system output change rate, namely that the energy changes of input and output are bound.

Lemma 1 ([43]). When ∆u(k) 6= 0, a time-varying parameter matrix named pseudo-Jacobian
matrix (PJM) must exist in the system, which is denoted by Φ(k) . The PJM is used to describe the
dynamic changes in a discrete-time system. So the (5) can be further transformed into the following
linearization data form:

{
∆x̂(k + 1) = Φ(k)∆u(k) + fd(k)

y(k + 1) = Ci x̂(k + 1)
(11)

where: Φ(k) =


ϕ11(k) ϕ12(k)
ϕ21(k) ϕ21(k)

· · · ϕ1m(k)
· · · ϕ2m(k)

...
...

ϕm1(k) ϕm2(k)

...
...

· · · ϕmm(k)

 ∈ Rm×m, and is bounded for any time

point k, fd(k) represents disturbances from external environment.
The external disturbance term can be estimated by the previous step, which is ex-

pressed as:
f̂d(k) = ∆x̂(k)−Φ(k− 1)∆u(k− 1) (12)

Remark 2. Parameter fd(k) is introduced to describe the external disturbance which is widespread
in practical systems. fd(k) satisfies that the change rate is bounded, because the energy of external
disturbance is always finite.

Based on the incremental form data model (11), the N-step forward prediction function
of the time-delay system can be expressed as:

x̂(k + 1) = x̂(k) + Φ(k)∆u(k) + fd(k)
x̂(k + 2) = x̂(k + 1) + Φ(k + 1)∆u(k + 1) + fd(k + 1)

...
x̂(k + N) = x̂(k + N − 1) + Φ(k + N − 1)∆u(k + N − 1) + fd(k + N − 1)

(13)
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For ease of writing, we define that as:

XN(k) = [x̂(k), · · · , x̂(k + N)]T

∆UN(k) = [∆u(k), · · · , ∆u(k + N)]T

E(k) = [Im×m, Im×m, · · · , Im×m]
T

FN(k) = [ fd(k), · · · , fd(k + N − 1)]T

Ξ(k) =



Φ(k) 0 · · · 0 · · · 0
Φ(k) Φ(k + 1) · · · 0 · · · 0

...
...

. . .
...

...
...

Φ(k) Φ(k + 1) · · · Φ(k + Nu − 1) · · · 0
...

...
...

...
. . .

...
Φ(k) Φ(k + 1) · · · Φ(k + Nu − 1) · · · Φ(k + Nu − 1)


N×N

(14)

where: XN(k) denotes the N-step forward prediction output vector, ∆UN(k) represents
the vector of control input incremental, FN(k) represents the vector of system disturbance
incremental, Im×m denotes m×m order identity matrix, N is the prediction time domain
constant, Nu is a control time domain constant, and satisfies that Nu ≤ N.

Then the N-step forward prediction function (13) can be simplified into the following
form: {

XN(k + 1) = E(k)x̂(k) + Ξ(k)∆UN(k) + FN(k), ∆u(k + j− 1) 6= 0
XN(k + 1) = E(k)x̂(k) + Ξ1(k)∆UNu(k) + FN(k), ∆u(k + j− 1) = 0

(15)

where: j represents a control time domain constant, j > Nu, ∆UNu(k) = [∆u(k), · · ·
∆u(k + Nu − 1)]T ,

Ξ1(k) =



Φ(k) 0 · · · 0
Φ(k) Φ(k + 1) · · · 0

...
...

. . .
...

Φ(k) Φ(k + 1) · · · Φ(k + Nu − 1)
...

...
. . .

...
Φ(k) Φ(k + 1) · · · Φ(k + Nu − 1)


N×Nu

3.2. PJM Esitimation and Prediction

Since the control law contains matrixes PJM is necessary to be solved, which are
time-varying matrixes. Therefore, adopting system I/O data to estimate Φ(k) and predict
Φ(k + 1), · · ·Φ(k + Nu − 1) is appropriate. Firstly, we estimate the PJM Φ(k).

Utilizing the projection algorithm to estimate the PJM, therefore, the criterion function
of this time-varying parameter is set as follows:

J(Φ(k)) = ‖∆x̂(k)−Φ(k)∆u(k− 1)− f̂d(k− 1)‖2 + µ‖Φ(k)− Φ̂(k− 1)‖2 (16)

By using the optimal solution ∂J/∂Φ̂(k), we can obtain:

Φ̂(k) = Φ̂(k− 1) +
ζ
[
∆x̂(k)−Φ(k)∆u(k− 1)− f̂d(k− 1)

]
∆uT(k− 1)

µ + ‖∆u(k− 1)‖2 (17)

In order to make the estimation algorithm possess higher time-varying tracking ability,
the reset algorithm is set as follows:

Set ϕ̂ii(k) = ϕ̂ii(1), if |ϕ̂ii(k)| ≤ β1 or |ϕ̂ii(k)| ≥ αβ1 or sign(ϕ̂ii(1)) 6= sign(ϕ̂ii(k)),
i = 1, · · · , m.
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Set ϕ̂ij(k) = ϕ̂ij(1), if
∣∣ϕ̂ij(k)

∣∣ ≥ β2 or sign
(

ϕ̂ij(1)
)
6= sign

(
ϕ̂ij(k)

)
, i, j = 1, · · · , m,

i 6= j. where: µ is the penalty factor, µ > 0, ζ ∈ (0, 2] is the step factor, which makes the
algorithm more general, β1, β2 and α are small enough positive constants.

