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Abstract: Pile groups are designed to sustain complex loads in various engineering. During the
design of a pile group, the obvious pile group effect should be considered for closely spaced pile
groups. However, the group effect considered by different scholars varies, which makes it hard for
engineers to consider the pile group effect for the design of a pile group. In this study, the finite
element (FE) method is proposed to advance our understanding of the variations of pile group
effects developed by different researchers, based on the concept of soil–pile relative stiffness. The
relationship between soil–pile relative stiffness and normalized lateral load–displacement curves and
bending moment profile response of the pile group is investigated. The results show that the pile
group effect increases with the increase in soil–pile relative stiffness; the pile group effect increases
with the decrease in pile spacing, increases with the increase in of number of piles in the group, and
is significantly affected by pile group arrangement as well.

Keywords: pile group effect; soil–pile relative stiffness; pile group spacing; number of piles in the
group; pile group arrangement

1. Introduction

Pile foundations are designed to support wharfs due to the advantage of transmitting
the load from deck to deep stable soils. In addition to the vertical load, the piles of wharf also
bear the lateral loads caused by wind, waves, and earthquakes during the serviceability [1,2].
In practical engineering, a group of piles instead of a single pile is widely used to resist the
aforementioned lateral loads [3–8]. Past studies have illustrated that the piles in a group
interact in such a way that their performance under loading is altered. This phenomenon is
defined as pile group effect, which is caused by the overlapping of stress and strain zones
of neighboring piles in the group. The pile group effect could cause a reduction in the
lateral resistance of piles in a group compared to a single pile.

There are two methods to account for pile group effect, i.e., pile group efficiency and
p-multipliers method. Pile group efficiency is defined as the average lateral load capacity
per pile in a group divided by the lateral capacity of a single pile. By this approach, the
group load is scaled down, relative to what would be expected for independent single
piles by the efficiency factor, while the p-multiplier is an empirical reduction factor for p-y
curves used to account for the loss of soil resistance, which is developed by Brown et al. [9].
It should be noted that the essence of these two methods is the same, both of which use
reduction factors to scale down the response of a single pile to mimic the individual pile
response in a group.

Since the concept of p-multiplier is simple and easy to be used, this method was
quickly accepted by the engineering industry and is widely used in North America. The
research indicates the p-multiplier varies at the row position in the pile group [10–12]. In
particular, the p-multipliers of the leading row have a higher value than that of the trailing
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row. However, the direction of seismic and cyclic load is a potential reason that causes
changes in p-multipliers, since the leading row will become the trailing row when the
direction of lateral load reverses. Therefore, the p-multiplier developed based on the row
in a pile group has its own bottleneck in considering the cyclic load.

Recently, the average p-multiplier for pile group, rather than that of row by row,
is proposed to solve that issue. Fayyazi et al. [13] summarized group reduction factors
obtained from the previous field tests and centrifuge tests, which are listed in Table 1.
According to Table 1, the main factors affecting the pile group effect include soil type, pile
spacing, number of piles in the group, and pile arrangement; although eight 3 × 3 pile
group full scale field tests are equal to three times the pile diameter, the group reduction
factors resulted from these tests are not equal (ranging from 0.34 to 0.87), which still
confuses the engineer when choosing reasonable group reduction factors for the pile group
design. Therefore, there is still an urgent need to further understand the factors that
influence the pile group effect, which should be beneficial to the pile group design.

Table 1. Group reduction factors from previous tests [13].

Researchers Pile Group
Arrangement Test Type Soil Type Internal Friction

Angle (◦) D (mm) Pile
Spacing

Group Reduction
Factor

Brown et al. [14] 3 × 3 Full scale Stiff clay 273 3D 0.6
3 × 3 Full scale Stiff clay 273 3D 0.53

Brown et al. [9] 3 × 3 Full scale Medium dense sand 38.5 273 3D 0.5
Morrison and Reese [15] 3 × 3 Full scale Medium dense sand 38.5 273 3D 0.5

McVay et al. [16]

3 × 3 Centrifuge Medium loose sand 30 430 5D 0.85
3 × 3 Centrifuge Medium dense sand 33 430 5D 0.85
3 × 3 Centrifuge Medium loose sand 30 430 3D 0.48
3 × 3 Centrifuge Medium dense sand 33 430 3D 0.5

Ruesta and Townsend [17] 4 × 4 Full scale Loose sand 32 760 (square) 3D 0.52

McVay et al. [18]

3 × 3 Centrifuge Sand 30, 33 429 (square) 3D 0.5
3 × 4 Centrifuge Sand 30, 33 429 (square) 3D 0.45
3 × 5 Centrifuge Sand 30, 33 429 (square) 3D 0.4
3 × 6 Centrifuge Sand 30, 33 429 (square) 3D 0.37
3 × 7 Centrifuge Sand 30, 33 429 (square) 3D 0.34

Rollins et al. 3 × 3 Full scale Clay and silt 400 3D 0.47

Huang et al. [19] 2 × 3 Full scale Silty clay 1500 3D 0.79
3 × 4 Full scale Silty clay 800 3D 0.69

Rollins and Sparks [20] 3 × 3 Full scale Silt and clay 324 3D 0.47
Snyder [21] 3 × 5 Full scale Soft clay 324 3.92D 0.74
Walsh [22] 3 × 5 Full scale Sand 40 324 3.92D 0.51

Rollins et al. [23] 3 × 3 Full scale Sand 38 324 3.3D 0.53
Christensen [24] 3 × 3 Full scale Sand 38 324 5.65D 0.78

Rollins et al. [25]

3 × 5 Full scale Stiff clay 610 3D 0.62
3 × 3 Full scale Stiff clay 324 5.65D 0.87
3 × 4 Full scale Stiff clay 324 4.4D 0.78
3 × 5 Full scale Stiff clay 324 3.3D 0.57

In this study, the variation in group reduction factors, based on the conception of
relative soil–pile stiffness, is addressed. Firstly, several finite element (FE) models of single
pile and pile group are created and verified. Secondly, the load–displacement curves and
bending moment profile for pile group are normalized by that of the maximum response of
a single pile. Lastly, pile group efficiency was calculated; the relationship between soil–pile
relative stiffness and the normalized response of the pile group for various spacing, number
of piles, and pile group arrangement are used to analyze the relationship between soil–pile
relative stiffness and group effect.

2. Description of the Numerical Model

In this section, the FE models of one single pile and one pile group are created for two
full scale field tests using OpenSees, which is an object-oriented, open-source FE analysis
framework [26], and has been widely used in geotechnical earthquake engineering [27–30].
To validate the FE model, the results of FE models are compared to data available from
the full scale field tests. We are using the data from a field test provided by Walsh [3] to
validate the model [22]. The field tests and FE models are briefly introduced as follows.
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2.1. Brief Description of Field Test

The 5 × 3 pile group experimental setup conducted by Walsh [22] is shown in Figure 1.
All the piles are made of steel tubes whose outer diameter, D, is 324 mm; the moment of
inertia of the tested pile (including pipe and angle iron) is 1.43 × 108 mm4. The length of
piles used in the field test was 13.683 m, including 13.2 m of the buried parts and 0.483 m
of the above-ground surface parts. The pile spacing along the loading direction is 3.92×D,
where D is the pile diameter and the pile spacing perpendicular to the loading direction is
3.29×D. No pile cap is adopted in the pile group test, the pile head can be considered as free;
no bending moment is produced during the loading process. Displacement-based loading
method is used in the field test for both the single pile and pile group. Multi-stage target
displacements are applied on the pile head, and the target displacements at each stage
are repeated ten times. According to the cone penetrometer test, the idealized subsurface
profile is refilled sand (0–2.4 m), soft clay (2.4–4.6 m), sand (4.6–6.3 m), soft clay (6.3–8 m),
and sand. The water level has a depth of 2.1 m.
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Figure 1. The setup of 5 × 3 pile group full field test (after Walsh).