Since k + 1 and subsequent moments cannot be estimated from I/O data directly, we
applied the prediction algorithm to calculate these estimated PJM. Adopting multi-layer
progressively increase order, utilizing historical data Φ̂(1) · · · Φ̂(k) to make predictions the
estimated values of PJM subsequent moments. It has the property of constantly updating
parameters, resulting in a small prediction error.

Based on the estimation algorithm (17), we can obtain a range of estimate values:
Φ̂(1), · · · , Φ̂(k), then utilize these estimate values to build an auto-regressive (AR) model
that can be relied on to design a prediction algorithm:

Φ̂(k + j) =
Nu−1

∑
j=1

np

∑
i=1

Ξi(k)Φ̂(k− i + j) (18)

Consider the criterion function as follows:

J(Ξ(k)) = ‖Φ̂(k)− Φ̂t(k− 1)Ξ(k)‖2 + δ‖Ξ(k)− Ξ̂(k− 1)‖2 (19)

By using the optimal solution ∂J/∂Ξ̂(k) = 0, we can obtain:

Ξ(k) = Ξ(k− 1) +
Φ̂t(k− 1)

[
Φ̂(k)− Φ̂T

t (k− 1)Ξ(k− 1)− f̂d(k + 1)
]

δ + ‖Φ̂t(k− 1)‖2 (20)

Defining the reset algorithm as:
Set ϕ̂ii(k) = ϕ̂ii(1), if |ϕ̂ii(k)| ≤ β1 or |ϕ̂ii(k)| ≥ αβ1 or sign

(
ϕ̂ij(1)

)
6= sign

(
ϕ̂ij(k + j)

)
,

i = 1, · · · , m.
Set ϕ̂ij(k) = ϕ̂ij(1), if

∣∣ϕ̂ij(k)
∣∣ ≥ β2 or sign

(
ϕ̂ij(1)

)
6= sign

(
ϕ̂ij(k + j)

)
, i, j = 1, · · · , m,

i 6= j.

Where: Ξi(k) are model coefficients, Ξ(k) =
[
Ξ1(k), Ξ2(k), · · · , Ξnp(k)

]T
. np rep-

resents the appropriate order, Φ̂t(k) =
[
Φ̂(k), · · · , Φ̂

(
k− np

)]T , δ ∈ (0, 1] is a positive
constant.

Remark 3. Referring to the research content of article [44], the value of np is usually set at 2 to 7.

3.3. MFAPC Scheme Design and Stability Analysis

In view of the three DOF linearization data model of AUV, we consider the following
criterion function:

J =
N

∑
i=1
‖xd(k + i)− x̂(k + i)‖2 + λ

Nu−1

∑
j=0
‖∆u(k + j)‖2 (21)

where: λ is a weight factor that is used to limit the variation range of control input, xd(k + i)
is the desired control output at moment of (k + i), i = 1, · · · , N.

Denote [xd(k), · · · , xd]
T = Xd(k). In this case, we combined the criterion function (21)

into equation (15), take the partial derivative with respect to τ(k) and make it equal to zero.
We can obtain the control law:

∆UNu(k) =
[
Ξ̂T

1 (k)Ξ̂1(k) + λI
]−1

Ξ̂T
1 (k)[Xd(k + 1)− E(k)x̂(k)] (22)
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When the dimensions of the system I/O data are very large, the matrix inversion is
computationally expensive. Therefore, we simplified (22) and obtained the control law as
follows:

∆UNu(k) =
Ξ̂T

1 (k)[Xd(k + 1)− E(k)x̂(k)]

λ + ‖Ξ̂1(k)‖2 (23)

where:

Ξ̂1(k) =



Φ̂(k) 0 · · · 0
Φ̂(k) Φ̂(k + 1) · · · 0

...
...

. . .
...

Φ̂(k) Φ̂(k + 1) · · · Φ̂(k + Nu − 1)
...

...
. . .

...
Φ̂(k) Φ̂(k + 1) · · · Φ̂(k + Nu − 1)


N×Nu

Moreover, the present moment control law expresses as:

u(k) = u(k− 1) + gT∆UNu(k) (24)

where: g = [Im×m, Om×m, · · · , Om×m]
T ∈ Rm×Nu , Om×m =

0 · · · 0
...

. . .
...

0 · · · 0


m×m

For the proposed control algorithm, the stability of the system needs to be rigorously
verified, so we introduce the following assumption and lemma.

Assumption 3. The PJM Φ(k) of system is a diagonally-dominant matrix which satisfies the
following conditions: β1 ≤ |ϕii(k)| ≤ αβ1,

∣∣ϕij(k)
∣∣ ≤ β2, β2 > β1(2α + 1)(m− 1), α ≥ 1,

i ∈ [1, m], j ∈ [1, m], i 6= j , and the sign of all elements in Φ(k) remain invariant.

Lemma 2. ([45]). Let Ag is a n-order complex matrix, Ag =
(
αij
)

n×n, for ∀i ∈ [1, n]. Defining

the Gerschgotin disc as Ri =

{
z

∣∣∣∣∣|z− αii| ≤
n
∑

j=1,j 6=i

∣∣αij
∣∣}, then all characteristic roots of the

matrix satisfy that zi ∈ RA =
⋃n

j=1Ri.