2.2. Introduction of FE Model

In the FE model, each pile is assumed to be linearly elastic, while the soil exhibits
plastic behavior during the lateral loading. Considering the symmetry, only half of the FE
model is created and meshed to reduce the computational time. The soil (including sand
and clay) is simulated using eight-node brick elements, and the piles in single pile and pile
group models are all formulated using beam–column elements (see Figure 2, it should be
noted the size of this model is smaller than that used for analysis, this model is just used for
showing the process of model building). Due to the dimensionless of the beam–column, the
rigid links (beam–column elements, 104 stiffer than that of pile) perpendicular to the pile
are used to consider the size effect of the pile in the FE model. The length of rigid link is
the same with pile radius (162 mm), and eight links were set around each pile node [31,32].
Due to the piles in the group being pinned connected (no bending moments), the lateral
load is applied on the pile head using a displacement-based method. In the numerical
model, the pile head of the group is free, and the lateral load is imposed on the pile head of
each pile in the group equally using a displacement-based method, which can mimic the
tested condition approximately. It should be noted that, in the numerical model, the lateral
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load is also applied in a static way; thus, no inertial force is produced when the lateral load
is applied.
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Figure 2. FE model: (a) 3D model of soil and pile; (b) pile group only.

The length, width, and height of the numerical models used in the analysis are 120 m,
60 m (half-mesh), and 20 m, respectively, and it is made sure the piles are far away from
the side boundary (farther than 7 diameters) to avoid interaction. In addition, the distance
from the pile tip to the bottom boundary is 6.8 m (larger than 8 diameters). According to
Brown et al., the depth of the soil layer affected by the lateral load can be estimated as 10 D
(3.24 m in this study). As addressed above, the boundary effect of the FE model can be
ignored. The mesh around the pile is refined (40 m) to capture accurate stress distribution.
A sensitivity analysis was performed to make sure the element size of the numerical model
was small enough, until no significant difference was observed after further refining the
mesh. During the field test, the sand collapsed and flowed with the pile when the sand
reached its active state. Thus, no gap was formed in the test and no interface elements were
adopted in the numerical analysis.

As the soil layer down to a depth of about 10 D (3.24 m) dominates the pile response
under lateral load [9], the top two layers (sand and clay, the thickness is 4.6 m in total) are
considered to govern the lateral response of piles; in contrast, the soil layers below 4.6 m
have no significant effect on pile behavior. For simplicity, it is assumed that a soil layer
below 2.4 m has equal material property with the second layer (clay) for simplicity.

2.3. Constitutive Models and Soil Properties

The nonlinear behavior of sand is modeled using a pressure-dependent multi-yield
constitutive model (PDMY)) [33,34]. The PDMY material is an elastic–plastic material for
simulating the essential response characteristics of pressure-sensitive soil materials under
general loading conditions. The pressure-independent multi-yield constitutive model
(PIMY) [33,34] is used to simulate the nonlinear response of the clay subject to the lateral
load. The PIMY material is an elastic–plastic material, the plasticity is only exhibited in
the deviatoric stress–strain response, the volumetric stress–strain response is linear-elastic
and independent of deviatoric response. These two constitutive models were validated by
Elgamal et al. [22]. The soil properties used in PIMY and PDMY are listed in Table 2.
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Table 2. Soil material properties used in the FE model.

Parameters Clay Sand

Density of sand (ton/m3) 1.91 1.67
Cohesion (kPa) 30 0
Internal friction angle (◦) 0 40
Shear modulus (kPa) 87,000 50,000
Bulk modulus (kPa) 420,000 150,000
Poisson’s ratio 0.3 0.3

2.4. Boundary Condition

Based on the fact that the piles were in the center of the FE model, the lateral load was
applied on pile head, and the soil domain was large enough; thus, the fixed boundary was
used in the numerical model, i.e., the base surface was fixed in all directions, the left, right
and back boundaries were fixed in x and y directions, which means the soil domains could
only freely deform in the z (vertical) direction. In addition, the front plane was also fixed in
the y direction according to the symmetry, which indicates the nodes of soil and piles in the
symmetry plane could deform in both longitudinal and vertical directions.