Theorem 1. If system (5) satisfies three assumptions which are presented previously, then when the
desired signal yd(k + 1) = yd = const, there must exist constant λmin > 0, and ∀λ > λmin .The
system satisfies the following conditions:

Tracking error sequence convergence, that is, lim
k→∞

x̂(k + 1)− xd(k)v = 0

The input {u(k)} and output {x̂(k)} of system are bound.

Proof. See Appendix A.

3.4. Fuzzy State Observer and Stability Analysis

The discrete-time fuzzy model based FSO is fit with MFAPC scheme, which is designed
based on system equivalence Cauchy-discretization model. The observer can directly utilize
system online I/O data. Regarding the system (6), there exists an uncertain time-delay, and
we designed the FSO to deal with the unknown time-delay in the system. The number of
rules and variable conditions of fuzzy observer were consistent with the fuzzy model of
the controlled object. The observer of the fuzzy time-delay system is expressed as follows:

Rule i: if z1(k) is Fi1 and z2(k) is Fi2 and · · · and zn(k) is Fin, then{ .
x̂(k) = A1i x̂(k) + Adi x̂(k + d) + Biu(k) + Gi(y(k)− ŷ(k))

ŷ(k) = Ci x̂(k)
(25)
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By means of the single point fuzzification, product inference, and average weighted
defuzzification, the time-delay fuzzy system can be expressed as:

.
x̂(k) =

N
∑

i=1
hi(z(k))[A1i x̂(k) + Adi x̂(k + d) + Biu(k) + Gi(y(k)− ŷ(k))]

ŷ(z(k)) =
N
∑

i=1
hiCi x̂(k)

(26)

Similar to the design process of the state feedback control law, the FSO output feedback
control law is:

u(k) = −
N

∑
i=1

hi(z(k))Ki x̂(k) (27)

Defining that observation error as eo(k) = x(k)− x̂(k) and x̃(k) =
[

x(k)
eo(k)

]
, then fuzzy

time-delay system observation error function is expressed as:

.
eo(k) =

N

∑
i=1

N

∑
j=1

hi(z(k))hj(z(k))
[(

A1i − GiCj
)
eo(k) + Adieo(k + d)

]
(28)

Therefore, the fuzzy close-loop system is expressed as:

.
x̃(k) =

N

∑
i=1

N

∑
j=1

hi(z(k))hj(z(k))
[
Gij x̃(k) + Mij x̃(k + d)

]
(29)

where: Gij =

[
A1i − BiKj BiKj

0 A1i − GiCj

]
, Mij =

[
Adi 0
0 Adi

]
.

Lemma 3 ([46]). Assume matrixes M, N ∈ Rm×n are real matrixes with suitable dimensions
and P, Q ∈ Rm×n are two positive definite matrixes. If these matrices satisfy matrix inequalities
MT PM−Q < 0 and NT PN −Q < 0, then MT PM + NT PN − 2Q < 0 is valid.

Theorem 2. With regard to the given fuzzy discrete time-delay system (25), when there are positive
definite matrixes R1, R2, Q1, Q2 and the matrixes Xi, Yi satisfy the following matrix inequalities:

 −R1 −Q1 0 RT
1 A1iRT

i Bi
0 −Q1 RT

1 AT
di

A1iR1 − BiRi, AdiR1 −R1

 < 0 (30)

 −R2 −Q2 0 (R2 Adi − SiCi)
T

0 −Q2 (R2 Adi − SiCi)
T

R2 Adi −YiCi R2 Adi −YiCi −R2

 < 0 (31)


−R1 −Q1 0 1

2 X̂T
ij

0 −Q1
1
2

(
AdiP1 + AdjP1

)T

1
2 X̂ij

1
2

(
AdiR1 + AdjR1

)
−R1

 < 0 (32)

−R1 −Q2 0 1
2 ŶT

ij
0 −Q2

1
2 ŶT

ij
1
2 Ŷij

1
2 Ŷij −R2

 < 0 (33)

then the control law (27) makes fuzzy close-loop time-delay system (28) asymptotically
stable, the state feedback gain and the observed gain are Ki = XiR−1

1 and Gi = R−1
2 Yi

respectively, i ∈ [1, N].
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Where: X̂ij = A1iR1 + A1jR1 − BiXj − BjXi and Ŷij = R2 Adi + R2 Adj − YiCj − YjCi,
i < j.

Proof. See Appendix B.

4. Simulation Validation

In this section, simulations were conducted to demonstrate the robustness and effec-
tiveness of the proposed control scheme. In order to present the control performances of
improved MFAPC, we designed two trajectory tracking scenarios. Simultaneously, we
compared the simulation results with previous research literature about data-driven based
model-free adaptive control approaches [43,47] to verify the effectiveness and feasibility.

4.1. Parameter Selection

To ensure the values of parameters possessed practicality and authenticity, we adopted
realistic parameters from the AUV “T-SEA I” which was developed for underwater docking
experiments. The technical specifications of the AUV have been introduced in our previous
study [48], and the specific parameters are listed in Table 1.

Table 1. Performance parameters of AUV “T-SEA I”.

Performance Parameter Values

Mass(kg) 65
Length(m) 2.14

Diameter(m) 0.22
Maximum speed(kn) 2.5
Maximum depth(m) 60

Battery life(h) 6

For the following simulations, the parameters and system gains of the controller were
set consistently [49], which are listed in Table 2.

Table 2. Parameters setting for algorithms.