3. Validation of the Numerical Model

The comparisons between the numerical results and the measured data for single piles
are shown in Figures 3 and 4. Figure 3 gives the numerical and experimental lateral load
versus displacement curves at the pile head. It can be seen that the value of the numerical
simulation has a very good agreement with that of the field test. Even at the larger target
displacements, the maximum difference between the measured and the numerical results is
less than 8%, which is within a reasonable limit in view of the variability of soil properties.
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Figure 4 demonstrates the experimental and numerical bending moments profile for
the single pile. The numerical maximum bending moment is quite close to the experimental
results. Furthermore, the depths of the maximum bending moment and reverse point
(the depth of moment from positive to negative) are also quite close for numerical and
experimental results. It can be concluded that the numerical results agree well with the
measured results, in other words, the numerical model can capture the soil–pile interaction
of a single pile under the cyclic lateral load.
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In Figure 5, the numerical and experimental average load–displacement curves at the
pile head for the 5 × 3 pile group are presented. As can be seen, the numerical calculations
achieve good agreements with the experimental results. The maximum error between the
numerical and experimental results of average load–displacement response is less than 5%,
which is acceptable for the simulation in the geotechnical engineering community. Average
bending moment profiles for the pile group at the applied target displacement of 38 mm
are depicted in Figure 6. It shows that numerical and experimental results agree well with
each other. The gap between numerical and experimental results can be contributed to by
the absence of the soil–pile interface in the FE model, which results in the stiffness between
the soil and pile being higher than the real value.
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In general, the numerical results for both single pile and 5 × 3 pile group matched
reasonably well with the experimental data. Hence, the numerical model proposed in
this study should be reliable to capture the pile–soil interaction subjected to lateral load.
Therefore, it can be used to further investigate the reason for the variations in group
reduction factor.
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4. Results and Discussion

In this section, we will discuss the reasons why different scholars suggest different
group reduction factors and why these p-multipliers vary so much, based on the conception
of soil–pile relative stiffness.

The pile relative stiffness recommended by Poulos’s [35] is used to define the soil–pile
relative stiffness; the formula is as follows:

KR =
EP IP

ESLL4

{
>0.208 Rigid pile
<0.0025 Slender pile

(1)

in which EP IP is the pile bending moment, and ESL is the soil Young’s modulus. In this
study, three KR 0.00015, 0.005, and 1.53, corresponding to a slender pile, medium pile
and rigid pile are considered to study the effect of soil–pile relative stiffness on the pile
group effect.

As addressed in Table 2, the parameters inputted into the numerical model are shear
modulus G and bulk modulus K, which can be estimated as follows:

G =
ESL

2(1 + ν)
(2)

K =
ESL

3(1 − 2ν)
(3)

Using the model validated above, a comprehensive parametric study is conducted
to analyse the relationship between normalized pile group response and soil–pile relative
stiffness. The parameters include different pile spacings (from 3 D to 9 D), different number
of piles in the group (from 2 × 2 to 5 × 5), and different pile arrangements (1 × 3, 1 × 4,
1 × 5, 3 × 1, 4 × 1, and 5 × 1).

4.1. Pile Spacing

In order to get a dimensionless pile group response, the load versus displacement
curves and bending moment profile are normalized as follows: for the lateral load, the
average lateral load at the pile head of pile group is obtained by dividing the sum of a
lateral load of the pile group by the number of piles, and then the average lateral load of
pile group is normalized by the maximum lateral load of a single pile; the displacement
at pile head is normalized by the pile diameter. For the bending moment, the average
bending moment of the pile group is obtained from the sum of the bending moment of the
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pile group and the number of piles, and the pile length is normalized by the length of pile
buried in soil.

The normalized lateral load versus the normalized displacement curves of the 3 × 3 pile
group with various pile spacings are shown in Figure 7. Figure 7a is the normalized lateral
load growth curves of the slender pile group (defined by Formula 1), and the normalized
lateral load of the pile group with 3 D of pile spacing is 0.691, which means the lateral
load of the pile group with 3 D of pile spacing is 0.691 of single pile value, and an obvious
pile group effect was observed. As the pile spacing increased, the normalized lateral
load increases, i.e., the pile group effect becomes insignificant. The pile with 7 D pile
spacing is close to 1, which means that the pile group effect can be neglected when the
pile spacing is larger than 7 D for the slender pile (with small soil–pile relative stiffness).
From Figure 7b,c, it can also be concluded that the lateral load of the pile group increases.
However, the normalized lateral loads are less than 1, which means the pile group effect
should be considered even when the pile spacing reaches 9 D for the medium rigid and
rigid pile group.
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As addressed above, p-multiplier and pile group efficiency can both be used to describe
the pile group. The pile group efficiency can be calculated as below:

Ge =
(Qu)g

n(Qu)s
(4)

where (Qu)g is the ultimate lateral load capacity of the group, n is the number of piles in
the group, and (Qu)s is the ultimate lateral load capacity of a single pile.