Performance Parameter Values

µ 1
ζ 0.8
ρ 1
λ 0.56
d 1.2

As the comparative simulation control scheme, the MFAC control law is expressed as
follows. Meanwhile, the comparative schemes MFAC and MFAPC do not have a specific
subsystem that is used to deal with the time-delay, so the controller is unable to adopt the
x̂(k) as output data.

u(k) = u(k− 1) +
ρΦ̂T(k)[xd(k + 1)− x(k)]

λ + ‖Φ̂(k)‖2 (34)

where: Φ̂(k) is estimated by (17), and the reset algorithm for Φ̂(k) is kept consistent with
the proposed control scheme in Section 3.

Regarding to T-S fuzzy system, following two fuzzy rules are considered:

Rule1: If z1(k) is F1(max)
Then

.
x(k) = A1x(k) + Ad1x(k− d) + B1u(k)
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Rule2: If z1(k) is F2(min)
Then

.
x(k) = A2x(k) + Ad2x(k− d) + B2u(k)

The membership function is selected as a Gaussian normal distribution, consistent
with article [50], and the matrix parameters for two modals of fuzzy systems are:

A1 =

[
−8 0.3
3 1

]
, A2 =

[
−6 0.3
2 1

]
Ad1 =

[
0.2 −0.4
0.3 0.4

]
, Ad2 =

[
0.3 −0.3
0.3 0.5

]
B1 =

[
0.1 0.3
0.3 0.1

]
, B2 =

[
0.1 0.2
0.3 0.1

]
C1 = C2 =

[
1 0
0 1

]
.

4.2. Tracking Simulation Results

In order to examine the control performance of the proposed algorithm, two trajectory
tracking scenarios were designed. Considering the external disturbance from the current in an
area of offshore water, the current was set at 0.2 m/s. Under these two scenarios, both initial
settings were identical, the initial position and attitude are set as [x(0), y(0), ψ(0)]T = [0, 0, 0]T,
and the initial velocities are set as [u(0), v(0), r(0)]T = [0, 0, 0]T.

To appraise the performances of the proposed controller and the contrast controllers,
we choose to used standard deviation (STD) and mean absolute deviation (MAD) to
calculate the practical sailing trajectories and yaw angles. The controller’s accuracy can
be presented more intuitionistic and clearer. In the following value calculation, all values
were listed at three decimal places.STD =

√
∑N

i=1(yi−y)
N

MAD = ∑N
i=1|yi−yd |

N

(35)

4.2.1. Scenario 1

In this scenario, we designed a comb-shaped trajectory for AUV to execute tracking
simulation under the synchronous influence of external disturbance and time delay. We
set six reference coordinates as inflection points for AUV horizontal plane sailing, which
were [20, 20], [60, 20], [60, 40], [20, 40], [20, 60], and [60, 60] serially, the current was set with
disturbance parallel to the y-axis. The reference trajectory was set as follows:

xd[m] =



2
7 t, t ≤ 70s

4
9 (t− 70) + 20, 70s < t ≤ 160s

0, 160s < t ≤ 200s
60− 4

9 (t− 200), 200s < t ≤ 290s
0, 290s < t ≤ 330s

4
9 (t− 330) + 20, t > 330s

yd[m] =



2
7 t, t ≤ 70s

0, 70s < t ≤ 160s
1
2 (t− 160) + 20, 160s < t ≤ 200s

0, 200s < t ≤ 290s
1
2 (t− 290) + 40, 290s < t ≤ 330s

0, t > 330s

The tracking results of the proposed control approach and typical MFAC and MFAPC
are shown in Figures 1 and 2.
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outputs. (e–g) Control inputs.

By observing the tracking comparative experiment results shown in Figure 1a, it can
be immediately determined that tracking performance was effectively assured via applying
our proposed FSO-based MFAPC approach, and exhibits the best tracking accuracy under
the synchronous influence of time-delay and external disturbance, and the superiority of
tracking accuracy at all inflection corners becomes more obvious.

As seen in the control input and output details are shown in Figure 1b–g, the proposed
control approach possesses a better capability of processing system time-delay than typ-
ical MFAC or MFAPC approach. The control outputs show that the proposed approach
attenuates the influence of the system time-delay while the error of the contrast controller
gradually increases.

When combined with the predictive control concept, the MFAPC can predict the
dynamic changes of the system in a certain future time window via the PJM predictive
technique, allowing it to deal with external disturbances better than the traditional MFAC
approach. For the PJM values shown in Figure 2a, we can see that during the first 70 time
points, the proposed algorithm and typical MFAPC can both dynamically change related to
the system dynamic variation, but the PJM of the proposed algorithm has smaller overshot
and faster convergence. In addition, the corresponding controllers’ performances are listed
in Table 3. From comparing the STD values and MAD values, we can conclude that the
proposed controller has the smallest overshoot and the best tracking accuracy.
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Table 3. STD and MAD of controllers under Scenario 1.

Controller STDx(m) MADx(m) STDy(m) MADy(m) STDyaw(◦) MADyaw(◦)

FMFAPC 19.356 1.094 20.066 0.556 24.373 11.225
MFAPC 19.733 1.791 20.154 1.449 25.043 12.613
MFAC 19.992 3.406 20.108 1.985 30.327 15.74

4.2.2. Scenario 2

In this scenario, we designed a hexagon trajectory, the tracking simulation under
the synchronous influence of external disturbance and time delay. We set six reference
coordinates as AUV horizontal sailing inflection points, which were [105,60], [105,100],
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[70,120], [35,100], [35,60], and [70,40] serially, the current disturbances were both set parallel
to the x-axis and y-axis as 0.2 m/s. The reference trajectory was set as follows:

xd[m] =



21
32 t, t ≤ 160s

0, 160s < t ≤ 210s
105− 7

10 (t− 210), 210s < t ≤ 310s
0, 310s < t ≤ 360s

35 + 7
10 (t− 360), t > 360s

yd[m] =



3
8 t, t ≤ 160s

4
5 (t− 160) + 60, 160s < t ≤ 210s

2
5 (t− 210) + 100, 210s < t ≤ 260s
120− 2

5 (t− 260), 260s < t ≤ 310s
100− 4

5 (t− 310), 310s < t ≤ 360s
60− 2

5 (t− 360), t > 360s

The tracking results of the proposed control approach and typical MFAC and MFAPC
are presented in Figures 3 and 4.
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From the simulation results in Figure 3a, we can also intuitively find that by adopting
an FSO based MFAPC algorithm, the accuracy of tracking control was relatively well
guaranteed. Meanwhile, the proposed control approach can ensure rapid convergence to
the reference trajectory with much smaller course slips and deviations. Meanwhile, it can
be found that the proposed control approach possesses a faster convergence rate from the
simulation results presented in Figure 3b−g under the influence of system time-delay and
external disturbance.

The simulation results presented in Figure 4a indicate that the proposed FSO based
MFAPC can respond to the system’s dynamic variation to change the PJM estimation and
prediction value with a faster response time and a faster convergence rate, indicating that
the proposed control approach has better robustness and adaptiveness. The corresponding
controllers’ performances under this scenario are listed in Table 4, the STD values and MAD
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values reflect the superiority of the proposed control approach, which possesses relatively
best accuracy and smallest control overshoot.
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which possesses relatively best accuracy and smallest control overshoot. 

Table 4. STD and MAD of controllers under Scenario 2. 

Controller  STDx(𝐦)  MADx(𝐦)  STDy(𝐦)  MADy(𝐦)  STDyaw(°)  MADyaw(°) 

FMFAPC  26.461 2.850 31.150 2.213 45.020 6.242 

MFAPC  26.024 3.133 31.418 2.520 45.551 14.403 

MFAC  28.509 3.213 33.049 7.965 48.557 27.807 

Figure 4. (a) PJM estimation results of controllers. (b–d) Tracking errors.

Table 4. STD and MAD of controllers under Scenario 2.

Controller STDx(m) MADx(m) STDy(m) MADy(m) STDyaw(◦) MADyaw(◦)

FMFAPC 26.461 2.850 31.150 2.213 45.020 6.242
MFAPC 26.024 3.133 31.418 2.520 45.551 14.403
MFAC 28.509 3.213 33.049 7.965 48.557 27.807

In summary, the proposed FSO based MFAPC algorithm possesses strong robustness
towards system synchronous influence time-delay and external disturbance, the proposed
algorithm achieves good performance in estimating the system parameter uncertainty, and
the control scheme is able to achieve satisfactory tracking accuracy and convergence rate.
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Remark 4 The proposed FSO based MFAPC scheme is designed based on the data-driven concept
and dynamic linearization technique, it relays on I/O data to generate controllers directly. Thus,
the accuracy of I/O data measurement directly affects the performance of the control scheme. In
practical applications, the system noises, performance of sensors, data packet loss, transmission rate
of network channel, etc., these factors will deteriorate the controller performance.

5. Conclusions

In this study, a fuzzy state observer based MFAPC scheme is proposed for trajectory
tracking control for AUV. We First time combining the state observer based on fuzzy logic
concept with data-driven control approach. Considering the practical characteristics of
the AUVs motion system, the dynamic linearization method of proposed control approach
was designed able to process MIMO discrete-time system. Meanwhile, the discrete-time
fuzzy model based FSO fits with MFAPC scheme, which is designed based on system
equivalence Cauchy-discretization model. The observer can directly utilize system online
I/O data. To verifying the proposed control scheme of this study, we compared the control
performances of proposed algorithm with typical MFAC and MFAPC approaches. We
adopted parameters values of practical AUV as controller parameters. We design two
different tracking scenarios, and set external disturbances to simulate ocean environment
of off shore water. Depend on these simulation conditions, the simulation were conducted
by using MATLAB/Simulink.

From an implementation perspective, the proposed control scheme is an effective and
attractive approach. Firstly, it does not require precise parameters or an accurate mathe-
matical model to generate controller data, which is replaced by online I/O data. Secondly,
compared with a typical MFAC or other data-driven based approach, the proposed control
scheme has the capability of synchronous compensation of the time-delay and external
disturbance and can exhibit tracking the performance of high robustness and accuracy. Last
but not least, our proposed control scheme can be applied to other kinds of robotic systems
and even multi-agent systems.