The pile group efficiencies for pile groups with various pile spacing and soil–pile
relative stiffness are listed in Table 3. It can be noted that the pile group efficiency increases
as the pile spacing increases, which means the pile group effect becomes insignificant as the
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pile spacing increases. This conclusion is consistent with reference [15]. By comparing the
results with identical pile spacing, it can be found that the pile group efficiency varies with
the variation in soil–pile relative stiffness; specifically, the pile group efficiencies decrease
as the soil–pile relative stiffness increases, i.e., the pile groups with larger stiffness have a
more significant pile group effect. This conclusion can be used to interpret the variation in
the pile group reduction factors listed in Table 1. The pile group effect can be neglected for
pile group with spacing larger than 5 D, while when the pile spacing less than 5 D, the pile
group effect must be considered. For the pile group with 3 D pile spacing, the slender pile
group’s group efficiencies are about 2 times that of the rigid pile group.

Table 3. Pile group efficiencies of pile group with various pile spacing.

Ge Slender Pile Medium Rigid Pile Rigid Pile

3 D 0.691 0.389 0.334
5 D 0.844 0.541 0.468
7 D 0.985 0.693 0.603
9 D 1.000 0.766 0.670

Figure 8 shows the normalized bending moment profiles of the pile group with various
pile spacing. It can be seen that the bending moments of the pile group with 9 D of pile
spacing is larger than that of other pile groups; meanwhile, the relative flexible pile with
close pile spacing sustains less bending moment, which shows a more significant pile group
effect. Furthermore, it is observed that the normalized bending moment of the slender pile
group is higher than that of the medium and rigid pile group. In addition, normalized
depth for the pile group with close pile spacing is larger than that with larger pile spacing,
which means the deeper soil is disturbed, caused by a strong pile group effect.
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By the comparison of normalized bending moments with equal pile spacing for
different relative stiffnesses, it can be observed that the normalized bending moment of
the slender pile group is higher than that of the rigid pile group, which means the pile
group effect of the slender pile group is less obvious than that of the rigid pile group. This
result can also reflect that the variation in the pile group effect is dependent on the soil–pile
relative stiffness.

4.2. Number of Piles

In this section, the normalized response of 2 × 2, 3 × 3, and 4 ×4 pile groups with
three kinds of pile relative stiffnesses is analysed. The spacing of these pile group are
all equal to 3 D. Figure 9 is the normalized load–displacement curves of pile group with
various numbers of piles. The maximum normalized lateral load for 2 × 2, 3 × 3, and
4 × 4 pile groups are all less than 1, which means an obvious pile group effect is observed
for the pile groups studied in this analysis. The maximum normalized lateral load of 2 × 2
is the highest, and normalized lateral load of the 4 × 4 pile group is the least, i.e., the pile
group effect increases as the pile numbers increase.
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Table 4 summarizes the pile group efficiencies of the pile group with various numbers
of piles. From Table 4 and the comparison of Figure 9a–c, it can be found that the normalized
lateral load of the slender pile group is larger than that of medium and rigid pile groups
when the applied target normalized displacements are equal, which means the pile group
effect becomes significant as the pile number increases. By comparing the results with
an identical number of piles, it can be found that the pile group efficiency varies as the
soil–pile relative stiffness varies; specifically, the pile group efficiencies decrease as the
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soil–pile relative stiffness increases, i.e., the pile groups with larger stiffness have a more
significant pile group effect.

Table 4. Pile group efficiencies of pile group with various numbers of piles.

Ge Slender Pile Medium Rigid Pile Rigid Pile

2 × 2 0.826 0.525 0.452
3 × 3 0.691 0.389 0.334
4 × 4 0.609 0.317 0.273

By comparing the pile group efficiencies listed in Table 4, the slender pile group’s
group efficiencies are about 1.5 times that of the medium rigid pile group and 2 times that
of the rigid pile group. This conclusion can also be used to interpret the variation in pile
group reduction factor listed in Table 1.