The proposed control approach has satisfactory performance in the working envi-
ronments with unknown or uncertain hydrodynamics. However, aim to the operation
conditions such as extremely high time accuracy requirement, high sailing-speed vehicles
or object system mode will random jump, the algorithm of this study cannot achieve highly
robustness or accuracy. As future research, these limitations of proposed algorithm are
worth to devote efforts.
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Appendix A

This proof is divided into two parts, to prove that the estimate value of PJM Φ̂(k)
and predictive value Φ̂(k + 1) · · · Φ̂(k + Nu − 1) are bound, and moreover, to prove the
tracking error convergence and system BIBO.
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Firstly, to proof estimate value and predictive values are bounded. Considering the

Φ(k) =


ϕ11(k) ϕ12(k)
ϕ21(k) ϕ21(k)

· · · ϕ1m(k)
· · · ϕ2m(k)

...
...

ϕm1(k) ϕm2(k)

...
...

· · · ϕmm(k)

 ∈ Rm×m, then the estimation algorithm (17)

of PJM can be rewritten as follow,

ϕ̂ij(k) = ϕ̂ij(k + 1) +
ζ
(
∆xi(k + d)− ϕij(k− 1)∆u(k− 1)

)
∆uT(k− 1)

µ + ‖∆u(k− 1)‖2 (A1)

where: ∆xi(k + d) = ϕij(k− 1)∆u(k− 1), i = 1, 2, · · ·m, j = 1, 2, · · ·m.
Defining that tracking error expressed as ϕ̃ij(k) = ϕ̂ij(k)− ϕij(k). Subtract ϕij(k) from

both sides of Equation (A1), we can obtain:

ϕ̃ij(k) = ϕ̃ij(k− 1)

[
I − ζ∆u(k− 1)∆uT(k− 1)

µ + ‖∆u(k− 1)‖2

]
− ∆ϕij(k) (A2)

According to Lemma 1 we can know that ‖Φ(k)‖ is bounded. Then must exists a
constant g that satisfied ‖Φ(k)‖ ≤ g, and further obtain that ‖∆ϕij(k)‖ ≤ 2g.

Taking norm on both sides of (A2) and we can get:

‖ϕ̃ij(k)‖ ≤ ‖ϕ̃ij(k− 1)
[

I − ζ∆u(k−1)∆uT(k−1)
µ+‖∆u(k−1)‖2

]
‖+ ‖∆ϕij(k)‖

≤ ‖ϕ̃ij(k− 1)
[

I − ζ∆u(k−1)∆uT(k−1)
µ+‖∆u(k−1)‖2

]
‖+ 2g

(A3)

Taking the square root of the first term on right-side of equation (A3), and cause µ > 0,
ζ ∈ (0, 2], therefore we can obtain inequality as follow:

0 <
ζ‖∆u(k− 1)‖2

µ + ‖∆u(k− 1)‖2 < 2 (A4)

Thus, according to (A3) and (A4), we can assume that exist a constant b2 ∈ (0, 1) that
makes the following inequality hold:

‖ϕ̃ij(k− 1)

[
I − ζ∆u(k− 1)∆uT(k− 1)

µ + ‖∆u(k− 1)‖2

]
‖ ≤ b2‖ϕ̃ij(k− 1)‖ (A5)

Substituting (A5) into (A3) we can obtain the inequality as follow:

‖ϕ̃ij(k)‖ ≤ b2‖ϕ̃ij(k− 1)‖+ 2g

Therefore, it can be found that ϕ̃ij(k) is bound, namely Φ̃(k) is bound Moreover depend
on Lemma 1 indicates that Φ(k) is bounded, Φ̃(k) + Φ(k) = Φ̂(k) cause then it can be
easily obtain that the estimation value of PJM Φ̂(k) bounded. Additionally, according to
the prediction algorithm (18)–(20) and the reset algorithm, and integrating the previous
calculations (A2) to (A5), we can find that Φ̂(k + 1) · · · Φ̂(k + Nu − 1) are bounded.

Secondly, to proof the tracking error convergence and system are BIBO. Defining the
tracking error of system as et(k) = xd(k)− x(k), and substitute into linearization data (13),
control law (23) and (24), we can obtain:

et(k + 1) = xd(k)− x(k)−Φ(k)
[

gTΞ̂T
1 (k)[Xd(k+1+d)−E(k)x(k+d)]

λ+‖Ξ̂1(k)‖2

]
=

[
I −Φ(k) (

gTΞ̂T
1 (k)E(k))

λ+‖Ξ̂1(k)‖2

]
et(k)

(A6)
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Taking norm on both sides of (A6) and we can get:

‖et(k + 1)‖ ≤ ‖I −Φ(k)
(

gTΞ̂T
1 (k)E(k)

)
λ + ‖Ξ̂1(k)‖2 ‖‖et(k)‖ (A7)

Simplify the gTΞ̂T
1 (k)E(k),

Ξ̂T
1 (k)E(k) =


NΦ̂T(k)

(N − 1)Φ̂T(k + 1)
...

(N − Nu + 1)Φ̂T(k + 1)


Num×m

(A8)

Therefore, the (A7) can be rewritten as follow:

‖et(k + 1)‖ ≤ ‖I −Φ(k)
N·Φ̂T(k)

λ + ‖Ξ̂1(k)‖2 ‖‖et(k)‖ (A9)

According to Lemma 2 and triangle inequality, we assume that z as the eigenvalue of

I −Φ(k) N·Φ̂T(k)
λ+‖Ξ̂1(k)‖2 , Relying on triangle inequality principle, we can get:

Rj =

{
z

∣∣∣∣∣|z| ≤
∣∣∣∣∣1− N ∑m

j=1 ϕij(k)ϕ̂ij(k)

λ + ‖Ξ̂1(k)‖2

∣∣∣∣∣+ ∑m
l=1,l 6=i

∣∣∣∣∣N ∑m
j=1 ϕij(k)ϕ̂ij(k)

λ + ‖Ξ̂1(k)‖2

∣∣∣∣∣
}

(A10)

where: z is the characteristic root of matrix I − Φ(k) N·Φ̂T(k)
λ+‖Ξ̂1(k)‖2 , Rj is Gerschgorin disc,

j = 1, · · · , m.
Considering the reset algorithm of MFAPC, we can further get the following inequali-

ties:

1−
N ∑m

j=1 ϕij(k)ϕ̂ij(k)

λ + ‖Ξ̂1(k)‖2 ≤ 1− N|ϕii(k) ‖ϕ̂ii(k)|
λ + ‖Ξ̂1(k)‖2 ≤ 1−

Nβ2
1

λ + ‖Ξ̂1(k)‖2 (A11)

m
∑

l=1,l 6=i

∣∣∣∣N ∑m
i=1 ϕij(k)ϕ̂l j(k)

λ+‖Ξ̂1(k)‖2

∣∣∣∣ ≤ N
m
∑

l=1,l 6=i

∑m
i=1|ϕij(k)‖ϕ̂l j(k)|

λ+‖Ξ̂1(k)‖2

= N
(

∑m
l=1|ϕii(k)‖ϕ̂li(k)|

λ+‖Ξ̂1(k)‖2 + ∑m
l=1|ϕil(k)‖ϕ̂ll(k)|

λ+‖ ˆ̂Ξ1(k)‖2

+
m
∑

l=1,l 6=j

∑m
j=1|ϕji(k)||ϕ̂il(k)|

λ+‖Ξ̂1(k)‖
2

)
≤ N

(m−1)(2αβ1·β2+β2
1(m−2))

λ+‖Ξ̂1(k)‖2

(A12)

According to Assumption 3 that β2 > β1(2α + 1)(m− 1), by summing the previous
inequalities, we can further obtain:

m
∑

l=1,l 6=i

∣∣∣∣N ∑m
i=1 ϕij(k)ϕ̂l j(k)

λ+‖Ξ̂1(k)‖2

∣∣∣∣− N ∑m
j=1|ϕij(k)||ϕ̂ij(k)|
λ+‖Ξ̂1(k)‖2

≤ N
(m−1)(2αβ1·β2+β2

1−β2
1(m−2))

λ+‖Ξ̂1(k)‖2

≤ N 2α(m−1)2β2
2

λ+‖Ξ̂1(k)‖2

(A13)
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According to the (A11), (A12) and Assumption 3, we can obtain that ϕij(k)ϕ̂l j(k) > 0.
Thus, there must exist a constant λmin > 0, such that regarding to any λ > λmin, the
following inequality is valid:

N ∑m
j=1 ϕij(k)ϕ̂ij(k)

λ+‖Ξ̂1(k)‖2 = N
∑m

j=1|ϕij(k)||ϕ̂ij(k)|
λ+‖Ξ̂1(k)‖2 ≤ N α2β2

1+(m−1)β2
2

λ+‖Ξ̂1(k)‖2

< N α2β2
1+(m−1)β2

2
λmin+‖Ξ̂1(k)‖2 < 1

(A14)

Then, we can deduce the following valid inequality:

0 < M1 ≤ N 2α(m−1)2β2
2

λ+‖Ξ̂1(k)‖2 < N β2
1

λ+‖Ξ̂1(k)‖2 < N α2β2
1+(m−1)β2

2
λ+‖Ξ̂1(k)‖2

< N α2β2
1+(m−1)β2

2
λmin+‖Ξ̂1(k)‖2 < 1

(A15)

Based on (A11)–(A15), we can further deduce that:∣∣∣∣∣1− N ∑m
i=1 ϕij(k)ϕ̂l j(k)

λ + ‖Ξ̂1(k)‖2

∣∣∣∣∣+ m

∑
l=1,l 6=i

∣∣∣∣∣N ∑m
i=1 ϕij(k)ϕ̂l j(k)

λ + ‖Ξ̂1(k)‖2

∣∣∣∣∣ < 1−M1 < 1 (A16)

According to the disk theorem shown as Lemma 2 and the previous inequality, we can
get that:

s

(
I −Φ(k)

(
gTΞ̂T

1 (k)E(k)
)

λ + ‖Ξ̂1(k)‖2

)
< 1−M1 < 1 (A17)

where: s
(

Ag
)

represents the spectral radius of matrix Ag, that is s
(

Ag
)
= max

i∈{1,2,··· ,m}
zi. zi

denotes the characteristic value of matrix Ag.
To reference the conclusion of spectral radius in [51], it is clear that there must exist an

arbitrarily small constant δ1, that makes

‖I −Φ(k) (
gTΞ̂T

1 (k)E(k))
λ+‖Ξ̂1(k)‖2 ‖v < s

(
I −Φ(k) (

gTΞ̂T
1 (k)E(k))

λ+‖Ξ̂1(k)‖2

)
+ δ1

≤ 1− NM1 + δ1 < 1
(A18)

where: ‖Ag‖v is the compatibility norm of the matrix Ag.
Substitute the (A18) into (A6)

‖et(k + 1)‖v ≤ ‖I −Φ(k) (
gTΞ̂T

1 (k)E(k))
λ+‖Ξ̂1(k)‖2 ‖v·‖et(k)‖v

≤ (1− NM1 + δ1)‖et(k)‖v ≤ · · · ≤ (1− NM1 + δ1)
k‖et(1)‖v

(A19)

It is obvious that 1−NM1 + δ1 ∈ (0, 1), when the value of k is big enough, lim
k→∞

(1−NM1

+ δ1)
k = 0. Therefore, we can know the tracking error ‖et(k + 1)‖v approaching 0, namely be

bounded. That is lim
k→∞
‖x̂(k + 1)− xd(k)‖v = 0 is valid.