Figure 10 shows the normalized bending moment profiles of pile groups with various
numbers of piles. Some conclusions similar to that in Figure 9 are observed. The maximum
normalized bending moment of 2 × 2 pile group is the largest, followed by that of 3 × 3
and the 4 × 4 pile group, and all of which are less than 1. It shows an obvious pile group
effect occurred for all the pile groups, and the pile group effect increases as the number of
piles increases. The normalized depth of the large number of the pile group (for example
4 × 4 pile group) is larger than that of small pile group, which means the deeper soil
is disturbed for a large number of pile groups and a more significant pile group effect
has occurred.
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4.3. Pile Group Arrangement

In this section, the pile groups are divided into two sets: the first set contains 1 × 3,
1 × 4, and 1 × 5 pile groups (with the pile spacing equal to 3 D, the pile numbers are all 1 in
the loading direction, and the pile numbers perpendicular to the loading direction are 3, 4,
and 5), which reflects the pile group having edge effect only; the second set contains 3 × 1,
4 × 1, and 5 × 1 pile groups (with the pile spacing equal to 3 D, the pile numbers in the
loading direction are 3, 4, and 5, respectively, and the pile numbers are all perpendicular to
the loading direction), which represents the pile group having shadow effect only.

The normalized lateral load versus normalized displacement curves for different pile
group arrangements are shown in Figure 10. It can be found that the normalized lateral
loads for the first set are higher than that for the second set, indicating that the shadow
effect is more significant than the edge effect. Moreover, the maximum normalized lateral
loads for two sets of the pile group are all less than 1, which means an obvious pile group
effect is observed. The maximum normalized lateral load of 1 × 3 pile group is the highest
compared to that of 1 × 4 and 1 × 5 pile groups (Figure 10b,c), which shows that the edge
effect increases as the pile numbers increase. Similarly, the maximum normalized lateral
load of 3 × 1 pile group is larger than that of the 4 × 1 and 5 × 1 pile group, which exhibits
that the shadow effect is also increasing with the increase in pile numbers.

Table 5 is the pile group efficiencies of the pile group with various arrangements.
Table 4 and the comparisons between Figure 11a–c show that the normalized lateral load of
the slender pile group is larger than that of the medium pile group, and the lowest is the
load of the rigid group when the applied target normalized displacements are equal, which
means the group effect increases with the increase in soil–pile relative stiffness. For the
slender pile group (meaning the soil–pile relative stiffness is small), the “edge effect” can
be neglected, while the “shadow effect” is significant for the medium rigid and rigid pile
group; the “shadow effect” is about 1.7 times larger than “edge effect”. From the discussion
above, it can be noted that the pile spacing, number of piles, and pile group arrangement
have significant effects on the pile group, this conclusion is consistent with the previous
study. In addition to that, the soil–pile relative stiffness also has a significant effect on the
pile group effect, i.e., the pile group effect increases with the increase in soil–pile relative
stiffness, which has not been considered by previous research, and can be used to explain
the variation in group reduction factors developed by different researchers.

Table 5. Pile group efficiencies of pile groups with various arrangements.

Ge Slender Pile Medium Rigid Pile Rigid Pile

1 × 3 1 0.794 0.697
1 × 4 1 0.764 0.666
1 × 5 0.988 0.670 0.577
3 × 1 0.794 0.517 0.445
4 × 1 0.727 0.446 0.383
5 × 1 0.684 0.399 0.341
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5. Conclusions

The relationship between the normalized pile group response (normalized lateral load
versus displacement curve and bending moment profile) and the pile relative stiffness
is investigated. On this basis, the relationship between the group reduction factor and
the pile relative stiffness is indirectly studied, and the possible reasons for the difference
between the group reduction factors obtained from the analysis and that from the full field
and centrifuge tests are explained. Based on the results of these analyses, the following
conclusions are obtained:

(1) The group reduction factors are closely related to pile relative stiffness, i.e., the group
reduction factor decreases as the the pile relative stiffness increase.

(2) The pile group effect of group with close spacing is more significant than that with
the large spacing; the pile group effect decreases as the pile spacing increase. The pile
group effect can be ignored for the pile group with pile spacing larger than 5 D.

(3) For the pile group with 3 D pile spacing, the slender pile group’s group efficiencies
are about two times that of the rigid pile group.

(4) The pile group effect increases with the increase in the number of piles in the group;
the pile group efficiency of the 2 × 2 pile group is about 1.5 times larger than that of
the 4 × 4 pile group.

(5) For the slender pile group (meaning the soil–pile relative stiffness is small), the “edge
effect” can be neglected, while the “shadow effect” is significant for the medium
rigid and rigid pile group, and the “shadow effect” is about 1.7 times larger than
“edge effect”.
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