Generally, the desired control output xd(k) is a constant, and it is inevitable to be
bound. Considering the previous proof that the tracking error et(k) is bound

Meanwhile

‖∆u(k)‖ = ‖gT∆UNu(k)‖ = ‖gT Ξ̂T
1 (k)[Xd(k+1)−E(k)x̂(k)]

λ+‖Ξ̂1(k)‖2 ‖

= ‖ NΦ̂T(k)
λ+Ξ̂1(k)‖2 ‖·‖et(k)‖

(A20)

where: Φ̂(k), Φ̂(k + 1), . . . , Φ̂(k + Nu − 1) are bounded, which are proved previous, so
that according to (14) the matrix Ξ̂1 is also bounded. Then we can further obtain that
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NΦ̂T(k)
λ+‖Ξ̂1(k)‖2 is always less than a certain positive constant, namely NΦ̂T(k)

λ+‖Ξ̂1(k)‖2 is bounded. So

that we can get that ‖u(k)‖ − ‖u(k− 1)‖ is bounded, then we can further obtain that the
sequence of input {u(k)} is bounded.

Appendix B

Select Lyapunov function as:

V(x̃(k)) = x̃T(k)Px̃(k) +
k−1

∑
σ=k−h

x̃T(σ)Sx̃(σ) (A21)

solve the difference of V(x̃(k)), from (28) we can get:

∆V(x̃(k)) = V(x̃(k + 1))−V(x̃(k))

=
N
∑

i=1

N
∑

j=1

N
∑

1=1

N
∑

m=1
hi(z(k))hj(z(k))hl(z(k))hm(z(k))

[
x̃T(k)

(
GT

ij PGlm

−P)x̃(k) + x̃T(k)GT
ij PA2k x̃(k + d) + x̃T(k + d)AT

2iPGlm x̃(k)
+x̃T(k + d)AT

2iPAlm x̃(k + d) + x̃T(k)Sx̃(k)− x̃T(k + d)Sx̃(k + d)
]

=
N
∑

i=1

N
∑

j=1

N
∑

l=1

N
∑

m=1
hi(z(k))hj(z(k))hl(z(k))hm(z(k))xT(k)

(
AT

ij PAlm +P)x(k)

(A22)

where: x(k) =
[

x̃(k)
x̃(k + d)

]
, Aij =

[
Gij Mij

]
, P =

[
P− S 0

0 S

]
.

We can get following function by using Lemma 3,

∆V(x̃(k)) ≤
N
∑

i=1

N
∑

j=1
hi(z(k))hj(z(k))xT(k)

(
AT

ij PAij − P
)

x(k)

=
N
∑

i=1

N
∑

j=1
hi(z(k))hj(z(k))xT(k)[

(
Aij+Aji

2

)T
P
(

Aij+Aji
2

)
−P]x(k)

(A23)

If two positive definite matrices P ∈ R2n×2n and S ∈ R2n×2n satisfy the following
inequalities

AT
ii RAii − P < 0 (A24)(

Aij + Aji

2

)T

P

(
Aij + Aji

2

)
− P ≤ 0 (A25)

then the fuzzy close-loop system (28) is asymptotically stable. Via Schur decomposition,
the inequalities (A24) and (A25) are respectively equivalent as:−R−Q 0 RGT

ii
0 −Q XMT

ii
GiiR MiiR −R

 < 0 (A26)


−R−Q 0 RT

(Gij+Gji
2

)T

0 −Q RT
(Mij+Mji

2

)T

R
(Gij+Gji

2

)
R
(Mij+Mji

2

)
−R

 < 0 (A27)
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In previous inequality, it is obvious that R = P−1 and Q = MSM. Let R =

[
R1 0
0 R−1

2

]
,

Q =

[
Q1 0
0 R−1

2 Q2R−1
2

]
, substitute R and Q into (A26) then we can obtain following

inequalities:  −R1 −Q1 0 (A1iR1 − BiXi)
T

0 −Q1 (A2iR1)
T

A1iR1 − BiXi A2iR1 −X1


T

< 0 (A28)

 −R2 −Q2 0 (R2 A2i −YiCi)
T

0 −Q1 (R2 A2i −YiCi)
T

R2 A2i −YiCi R2 A2i −YiCi −R1

 < 0 (A29)

Similarly to above calculation process, the (A27) is equivalent to the following inequal-
ities 

−R1 −Q1 0
X̂T

ij
2

0 −Q1
(A2i R1+A2jR1)

T

2
X̂ji
2

A2i R1+A2jR1
2 −R1

 < 0, i < j (A30)


−R1 −Q2 0

ŶT
1ij
2

0 −Q2
ŶT

2ij
2

Ŷ1ij
2

Ŷ2ij
2 −R2

 < 0, i < j (A31)

Thus, since the inequalities (A28)–(A31) hold, the fuzzy close-loop system (28) is
asymptotically stable.
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